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Abstract

Image categorization is undoubtedly one of the most
challenging open problems faced in Computer Vision, far
from being solved by employing pure visual cues. Recently,
additional textual “tags” can be associated to images, en-
riching their semantic interpretation beyond the pure visual
aspect, and helping to bridge the so-called semantic gap.
One of the latest class of tags consists in geo-location data,
containing information about the geographical site where
an image has been captured. Such data motivate, if not re-
quire, novel strategies to categorize images, and pose new
problems to focus on. In this paper, we present a statistical
method for geo-located image categorization, in which cat-
egories are formed by clustering geographically proximal
images with similar visual appearance. The proposed strat-
egy permits also to deal with the geo-recognition problem,
i.e., to infer the geographical area depicted by images with
no available location information. The method lies in the
wide literature on statistical latent representations, in par-
ticular, the probabilistic Latent Semantic Analysis (pLSA)
paradigm has been extended, introducing a latent aspect
which characterizes peculiar visual features of different ge-
ographical zones. Experiments on categorization and geo-
recognition have been carried out employing a well-known
geographical image repository: results are actually very
promising, opening new interesting challenges and appli-
cations in this research field.

1. Introduction

Categorizing pictures in an automatic and meaningful
way is the key challenge in all the retrieval-by-content sys-
tems [19]. Early categorization techniques used uniquely
visual cues to build compact images descriptions, with the
aim of enhancing those image elements relevant for the cat-
egorization while disregarding the others. Recently, this
classical framework has been improved with the use of text

labels or tags, associated to the images [1], usually provided
by a human user, devoted to constrain the number of ways
an automatic system can categorize an image.

This structure has been further updated with the intro-
duction on the market of several cheap Global Position-
ing System (GPS) devices mounted on cameras. Such de-
vices automatically assign tags to the captured pictures, in-
dicating the geographical position (latitude, longitude) of
the shot. This capability leaded to the creation of suc-
cessful global repositories for geo-located images, such as
Panoramio1, which now maintains huge amounts of (mainly
outdoor) pictures.

This situation encourages the design of novel strate-
gies to categorize images, and pose new problems to fo-
cus on. For example, geo-categorization algorithms can
be designed, taking into account the geographic location of
the images, other than their visual aspect. The underlying
idea is to individuate particular regions, here called geo-
categories, in which are located visually similar pictures.
In this way, the content of a geo-located image database
can be visualized by means of few representative images
per geo-category. Beyond the mere visualization, the geo-
categorization gives also insight on the content of the image
repository: being the pictures personal observations of the
environment, we have that each geo-category encodes vi-
sual aspects of the territory relevant for the community.

Another interesting and hard problem to deal with in this
context is the geo-recognition of images, where the goal is
to infer the geographical area in which a non geo-tagged
picture has been acquired. This task is useful in different
fields: in the context of web content mining, where the ex-
traction of geographical location information from a web
page has recently become an important task [20]. Geo-
recognition can also be useful in the forensic area, for in-
stance, to constrain the possible zones in which a picture
has been taken.

An issue similar to the geo-recognition was faced few
years ago, under the name of location recognition task, as

1http://www.panoramio.com
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an open research contest 2. The geo-recognition task was
in this case faced by taking into account 3D reconstruc-
tion methods, due to the fact that the input images (taken
by a calibrated camera) represented urban scenes with over-
lapped fields of view.

In our situation, the task is much harder, never faced be-
fore without resorting to additional textual data: here we
deal with pictures portraying heterogeneous scenes, cap-
tured under completely different and unknown acquisition
conditions (e.g., different poses, different time of the day
and weather). Therefore, it is reasonable to drop relying on
the geometric content encoded in the pictures, and to build a
recognition technique based on the 2D image pictorial fea-
tures.

In this paper, we propose a novel statistical framework
aimed at the geo-located image categorization and geo-
recognition, based on latent representations. Latent or topic
models, such as the ones built by the probabilistic Latent
Semantic Analysis (pLSA)[7] or by the Latent Dirichlet Al-
location (LDA) [2], were originally used in the text under-
standing community for unsupervised topic discovery in a
corpus of documents. In Computer Vision, topic models
have been used to discover scene classes, or visual topics,
from a collection of unlabeled images. Here, the input data
are the ‘bags of visterms’, i.e., histograms of local visual
aspects extracted from the images. Co-occurrences of vis-
terms in the images form the topics, which can be consid-
ered as higher level descriptions of the images. As a result,
images can be categorized according to the topics they con-
tain.

The work takes inspiration by the pLSA framework, ex-
tending it by introducing a geo-topic in addition to the (vi-
sual) topic. The geo-topic is associated to the visual topic
information via a conditional dependency relation: in prac-
tice, each geo-topic describes visually a gaussian-shaped
geographical area by means of a distribution on the visual
topics. We call this paradigm Location Dependent-pLSA
(LD-pLSA).

In the following, we will detail how the LD-pLSA per-
forms when applied to a consistent database, built from the
Panoramio repository, also providing comparative tests of
categorization. Therefore, we will show geo-recognition re-
sults comparing our method with other ad-hoc approaches.

The rest of the paper is organized as follows. In Sec. 2,
notation and background notions on pLSA are reported. In
Sec. 3, the LD-pLSA framework is fully detailed, showing
how geo-located image categorization and geo-recognition
can be formulated. Sec.4 illustrates the experiments carried
out to validate the proposed approach. Finally, in Sec.5,
conclusions and future perspectives are drawn.

2Where Am I? ICCV Computer Vision Contest, please see
http://research.microsoft.com/iccv2005/Contest/
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Figure 1. Graphical models: a) pLSA; b) LD-pLSA

2. Probabilistic Latent Semantic Analysis
Originally suited for analyzing text corpi, pLSA [7] has

been extensively investigated in the modeling of image col-
lections. The input is a dataset of N images {di}, i =
1,..., N , each described as an histogram of local regions
found by interest operators, whose appearance has been
quantized into M visual words wj , j = 1,..., M . The
dataset is thus summarized by a co-occurrence matrix of
size M×N , where the entry <wj , di> indicates the num-
ber of occurrences of the visual word wj in the document
di, also addressed as n(wj , di). Each document di has ni

words. The presence of a word wj in the document di is
mediated by a latent topic variable, z ∈ Z = {z1,..., zZ},
also called aspect class, i.e.,

P (wj , di) =
Z∑

k=1

P (wj |zk)P (zk|di)P (di). (1)

In practice, the topic zk is a probabilistic co-occurrence
of words encoded by the distribution P (w|zk), w =
{w1,..., wM}, and each image di is compactly (usually, Z <
M ) modeled as a probability distribution over the topics,
i.e., P (z|di), z = {z1,..., zZ}; P (di) accounts for varying
number of words in the images, i.e. P (di) = ni/

∑N
i=1 ni.

The graphical model of pLSA is shown in Fig.1a. The
hidden distributions of the model, P (w|z) and P (z|d), are
learnt using Expectation-Maximization (EM) [5], maximiz-
ing the model data-likelihood L:

L =
N∏

i=1

M∏
j=1

P (wj , di)n(wj ,di) (2)

The E-step computes the posterior over the topics,
P (z|w, d), and the M-step updates the hidden distributions.
Once the model has been learnt, the most used inference,
also called recognition inference, estimates the topic distri-
bution of a novel image. Here, the learning algorithm is
applied fixing the previously learnt distribution P (w|z) and
estimating P (z|d) for the query image. For a deeper review
of pLSA, see [7].

Different pLSA extensions are present in literature: the
most known is the Latent Dirichlet Allocation (LDA) [2],
which adds a sparse Dirichlet prior for the topic probabili-
ties P (z|di). LDA is computationally more demanding than



pLSA, with a comparable accuracy. The benefit of LDA
emerges when few images and several topics are consid-
ered, but this is not our case, as we will see in the following.

3. The proposed method: LD-pLSA

In LD-pLSA, we have N geo-located images {li},i =
1,..., N , indexed as couples of latitude and longitude coor-
dinate values. Associated to each i-th couple, we have a
M × 1 counting array n(w, li) of visual words, for a to-
tal of ni words. Our purpose is to simultaneously extract
two different kinds of latent classes underlying the observed
data: the visual topic and the geo-topic classes. The visual
topic class z encodes, as in the original pLSA framework,
probabilistic co-occurrences of visual words. The geo-topic
class r ∈ R = {r1,..., rR} serves to partition the entire
geographic area spanned by the geo-located images into re-
gions, each one characterized by a specific set of visual top-
ics. The joint distribution over visual words and geo-located
images can be factorized as follows:

P (wj ,li)=
Z∑

k=1

P (wj |zk)
R∑

c=1

P (zk|rc)p(rc|li)P (li) (3)

In the formula above, we have Z and R visual and geo-
topic instances, respectively. The meaning of P (w|z) is the
same as in the original pLSA; the distribution P (z|r) is a
Z × R matrix, where each entry <zk, rc > represents the
probability that visual topic zk is present in the region rc.
The density p(r|l) is encoded as a R×N matrix, and models
the likelihood of being in a particular region rc, given the
geo-located image li. Finally, P (l) functions as the classical
document-distribution P (d) of pLSA.

An alternative consistent factorization of the model can
be obtained by applying the Bayes theorem to p(r|l)p(l), as
done in a similar way in the classical pLSA in [7], obtaining
the joint probability

P (wj , li)=
Z∑

k=1

P (wj |zk)
R∑

c=1

P (zk|rc)p(li|rc)p(rc) (4)

which permits to characterize geo-topics in both visual
sense by means of P (zk|rc), and under a topological as-
pect through p(li|rc). The correspondent graphical model
is depicted in Fig.1b. In this paper, we assume a Gaussian
form for p(l|r), i.e.,

p(li|rc) = N (li;µrc
,Σrc

) (5)

where the parameters µrc ,Σrc indicate the mean location
of the rc-th region and the associated spread, respectively.
Finally, p(rc) is a discrete distribution over the region vari-
able.

As compared to pLSA, the biggest difference is that LD-
pLSA introduces a conditional independence relation be-
tween the visual topic zk and the geo-located image li, given
the geo-topic value rc. This means that here the visual topic
is evaluated as a global characteristic that influences all the
images that lie within a region.

3.1. Model fitting with the EM algorithm

Given a set of training data, our model is learned by max-
imizing the data log-likelihood

LL =
N∑

i=1

M∑
j=1

n(wj , li) log P (wj , li) (6)

where the joint probability is factorized as in Eq.4. The
learning equations can be straightforwardly derived from
those of pLSA, permitting a fast training via exact EM. In
the E-step, the Bayes formula is applied in the parameteri-
zation of Eq.4, obtaining the posterior3

P (z, r|w, l) =
P (w|z)P (z|r)p(l|r)p(r)∑
z,r P (w|z)P (z|r)p(l|r)p(r)

(7)

In the M-step, the expected complete data likelihood has to
be maximized, which is

E[L] =
∑
w,d

n(w, d)
∑
z,r

P (z, r|w, l)

· [log P (w|z)P (z|r)p(l|r)p(r)] (8)

The maximization of E[L] can be derived straightforwardly
for the parameters describing P (wj |zk), P (zk|rc), P (rc)
and p(li|rc), employing Lagrange multipliers where neces-
sary. The M-step re-estimation equations are thus:

P (w|z) =
∑

l n(w, l)
∑

r P (z, r|w, l)∑
w,l n(w, l)

∑
r P (z, r|w, l)

(9)

P (z|r) =

∑
l,w n(w, l)P (z, r|w, l)∑

w,l n(w, l)
∑

z P (z, r|w, l)
(10)

P (r) =

∑
w,l n(w, l)

∑
z P (z, r|w, l)∑

w,l n(w, l)
(11)

µr =

∑
w,l n(w, l)

∑
z P (z, r|w, l)l∑

w,l n(w, l)
∑

z P (z, r|w, l)
(12)

Σr =

∑
w,l n(w, l)

∑
z P (z, r|w, l)(l−µr)(l−µr)

T∑
w,l n(w, l)

∑
z P (z, r|w, l)

(13)

The E-step and the M-step equations are alternated until a
convergence criteria is met.

3In the following, we omit the pedices for clarity in the reading, resort-
ing them only when necessary.



After the learning, several useful inferences can be assessed.
The geo-topic membership label of an image can be esti-
mated in a Maximum Likelihood framework: starting from
the image likelihood

∑
w n(w, li) log p(w, li), we build the

geo-topic class conditional, calculating then the geo-topic
index R(li) ∈ 1,..., R that maximizes it. In formulae

R(li) = arg max
c

∑
w

n(w, li)log p(w, li|rc)

= arg max
c

∑
w

n(w, li)log
∑

z

P (w|z)P (z|rc)p(li|rc)

(14)

The inference for the geo-recognition consists in setting
the location of an image as being the center of a region, for
all the regions discovered. Then, the learning algorithm is
run, leaving locked the p(w|z) distribution, i.e., the statisti-
cal word-descriptions of each visual topic, and the parame-
ters µrc ,Σrc , estimating thus p(z|rc). At the end of the pro-
cess, we obtain a set of distributions {p̂(z|rc)} for r1,..., rR.
Each one of these distributions is compared with the cor-
respondent training distributions {p(z|rc)}, employing the
Resistor-Average distance [3], i.e., a symmetric similarity
score, based on the Kullback-Leibler divergence KL(·||·);
in formulae:

R(p, q) = [KL(p||q)−1 + KL(q||p)−1]−1 (15)

The region of the un-labelled image d̂, i.e., r̂ is the one that
satisfies the following equation:

r̂ = arg max
c

R(p(z|rc), p̂(z|rc)) (16)

It is worth noting that the region recognition works also in
the case of multiple un-located images, with the hypothesis
that all the images come from the same region.

3.2. Comments about LD-pLSA

This section aims at highlighting the differences of our
technique with respect to existent pLSA extensions.

• Spatial layout analysis techniques [6, 11, 12, 13] -
these techniques learn 1) the locations associated to vi-
sual topics in the images [11]; 2) the locations of the
words of a single visual topic grouping them in a single
cluster [6, 12], also introducing robust management of
the clutter [13]. Conversely, our purpose is to model
the locations of the images in a geographic area.

• Topological pLSA [8] - this technique adds an addi-
tional latent variable, which lives in the same space
of the original topic variable z, and serves to capture
similarity relations among topics. Even if the form of
the joint probability distribution is similar to ours (see
pag.167 in [8]), its parametrization and its meaning is
totally different.

4. Experimental results
4.1. Dataset details

To analyze our framework, we built a geo-located image
database crawling 3013 images from Panoramio, consider-
ing the southeastern part of France. The download has been
accomplished considering all the geographical zones where
images were present, in an uniform way. We chosen France
because of its large variety of natural scenes, ranging from
mountains to sea areas, with historical, industrial or coastal
cities, fields and villages. Please note that, at the best of our
knowledge, no public dataset of geo-located images is avail-
able for experimental evaluations; image URL addresses
used for the experiments are listed here4. As preprocess-
ing, we converted all the images to grayscale, and we re-
sized them via bicubic interpolation to standard width (320
pixels). Then, we employed the difference of Gaussians
(DoG) point detector [14], which selects sparse blob-like
patches invariant to translation, rotation, scale, and uniform
illumination variations. We chose this solution, disregard-
ing to adopt affine-invariant detectors [16, 21, 15, 9], well-
suited for a object recognition context, as discussed in [17].
Once interest points are extracted (averagely 670 for each
image), 128-dim. SIFT descriptors [14] are applied to de-
scribe their local neighborhood. Subsequently, descriptors
are quantized into a codebook of M = 300 visual words
via k-means, where low populated clusters (≤ 10 elements)
are pruned out. Once the visual words are estimated, bags
of words (BOV) representations are built for each image.

The LD-pLSA training needs to set two parameters: the
number of visual topics Z and the number of geo-topics R.
For what concerns Z, we start choosing Z = 32, consider-
ing the analysis made in [17]. Then, we set the number of
geo-topics R = 16. The choice of this parameter depends
on the level of detail that an user wants to achieve in ana-
lyzing a particular geographical area. We will go back later
on this issue. A principled (not only exploratory) model se-
lection issue on the “best” Z and R has not been considered
in this paper, but it will be subject of future research.

We run the EM algorithm, that takes approximately 3
minutes to converge after 300 iterations on a 1.98 Ghz
Xeon with a Matlab implementation. After the learning,
we obtain a set of Gaussian geo-topics, simply called re-
gions, each one modeled by a distribution over visual topics
P (z|rc), where the visual topics are co-occurrences of vi-
sual words described by P (w|zk).

4.2. Geo-categorization

The Gaussian regions are depicted in Fig.2a, and the
image locations, labeled as described in Eq.14, are shown
in Fig.2b. For each region, in Fig.2 on the right, we

4http://profs.sci.univr.it/∼cristanm
/research/cvpr08.html



show some of the member pictures, drawn from left to
right in decreasing order of geo-topic conditional likelihood∑

wn(w, li)log p(w, li|rc) (see Eq.14); the last two column
shows images with very low conditional likelihood. It is
easy to see how each of the discovered regions contains im-
ages which are visually related. In particular, it is worth to
notice how each region individuates a particular scene cat-
egory, in the sense described in [22]: actually, we see cities
(reg. 1,3,5,14,17,18,19), (mostly) fields (reg. 2,4), moun-
tains (reg. 6,8,12,13), mountain villages (reg.15), coastal
areas (reg.7,9,16), lakes (reg.20). This can also be noticed
by looking at Fig.2a; actually each category lies entirely on
a particular kind of landscape (mountains, plains, coasts).
In this sense, we can say that the categories built are geo-
graphically coherent.

4.2.1 Details on the geo-topics

In order to probe how the geo-topics are characterized, for
each visual topic zk we rank the M visual words in de-
creasing order of P (wj |zk), j = 1,..., M . Then, we select
the first six visual words (that we address as representa-
tive) of all the visual topics. For some member images of
all the geo-topics, we show the location of the represen-
tative words of the visual topic that best models that re-
gion, i.e., for a given region rc, we extract the visual typ-
ical topic index k for which P (zk|rc) is maximum (see
Fig.3). Actually, for almost each region there is a visual
topic which strongly characterizes its most prominent visual
aspect. For example, in the region 1 (Avignon), represen-
tative visual words are located on the curved architectural
elements of the bridge and the palace, and not on the vege-
tation.5. Viceversa, on region 2 (Val de Durans) and region
4 (Provence plains), visual words are mostly located on the
vegetation, disregarding the building, which are present in
a lower quantity on the images of those classes.

In region 9 (Arles, Camargue National Park), being
present flat swamp and wild beach coasts, visual words are
mostly located on the vegetation and on the horizon line.
On region 13 (Alpes da Haute Provence) many pictures de-
pict curved hill profiles and vegetation, as highlighted by
the representative words shown. Further, regions depicting
mountains exhibit recurrent rock patterns distilled by the
visual words. It is worth to notice how visual topic 11 is
typical for the cities.

As additional exploration of the visual content encoded
in the conditional P (zk|rc), given a test image, we visual-
ize the representative visual words of a topic, which is the
typical for a region different to that of the test image. As
visible in Fig.4a, the test image comes from the region 17
(Montecarlo). At first, we select the topic z = 20, typi-

5To better highlight this fact, we calculate a patch representation for
each visual word, following the approach described in [10], showing it on
the right of the images.
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Figure 3. Topic representations: for each region we highlight the
most prominent typical visual topic (numbered in red on the re-
spective p(z|r) histograms). The positions of the 6 most repre-
sentative visual words of the typical topic are shown as rectangles
on the images on the right; below the histograms, such words are
visualized as squared patches.

cal for region 4 (Provence fields, see one of these images
on top of Fig.4a), whose representative words are mostly
located on vegetation patterns. As one can observe, in the
test image very few visual words are present. We then se-
lect topic z = 13, typical for region 1 (Avignon), in which
many words lie on the (curved) architectural elements of the
ancient buildings present there. In the test image, interest-
ingly, visual words result on locations mimicking the Avi-
gnon’s architectural patterns. Similar considerations hold
for several images in the dataset.

Another means to highlight the peculiarity of the geo-
topic descriptions consists in building a pairwise dissimi-
larity matrix among the p(z|r) distributions. As dissimi-
larity measure between distributions, we employ again the
Resistor-Average distance. The dissimilarity matrix, de-
picted in Fig.4b, shows in general an high degree of nonuni-
formity among the p(z|r), which will be useful in the recog-
nition step. More in detail, performing hierarchial cluster-
ing on the dissimilarity matrix and visualizing the result-
ing dendrogram (Fig.4c), we discover the tendency of cities
and landscape regions to forming separated macro-groups
with consistent intra-group differentiation. Regions 1,7,and
9 (Avignon, South Var, and Camargue, respectively) are
strongly differentiated by the rest of the regions.

Finally, we test our categorization technique by varying
the number C of geo-topics (see Fig. 5a,b,c). As writ-
ten before, a large number of geo-topics permits to de-
scribe more finely the different geographical areas spanned
by the images. Anyway, augmenting the number of geo-
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Figure 2. Categorization results: a) (numbered) Gaussian regions discovered by LD-pLSA. b) labelled image locations. On the right, for
each region a set of 10 member images: 8 have high region-membership conditional likelihood, while the last two have lower conditional
likelihood.

topics causes the creation of geo-categories formed by few
member images. As we see in the following, this brings
to bad geo-recognition performances. Here we visualize
how our method behaves fixing the number of geo-topics
to C = 2, 3, 4 (Fig.5 a,b,c respectively). Even with C = 3,
the regions portrayed define consistent geographical areas.
Finally, changing of the number of visual topics K, from 16
to 100, does not affect the quality of the obtained partitions.

4.2.2 Comparative results on geo-categorization

In order to assess the relevance of our geo-categorization
technique, we set up two alternative strategies to partition
our dataset: 1) Location dependent strategy - perform-
ing Gaussian clustering via EM, considering only the loca-
tion information of the images; 2) Aspect dependent strat-
egy - performing classic pLSA with T = 32 topics on the
dataset, obtaining as image feature vectors the distributions
p(z|d) (different for each image d); subsequently, perform-

ing Gaussian clustering via EM using such features vectors.

In the location dependent strategy, as expected, several
incoherent geo-categories (i.e.,whose member images ex-
hibit strongly different visual patterns) are produced (see
Fig. 5d); in the aspect dependent strategy, we have very
sparse and overlapped small clusters, not depicted here for
clarity. Anyway, note how locations of pictures portraying
cities exhibit the same geo-category label (Fig. 5e).
As comparative categorization strategy employing both lo-
cation and visual aspect information, we perform non-
parametric clustering via Mean Shift [4], employing a prod-
uct kernel ([4], pag.610) on the feature vectors obtained by
concatenating the locations and the latent distributions gath-
ered through pLSA.

This strategy gives better results than the first two al-
ternative policies, but behaves worse with respect to our
method (see Fig. 5f: the method is not able to discover the
Cote d-Azur cities). Actually, LD-pLSA partitions the data
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Figure 5. Geo-categorization results: LD-pLSA with a) C=1, b)
C=2, c) C=3. Comparative strategies: d) Location dependent strat-
egy; e) Aspect dependent strategy; f) Mean Shift based strategy on
combined data location+visual topic information.

into groups and select the features to index these groups
(i.e., p(z|r) geo-topic distributions) at the same time, dur-
ing the EM training. Instead, the Mean-Shift strategy works
a posteriori, separating the images into groups, resorting to
the extracted individual image features (i.e., p(z|d) distri-
butions) ignoring the location aspect.

4.3. Geo-recognition

The geo-recognition task consists in inferring the region,
found by previous geo-categorization, depicted by image(s)
with no available location information. In order to evaluate

our strategy, we split our dataset into training and testing
sets; the training set is used to geo-categorize the images.
We employ now the categorization shown in Sec.4.2, with
C = 20 regions. Together with the testing set, we build
also the correspondent ground truth label set, associating to
each test image the label of the geo-category in which it is
located. We vary the size and the content of training and
testing sets, building a Leave-K-Out (LKO) strategy [18] to
cross-validate the results. We select K = 50, obtaining 50
subsets; 49 subsets form the training set, the 50-th is the
testing set. We pay attention that each subset is formed
by images covering uniformly the entire geographic area
spanned by the whole geo-located image dataset.

It is worth to note that the geo-recognition mechanism
works also with more than one image, with the only con-
straint that all the images comes from a single place. There-
fore, for each testing set, we variate the number of testing
images used as a single query, in a way such that each re-
gion could be evaluated by an increasing number of pic-
tures. Then, the final results of recognition are mediated on
all the 50 runs of the LKO strategy. We call this strategy
Simultaneous LD-pLSA (S-LD-pLSA).

As comparative strategy for the recognition, we used the
Support Vector Machine (SVM)-based strategy proposed
in [17], in which multi-classes SVMs were trained on the
BOV representation of the member images of each cate-
gory. Unfortunately, here it is not possible to evaluate di-
rectly the effect of augmenting the number of images for
a single query. Therefore, in order to make an appropri-
ate comparative evaluation, we decide to adopt a majority
criteria for both our framework and the SVM approach: in
practice, given a query with I images, we evaluate the re-
sponse of our classifier for all the I images taken separately,
considering as winner the region which gains the biggest
number of individual votes. We call these serial strategies
for our approach and the SVM approach as Majority LD-
pLSA (M-LD-pLSA) and Majority SVM (M-SVM), re-
spectively. The results are shown in Fig.6a, obtained con-
sidering queries formed by 1, 5 , 10, 20 and 50 images re-
spectively. As we can see, M-SVM outperforms M-LD-
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Figure 6. Recognition tests: a) classification accuracy; b) classifi-
cation accuracy with training sets of different cardinalities (indi-
cated under the curves); c) classification accuracy in the case of
queries formed by a single image, varying the number C of geo-
topics considered in the categorization step.



pLSA and S-LD-pLSA in the case of single-image query.
Anyway, S-LD-pLSA outperforms M-SVM when queries
are formed by multiple images. In Fig.6b, different classi-
fication accuracy curves are reported, obtained by employ-
ing training sets for geo- categorization of different cardi-
nalities, extracted by the whole dataset and cross validated
as explained before. As expected, diminishing the training
set, the performances degrade. Note that the different train-
ing sets cover uniformly the entire geographic area spanned
by the original dataset. Finally, we evaluate the classifica-
tion accuracy when varying the number C of regions in the
geo-categorization step, again adopting the LKO strategy
explained above on the entire dataset. Here we do not have
a regular monotonic decreasing slope (Fig.6c): actually, a
low number of geo-topics in the geo-categorization gives
rise to regions not well characterized. Vice versa, a high C
means several regions with few member images.

5. Conclusions
In this paper, we focus on geo-located images, i.e., im-

ages whose acquisition location is given. In such frame-
work, we focus on two novel issues, which are 1) how to
categorize geo-located images considering both spatial and
visual information, and 2) how to infer the zone surrounding
the location of acquisition of an image non geo-located. To
this end, we developed a novel statistical technique, based
on probabilistic Latent Semantic Analysis. The proposed
technique characterizes the entire area spanned by the geo-
located images as a set of latent geographical regions char-
acterized by a distribution of latent visual aspects. The vi-
sual aspects of each region are thoroughly characterized by
distilling recurrent visual patterns captured via bag of words
representations. At the same time, the technique is able to
infer the region of one or more images portraying the same
unknown location. Comprehensive experiments show the
pro and cons of the proposed technique. Future develop-
ments of the model will regard model selection issues, and
how to describe a location under different levels of detail.
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