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Abstract

Over the years, many tensor based algorithms, e.g. two
dimensional principle component analysis (2DPCA), two
dimensional singular value decomposition (2DSVD), high
order SVD, have been proposed for the study of high di-
mensional data in a large variety of computer vision appli-
cations. An intrinsic limitation of previous tensor reduction
methods is the sensitivity to the presence of outliers, be-
cause they minimize the sum of squares errors (Lo norm).
In this paper, we propose a novel robust tensor factoriza-
tion method using Ry norm for error accumulation function
using robust covariance matrices, allowing the method to
be efficiently implemented instead of resorting to quadratic
programming software packages as in other Ly norm ap-
proaches. Experimental results on face representation and
reconstruction show that our new robust tensor factoriza-
tion method can effectively handle outliers compared to pre-
vious tensor based PCA methods.

1. Introduction

Principal component analysis (PCA) is a widely used
method for dimension reduction and PCA based techniques
have been successfully applied into many computer vision
application, e.g. image reconstruction, object recognition,
tracking, detection, appearance, and motion. In face repre-
sentation and recognition, PCA was first used by Sirovich
and kirby to represent human facial images [7]. Later,
Turk and Pentland [9] proposed the well-known PCA based
eigenface method for face recognition. Because in classical
PCA the image matrix is mapped into a one dimensional
vector, the spatial correlation within each image are not
fully utilized. After realizing this intrinsic problem, many
researchers in computer vision and pattern recognition ar-
eas have begun to emphasize the image as matrix or tensor
to improve the performance of subspace dimension reduc-
tion. Based on PCA, some image-based subspace analy-
sis approaches have been developed. Shashua and Levine
[12] used rank-1 (one of the three tensor decompositions
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described by Tucker in [13]) matrices to represent a set of
images. Recently, Yang et al. [15] proposed a two dimen-
sional PCA (2DPCA) in which image covariance matrices
are constructed directly using original image matrices and
one-side low-rank approximation is applied. Ye et al. [16]
proposed a method called Generalized Low Rank Approx-
imation of Matrices (GLRAM) that is a two-side low-rank
approximation method and projects the original data onto a
two dimensional space L and R such that the project has
the largest variance among all two dimensional space. Ding
and Ye proposed a non-iterative algorithm in [2] called as
two dimensional singular value decomposition (2DSVD).
Although several other tensor based PCA research results
have been proposed, Inoue and Urahama have shown the
equivalence of them in paper [5].

It is commonly known that traditional PCA and novel
tensor based PCA (like 2DPCA and 2DSVD) minimize the
sum of squared errors, which is prone to the presence of out-
liers, because large errors squared dominate the sum. In the
vision community, some previous attempts to make PCA
robust have treated entire images as outliers [14] and sev-
eral other methods focus on intra-sample outliers [8]. Ke
and Kanade [6] proposed another approach using L; norm
or the least absolute deviance that is less sensitive to outliers
compared to Lo norm (the Euclidean metric). This method
need solve the optimization problem through the quadratic
programming that is computationally expensive. In order
to improve the computational efficiency, Ding et al. [3]
used the rotational invariant L1 norm (/27 norm) as the ob-
jective functions of PCA. All those methods were working
on robustness improvement of traditional PCA. An assem-
bled matrix distance metric [|7] was proposed to measure
the distances between features’ matrices using L, norm and
work with 2DPCA together to improve the face recognition
rate. Since his method didn’t apply the new distance func-
tion into the objective function of 2DPCA and still used Lo
norm for tensor factorization optimization, the robustness of
2DPCA is still the same. Park and Savvides also proposed a
tensor method [ 1 1] to improve the robustness of face recog-
nition, but they also used Lo distance. To our knowledge,



so far there is no robust method to improve the performance
of tensor based PCA.

In this paper, we propose a novel robust tensor factor-
ization approach using R; norm. By projecting the tensor
data (2D images) onto the (K, K2)-dimensional space, we
expect to obtain optimal approximation of the original ten-
sor with less sensitivity to the outliers. In order to demon-
strate the efficiency and effective of the proposed method,
experiments are carried out using the well known ORL face
database and YALE face database. Experimental results
show that, our method can effectively handle outliers com-
pared to previous tensor based PCA methods.

Our contributions are as follows:

1) We propose a novel robust tensor factorization method in
which the principal components of subspace are the princi-
ple eigenvectors of a robust covariance matrix (re-weighted
to soften outliers) with two-side low-rank approximation.
2) We also prove the solutions are rotational invariant. A
subspace is not uniquely determined up to an orthogonal
transformations

3) An efficient robust tensor factorization algorithm is given
out in section 3 and its iterative steps are similar to previous
2DSVD related methods, but we use weighted covariance
matrices.

4) There is no extra time and space complexities compared
to the general tensor based PCA methods.

2. Subspace analysis

To illustrate the concept, in this section we introduce the
relevant preliminary material concerning robust PCA (ro-
bust factorization of a 2D tensor consisting of a set of 1D
vectors data) and tensor based PCA.

2.1. Rotational invariant ; norm

Given n data points in d-dimensional space, we denote
them as X = (x3y,---,Xp). The Frobenius and L; norms
are defined as
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In matrix X = (z;;), index 7 sum over data points,
i = 1,---,n and index j sum over spatial dimensions,
7 =1,---,d. The Ry norm is defined as [3]
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For some matrices X4y, the properties of R; norm are:
1. Triangle inequality: || X + Y|z, < || X||r, + [|Y||r,

2. Rotational invariance: ||RX||r, = ||X||r, for any
orthogonal R (a rotation transformation).

Rotational invariance is a fundamental property of Eu-
clidean space with Lo norm. It has been emphasized in the
context of learning algorithms [10]. When we apply PCA
into reducing the dimension of high-dimensional data, we
hope to project data into a low-dimensional subspace which
reduces the noise at same time. A subspace is not uniquely
determined up to an orthogonal transformations. Therefore,
we prefer to model data with distributions that satisfy rota-
tional invariance.

In standard PCA, the subspace can be estimated by the
following matrix factorization:

Xaxn = UgxkViexn- 3)
where U = (ug,---,u;) € Rk and V =
(Vi,--+,v,) € RF*"  The standard PCA is formulated
as:
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The robust version of PCA, R{-PCA, uses R norm and the
cost function is:

win Jr, = [|X = UV]|g, = Z Ix; = Uil (5)
L1-PCA has the cost function:
n
i, = X = OV, = 3 = Uil @
=

This requires quadratic programming which is computa-
tionally expensive. It also has a drawback of a skewed iso-
surface [3].

Both standard PCA of Eq. (4) and R;-PCA of Eq. (5)
can be simplified as:

n

UITnLifIiI Jpca = ;(X?Xi —x'UUx;). (7

n
UrTn[}riI Jr, = ;\/XZsz —xIUUTx,. 8)

From two above equations, we know Jpca(U) and
Jr, (U) are convex functions of UU”'". Thus, both PCA and
R, PCA have a unique global optimal solution. Although
UUT is unique, U is unique up to an orthogonal transfor-
mation R.

2.2. Two dimensional PCA and 2DSVD

In 2D approach [15], the image matrix does not need
to be previously transformed into a vector, thus a set of IV
sample images is represented as { X1, Xo, -+, Xn}. We



assume the sample i 1mages have been centerized with the
mean image X = Ez 1 Xi = 0. 2DPCA uses all sample
images to construct the image covariance matrix G as:

N
G =S x7x, ©)

i=1

where X is the ¢-th sample image with size of r x ¢. Only
one dimensional column by column correlation is consid-
ered.

Ye [16] and later Ding and Ye [2] considered the problem
of computing low rank approximations of matrices by min-
imizing the approximation error and gave out an iterative
algorithm 2DSVD. Formally, they consider the following
optimization problem:

L, {M; X; — LM;RT||%. (10
L min Jo(L, (M} R) = ;H RY|[%. (10)

where L € R7*F1 R € Re*F2 and M; € RFxF2 Let’s
define the row-row and column-column covariance matrices
as:

N
> X:RR"X], (11)
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The 2DPCA of Yang et al. [15] is a special case of Eq. (10)
by setting L = I (i.e. ignoring L).

The 2DSVD solutions are calculated as following steps:
(1) Initialize RRT = I.. and an error threshold;
(2) Form a new F according to Eq. (11) and compute the
first k1 eigenvectors 1y, - -+ |1;, to form the updated L =
[lla T alk’l];
(3) Form a new G according to Eq. (12) and compute the
first ko eigenvectors ry, - - - , Iy, to form the updated R =
[r17 T 7rk2];
(4) Go back to (2) until the J,. of Eq. (10) is less than the
error threshold.

We will formulate a robust version of Eq. (10). From
there, a robust version of 2DPCA can also be constructed.

3. Robust tensor factorization

In this section, we formulate the subspace estimation as
an Ry norm problem, and then present a concrete robust
tensor factorization algorithm to minimizing the R; norm.

3.1. R; norm based tensor factorization

In order to improve the robustness of tensor based PCA,
we use R; norm to replace the Lo norm as cost function.

In 2DSVD, the optimization function is the sum of squared
errors in Eq. (10). Similar to Eq. (5), the cost function using
the R norm is defined as:

min  J.(L,{M;}, R)

\/||X LM;RT |2,
L,R,{M;}

i= 1

(13)
A Ly norm based cost function is:

in J,(L,{Mi},R) = X;—LM;R"||,,. (14
o Jr(LAM, R) ;ll RY||,. (14)

The L; version is computationally expensive and will not
be discussed further. The right side of Eq. (13) can be cal-
culated as:

f:\/nXi — LM;RT|?
i=1

n
=3 Te(XT X, — 2LMRTXT + MTM,)(15)

i=1

First, we solve the optimization problem on M;. Taking
0J,./OM; = 0, we have
aJ, —LTX;R+ M;
OM; VTIr(XTX; —2LM;RTXT + MT M)
- 0 (16)

Thus, we obtain
M; = LT X;R.

Using it, Eq. (13) is written as:

min J, (L, R)
L,R

)

n
= \/ﬁ(Xin —9XTLLTX,RRT). (17)
i=1
Now we solve for L and R. To enforce, the orthogonal-
ity: LTL =T and RTR = I, we follow the standard theory
of constrained optimization and introduce the Lagrangian
function as follows:

min £ = J, + Tr S(LYL—T)+Tr QRTR - 1) (18)

where the Lagrangian multiples 3 and {2 are symmetric ma-
trices. The KKT condition for optimal solution specifies
that the gradient of £ must be zeros. We obtain:

oL

= = 9F,L+2LY =0, 19
3L + (19)

-y X,RRTX]
VIr(XTX, —2XTLLTX,;RRT)

(20)




and ac
— =—-2G,R+2RQ =0, 21
3R + 21
where
XTLLTX;
Gr=> : . (22
— /Tr(XTX, —2XTLLTX,RRT)

(F., G,) of Egs. (20,22) are the robust (weighted) version
of (F, G)in Egs. (11,12). We call them as robust covariance
matrices.

3.2. Computational algorithm

In paper [3], the problem is solved by the subspace iter-
ation method. Here, we use solve them in a new method by
eigen decompositions.

From Eq. 19, we get F,.LL = LY and calculate the first
ky eigenvectors of F,. with F.l = opl, (kK = 1,--- , ky).
L can be formed as [ly,--- ,1g,]. From Eq. 21, we have
G,R = Rf) and calculate the first ko eigenvectors of G,
with G,ry = wiry (kK = 1,--- ,k2). R can be formed as
1, e,

Theorem 1. The solutions of robust 3D tensor factor-
ization of Eq.(13) are the principal eigenvectors of the rota-
tional invariant covariance matrices (a weighted version of
the covariance matrices):

Fro=> wiX;RRTX], G, =Y w;XTLL"X; (23)
where

1
- V/Te(XTX, —2XTLLTX,RRT)

(24)

w;
In practice, we use the popular Huber’s M-estimator:

52 if |s|]<c
pls) = { 2c|s| — c? if |s|]>c (25)

as the generalized Li-norm: p(s) reduces to L,
when the cutoff ¢ — 0. We minimize J,y =
S p(\/1|Xi — LM;RT|[?) instead of Eq.(13). The so-
lution is the same as in Theorem 1, with the weights re-
placed by

W — 1 if r, <c
T efry it >

where r; = /Tr(X7 X; — 2X]LLTX;RRT).

We summarize the robust tensor factorization algorithm
in Table 1. From 2DSVD solution algorithm in section 2.2,
we know it is an iterative algorithm. The first step in our
algorithm is the same of the first step of 2DSVD. Start-
ing from 2nd step, our algorithm uses the weighted (see
Eq.(26)) form of the same matrices in 2DSVD, thus has the
same computational complexity. It is possible that our al-
gorithm may needs slightly more iterations than 2DSVD.

(26)

1) Compute the first step of 2DSVD to get L and R;

2) Calculate residue errors {r; }.
Set cutoff = median of {r;}.

3) Using current L, R to compute F,. and its eigenvectors.
This gives the new L.

4) Update R. Using current L, R compute G- and its
eigenvectors. This gives new R.

Repeat 3) and 4) until convergence,
i.e. J is no longer decrease.

Table 1. Robust tensor factorization algorithm.

3.3. 2D rotational invariance

We introduce a new concept of rotational invariance
property of tensor factorization. We will show both
GLRAM/2DSVD of Eq. 10 and the robust version of
Eq.(13) have the nice rotational invariance property. We
define the rotational transformation of tensor factorization
as:

X; — R X;R}Y, L — R/L, R— RyR (27)

where R, Ry are orthonormal: RlTRl =1, R2TR2 = I.
R, € R™*" performs the rotational transform on the rows
of matrix X € "¢ and Ry, € R*¢ makes the rotational
transform on the columns of matrix X. If the projection
results (e.g. M;) remain unchanged under the rotation, we
say they are invariant. We note pure L;-PCA of Eq. (6) and
L1-2DSVD of Eq. (14) don’t have this property.

Theorem 2. Both GLRAM/2DSVD and robust tensor
factorization are rotational invariant.

Proof: For each term in Eq. (10,13), we have:

|| X; — LM;RT|

= ||(R R1)(X; — LM;R")(R3 Ry)||

= [|Ru(X; — LM;R")RY|

= [|[RiXiR; — (RiL)M;(ReR)T)[| (28)

Therefore, M; remains unchanged in the rotational transfor-
mation.

3.4. Space and time complexities

In Table 2, we summarize the storage and matrix sizes
for which we need to compute k largest eigenvectors (sup-
pose we use the same number of largest eigenvectors on
both F,. and G,, K1 = Ky = k). For a matrix of size
a % b, the computational complexity is O(kab). Our robust
tensor factorization approach has the same time and stor-
age complexity as 2DSVD. In our method, The robustness
is improved without introducing any extra computation.



method storage matrix size
PCA rck + nk rexn
2DSVD rk+mnks+sc | rxrorecxec
Our method | 7k +nks+sc | rxrorcxc

Table 2. Storage and matrix sizes, for n images of size r X c.

4. Robust tensor factorization for higher order
tensors (D-1 decomposition)

We can extend our robust tensor factorization from 3D
tensor to higher order tensors. Given a D-dimensional ten-
sor, we introduce D-1 subspaces to form a D-1 decompo-
sition [1]. For 2D tensor, D-1 decomposition is PCA. For
3D tensor, D-1 decomposition is GLRAM/2DSVD. Their
robust version are discussed in §2.1 and §3.1. Here, we
give an example for 4D case. Given a set of 3D tensors
[Y1,---,Y,], the robust version of D-1 tensor factorization
using R;-norm is:

o nin J = ;HY} U@ Vs W ®s M|r,,
s.t. VIv =1, U'U =1, WI'W = 1(29)

At first, let’s define F, G, H are covariance matrices:

iy = Zwi Z X”k

/k/ VVT)]J (WW )kk’

Ji'kk’
Gjj = Zwe Z Xffzin?w UUT)W(WWT)M’
i’ kk’
Hie = Zwe S XX U (VY50 G0)
i’ 55"

The initial U, V, W are the eigenvectors of F, G, H in
Eq. 30, respectively. In this step, wy, = 1. When calculating
F, we setup VTV = I and WTW = I when calculating
G, we setup WIW = 1.

We iteratively use current U,V,W and c¢ to up-
date the residue {r;} and the weights w, as Eq. 26,

¢ ¢
Z’L]k} Xz(]lz |: z(jli Ei’j’k’ Xi(’j)’k’ (UUT)’ii’ (VVT)jj'
(WWT);W} and the cutoff ¢ = median {r¢}. Using the

weights wy, we compute U, V, W as the eigenvectors of
F,G, H in Eq. 30.

5. Experimental results

In this section, three benchmark face databases ORL and
YALE are used to evaluate the effectiveness of our pro-
posed robust tensor factorization approach. Because Inoue
and Urahama have shown the equivalence of tensor based
PCA in paper [5], we can compare our method to 2DSVD
(GLRAM) without losing generality.

5.1. Experimental results on the ORL database

In the ORL database, there are ten different images of
each of 40 distinct subjects. For some subjects, the images
were taken at different times, varying the lighting, facial
expression (open/close eyes, smiling/no-smiling) and facial
details (glasses/no glasses). All images were taken against
a dark homogeneous background with the subjects in an up-
right, frontal, position (with tolerance for some side move-
ment). For each subject, we randomly generate an image
as outlier using random value between 0 and 255 for ev-
ery pixel on the noise image. Both 2DSVD and robust ten-
sor factorization algorithms are performed to reconstruct all
face images (including the outlier one) under the same sub-
ject. Meanwhile we also gradually increase the noise level
by adding more outlier images.

5.1.1 Illustration

Fig. 1 illustrates the images reconstruction difference be-
tween 2DSVD and robust tensor factorization algorithm
with one outlier image (both methods use K1 = K2 = 30).
For both original and reconstructed images, seven of ten to-
tal images plus the outlier image are visualized in Fig. 1.
The images on the first, fourth, seventh rows are the origi-
nal images of subjects. The last images on these three rows
are the outlier images that are randomly generated for each
subject. The second, fifth, eighth rows show the image re-
construction results using 2DSVD for three subjects; The
images on the third, sixth, and ninth rows are the reconstruc-
tion results of robust tensor factorization algorithm. Obvi-
ously the outlier image influence more on the reconstruc-
tion results of 2DSVD and make them fuzzy. Compared
to 2DSVD results, robust tensor factorization prevents the
image reconstruction from the effect of outlier.

On the other hand, we also can see the outlier image re-
constructions get better results on 2DSVD. The robustness
factorization method reconstructs the outlier images more
fuzzy. The intuition of robust method is to reduce the out-
lier’s effect on other normal images and improve the ac-
curacy on normal images, not outlier image. Our method
significantly outperforms 2DSVD on robustness demonstra-
tion.

5.1.2 Reconstruction Errors

In Fig. 2, we plot the sum of squared distances from ten
original images (the first subject we used in Fig. 1) to both
2DSVD and robust tensor factorization principal subspaces.
The values on horizontal axis are images in the sorted or-
der (the first ten are normal images and the 11th is outlier
image) and the values on the vertical axis are distances to
subspaces using [og ratio. In 2DSVD results, the distances
from normal images to subspaces are larger than those in



Figure 1. Comparison reconstructed images using 2DSVD and robust tensor factorization with one outlier image (on the right). Original
images: 1st, 4th, 7th rows. 2DSVD: 2nd, 5th, 8th rows. Robust factorization: 3rd, 6th, 9th rows.
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Figure 2. The sum of squared distances (log) from ten original
images and outlier image to both 2DSVD and robust tensor factor-
ization principal subspaces in sorted order.

robust tensor factorization. In Fig. 2, outlier image has a
lower distance to subspaces calculated by 2DSVD. In other
words, 2DSVD gets a worse image representation results
for normal images, but obtains a better reconstructed im-
age for outlier. Using Lo norm as cost function, 2DSVD is
confused by outlier.

5.1.3 Subspaces

Our intuition is that the subspaces drift due to the pres-
ence of outlier images for both 2DSVD and our method.
If our method outperform Ly-norm based 2DSVD, than
the amount of subspace drift using our method should be
smaller than the drift using 2DSVD. The distance between
subspaces is calculated by inner products (cosine of angles).
The principle angle 6 € [0, 7/2] between two subspace L
and L’ is defined as [4]:

cos® = maxmax [Tl s.t. ||I]| = ||I'|| = 1. (31)
leL Vel

If the angle between two subspace is small, two subspaces
are nearly linearly dependent.

The comparison results of every subject in ORL database
are calculated and the average results of all 40 subjects are
plotted in Fig. 3. In Fig. 3(a), K1 = K2 = 10 and in
Fig. 3(b), K1 = Ky = 20. The number of outlier images
is increasing from 1 to 5 and shown on horizontal axis. The
principle angle values on vertical axis are computed by sub-
spaces calculated without outlier and subspaces calculated
with different level outliers. When the outliers increase, the
principle angles are slowly increasing. It is a natural way,
because the new subspace will be further than the previous
one as the outlier level increases. After the first outlier im-
age is added, the new subspace of 2DSVD is far away to
the original subspace (without outlier). The results of our
method are visualized as red dash lines in both Fig. 3(a)
and Fig. 3(b). They are still nearby the original subspace
before adding outliers. Using the principle angles changes
of subspaces, Fig. 3 clearly explain why our method is more
robust than 2DSVD.
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.
:
5
:

.

The princinple angle between subspaces.
g

©

1 2 4 5
The number of outlier images are added into data set

(a) K1 =Kz =10

1ol ~-¢-20svD
- Bl - Robust Tensor Factorization

T SaRtt SEELE SEEEL

The princinple angle between subspaces.
[ ]

Th:a number 012 outlier images are add;d into data syet
(b)y K1 = K2 =20

Figure 3. The principle angles changes between subspaces before
adding outlier and subspaces with different level outliers.

5.1.4 Error comparison

In order to evaluate the performance of robust tensor fac-
torization in image representation and reconstruction in
quantity, we compare the mean-square errors (MSE) of the
2DSVD and the robust tensor factorization methods.

I - i
(Z %] >/” 2

where X is the sample image 4, X is the reconstruction re-
sult for imaget, n is the number of total images in database.

MSE is a natural distance function to measure the recon-
struction error of all images through summing the error of
each one with normalization item || X;||. There is no bias
(none of 2DSVD and our method optimizes this function
directly) if we use it to compare both 2DSVD and robust
tensor factorization.

All 40 subjects in ORL database are used to calculate
MSE and Fig. 4 shows the reconstruction errors. We also
compare these two methods to standard PCA and the num-
ber of principle components of PCA is selected under the
same storage level as 2DSVD which can be calculated from
Table 2. When & = 1,2,3 in 2DSVD, 1 PC is selected for
PCA; When k = 4,5 in 2DSVD, 2 PCs are selected for
PCA. We have the following observations: 1) robust tensor
factorization always achieves the lowest residue error at dif-
ferent k; 2) when k increases, the residue error of 2DSVD
and robust tensor factorization decrease; if we add one more
outlier image into each subject, the residue error of 2DSVD
and robust tensor factorization slightly increase.
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Figure 5. Reconstruction error for Yale dataset using MSE as met-
ric. 2DSVD and our method are indicated in the insert panel.

5.2. Experimental results on the Yale database

The Yale face database contains 165 grayscale images
in GIF format of 15 individuals. There are 11 images per
subject, one per different facial expression or configuration.
For each subject, we conduct three experiments with one,
two, and three random generated outlier images. The im-
age reconstruction results of every subject are calculated us-
ing 2DSVD and our method under three outlier conditions.
The average result of total 15 subjects are plotted in Fig. 5.
Our robust tensor factorization method has a smaller image
reconstruction error compared to 2DSVD under all three
different outlier conditions. When the number of outlier
images increases, the image reconstruction errors of both
methods also increase.

6. Conclusion

In this paper, we have proposed to use R; norm as cost
function of tensor factorization to reduce the effect of out-
liers in image dataset. A novel robust tensor factorization
method is presented with mathematical proof and explicit
algorithm. Using this algorithm, we can compute the so-
lutions of robust tensor factorization through the same it-
erations used by tensor based PCA calculation. There is
no extra time and space complexity compared to tensor
based PCA. We also experimentally verified that our robust
tensor factorization method outperforms the general tensor
based PCA on facial image representation and reconstruc-

tion through public face database.
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