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Abstract

Nonlinear registration is mostly performed after initial-
ization by a global, linear transformation (in this work, we
focus on similarity transformations), computed by a linear
registration method. For the further processing of the re-
sults, it is mostly assumed that this preregistration step com-
pletely removes the respective linear transformation. How-
ever, we show that in deformable settings, this is not the
case. As a consequence, a significant linear component is
still existent in the deformation computed by the nonlinear
registration algorithm. For construction of statistical shape
models (SSM) from deformations, this is an unwanted prop-
erty: SSMs should not contain similarity transformations,
since these do not capture information about shape. We pro-
pose a method which performs an a posteriori extraction of
a similarity transformation from a given nonlinear defor-
mation field, and we use the processed fields as input for
SSM construction. For computation of minimal displace-
ments, a closed-form solution minimizing the squared Eu-
clidean norm of the displacement field subject to similarity
parameters is used. Experiments on real inter-subject data
and on a synthetic example show that the theoretically jus-
tified removal of the similarity component by the proposed
method has a large influence on the shape model and sig-
nificantly improves the results.

1. Introduction

This paper has two major goals. The first consists of
pointing out that deformation fields resulting from standard
registration schemes often contain a significant amount of

linear transformation, and proposing a method to extract
this linear component, thus computing minimal nonlinear
deformations1. For a visualization of the setting, please re-
fer to Fig. 1. Secondly, we identify the construction of
shape models to be an application for which from the theo-
retical point of view, no similarity transformation should be
contained in the deformations which are used to construct
the model. If the similarity component is not extracted from
the deformation, the first modes of the constructed model
may not describe the largest variation in shape of the given
samples. We show that by the proposed method, this neg-
ative effect can be eliminated, thus resulting in improved
shape models.

In the following, we hope to provide an intuitive under-
standing why standard registration methods in general do
not compute minimal deformations, and also why this is an
important point when building shape models.

Nonlinear Registration and Resulting Deformations.
Nonlinear registration is a technique which has been stud-
ied heavily over the last two decades. The goal of non-
linear registration is to estimate the nonlinear transforma-
tion which relates two given images. This can also be seen
as computing the dense point correspondences between the
two images. Virtually all schemes for nonlinear registra-
tion proposed in the literature employ a global linear pre-
registration step, followed by a nonlinear method account-
ing for local differences between the images. We make the
observation that global registration methods cannot fully re-
cover linear transformations in deformable scenarios. As a

1In this paper we distinguish between linear and nonlinear transforma-
tions. By linear, we constrain ourselves in the following mostly to the
similarity transformation model. By nonlinear we understand any higher-
order transformation and we refer to these also as deformations.
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(a) An exemplary 2D MRI slice of corpus callosum (b) Original deformation Tlocal

(c) Extracted similarity transformation Tlin (d) Remaining minimal nonlinear transformation Tnl

Figure 1: Illustration of the discussed setting. On a set of images of corpus callosum (a) (see also Section 3.1.2), nonlinear
registration is performed, resulting in a deformation field Tlocal, see (b). A similarity component Tlin (c) is extracted from
the original field Tlocal, resulting in a minimal nonlinear transformation Tnl (d).

consequence, the deformation field which is computed by
the local nonlinear registration algorithm contains a linear
transformation. This occurs with intensity-based, as well
as with landmark-based linear registration approaches. The
reason for this is that for the exact estimation of the linear
part, all point correspondences must be known. However,
the correspondences are not given for the linear methods,
since - as mentioned above - it is the actual task of the non-
linear registration method to estimate the dense point cor-
respondences. Theoretically, landmark-based methods can
estimate the linear component correctly, given dense land-
marks. Establishing such landmarks however, is hardly fea-
sible in practice, and would render the nonlinear registration
step superfluous. A very similar discussion is presented in
Yezzi and Soatto [12].

Statistical Shape Models. Statistical Shape Models
(SSM) are an emerging technique in the field of medical
image processing and analysis. SSMs are supposed to cap-
ture the information about shape variations of a certain pop-

ulation. SSMs are not only a valuable tool for studying
shape variations of organs and pathologies, but also pro-
vide a mean to capture prior knowledge and thus aid the
process of nonlinear registration in the demanding inter-
patient scenario, in which standard methods may easily fail.
For creation of SSMs, two different approaches are used:
landmark- and deformation-based. For the landmark-based
approach, corresponding landmarks have to be computed
for all images of the population, compare e.g. Cootes et al.
[1]. This can be a very challenging and time-consuming
task. Thus, the idea was developed to create models of
shape using deformations which result from nonlinear regis-
tration, compare e.g. Grenander and Miller [5], Gee and Ba-
jcsy [3], Joshi [7], Rueckert et al. [10], or Cootes et al. [2].2

With respect to important properties of deformation

2In the context of computing shape models from deformations, the term
Statistical Deformation Models (SDM) is sometimes also used [10]. For
generality, we employ the term Statistical Shape Models (SSM) throughout
this paper.



fields for construction of SSMs, the literature agrees on the
fact that the fields should be free of any similarity transfor-
mation, that is, they should not contain any amount of scal-
ing, rotation and translation, compare for example [10, Sec
II.A, p. 1016] or [2, Sec. 4, p. 452]. This is a very intuitive
goal, since these parameters do not describe a variation in
shape between single subjects of a population, but a varia-
tion in pose and size. Usually, it is supposed that the global
preregistration accounts for this transformation. However,
due to the reasons stated above, in general, linear regis-
tration methods cannot fully recover linear transformations
in deformable scenarios, which leads to deformation fields
which contain a linear transformation component. Thus, us-
ing these deformation fields presents a potential source of
error for construction of SSMs. The goal of the presented
work is to eliminate this source of error by computing de-
formation fields containing a minimal amount of similarity
transformation.

Computation of Minimal Deformations. The proposed
method decomposes a given deformation into a similarity
transformation and a minimal nonlinear deformation part.
The minimality of the nonlinear part is computed with re-
spect to the mean squared Euclidean norm of the displace-
ment field representing the deformation. The actual com-
putation is performed by using a closed-form solution. The
minimization problem is modeled in such way that the com-
puted minimal deformation is expressed in the reference
frame of the target image. Since the method operates on
point correspondences, it can be applied to dense deforma-
tion fields in the complete image domain as well as only
to a region of interest. The method is comparably fast and
since it presents a post-processing step for any given point
correspondences, it can be easily integrated into any exist-
ing framework for construction of shape models based on
deformations.

Contribution We consider the following points to be the
major contribution of the presented work.

1. We study the performance of linear registration meth-
ods in presence of nonlinear deformations, and show
that for real data, after the global preregistration, there
is a significant linear component of the transformation
which is not retrieved.

2. We propose a method to a posteriori extract the simi-
larity transformation component from any given defor-
mation field.

3. We theoretically show that using non-minimal defor-
mations for constructing shape models can be expected
to result in models which do not describe shape varia-
tions appropriately.

4. We empirically confirm the results of the theoretical
analysis, and show that the removal of similarity com-
ponents from deformation fields prior to model con-

struction leads to improved shape models in terms of
interpretability and compactness.

2. Methods
2.1. Notation and Basic Definitions

In the context of registration, the transformation which
aligns the target and source images IT and IS is a func-
tion T : Ω → Ω where Ω ⊂ Rd is the image domain of
dimension d = 2, 3. In most of the current methods for de-
formable scenarios, the transformation T is composed of a
global, linear transformation Tglobal and the nonlinear local
part Tlocal, resulting in

T = Tglobal ◦ Tlocal , (1)

where ◦ denotes composition. In general, the global part is
computed prior to the local component and no joint compu-
tation of the two terms is employed.

We model nonlinear transformations as a sum of the
identity function Id and a displacement field U , as T =
Id + U . For the local nonlinear transformation we also ap-
ply the notation Tlocal(X) = Y .

2.2. Computation of Minimal Deformations

Our goal is to extract the remaining linear transforma-
tion component from a given deformation. To this end, we
model the deformation as a composition of a linear and a
nonlinear part

Tlocal = Tlin ◦ Tnl . (2)

The task now is to estimate Tlin and Tnl, such that Tnl

becomes minimal in some meaningful sense.
The model from Eq. (2) can be reformulated, such that

it allows us to minimize the norm of the displacement field
Unl of the nonlinear component Tnl with respect to the lin-
ear transformation Tlin.

Tlocal(X) = (Tlin ◦ Tnl)(X) (3)
Y = Tlin(X + Unl(X)) (4)

T−1
lin (Y )−X = Unl(X) . (5)

Here, in (4) we use Tlocal(X) = Y , and express the defor-
mation Tnl by the displacement Unl.

Thus, we can define a cost function, the optimization of
which results in a linear transformation (described by pa-
rameters p), such that the norm of the vectors of the dis-
placement field becomes minimal with respect to the mean
squared norm. The cost function E for the displacement
fields discretized by n points is given by

E(X, Y, p) =
1
n

∑
i

∥∥Xi − T−1
lin (Yi; p)

∥∥2
, (6)



and the respective minimization is

p = arg min
p′

E(X, Y, p′) . (7)

In other words, the extraction of any other linear transfor-
mation would result in larger displacements (given the ref-
erence frame and the type of linear transformation).

We chose to use the squared norm for several reasons.
First, this model has an exact and fast closed-form solution.
Second, for the application to SSMs, the squared norm is
the most common choice in literature, and it is consistent
with the PCA-based shape model.

Once the linear transformation T−1
lin is computed, the cor-

responding displacement field is resulting from Eq. (5) as
Unl(X) = T−1

lin (Y ; p) − X , and the nonlinear remaining
part can be constructed by Tnl = Id + Unl.

Please note that the minimal deformation Tnl is ex-
pressed in the reference frame of the target image. This is
an important property for the application of the method to
SSMs, compare [2]. Please note also that our method does
not change the results of the complete registration proce-
dure, but rather computes a different decomposition, that is
T = Tglobal ◦ Tlocal = Tglobal ◦ Tlin ◦ Tnl.

Up to this point, the discussion is valid for any invertible
linear transformation Tlin. In the following we constrain
the discussion to a similarity transformation.

2.2.1 Least-Squares Optimization

For the computation of the similarity transformation which
minimizes the mean squared norm of the displacement field,
we employ the closed-form solution of Umeyama [11],
which is shown to give the exact result.

It solves the so called Absolute Orientation Problem,
which consists of finding the similarity transformation
which minimizes the mean squared distance between two
point sets A and B of arbitrary dimension d, that is

e2(R, t, c) =
1
n

n∑
i=1

‖Bi − (cRAi + t)‖2 , (8)

where c is the scaling factor, t is the translation vector, and
R is the rotation matrix, and n is the number of points.
For space reasons, the details of the implementation are
given in Sec. A of the supplementary material, available at
http://campar.in.tum.de/personal/zikic/cvpr2008/.

We can apply this method to our problem directly by
identifying B with points X of the image domain, which
are the origins of the vectors of the displacement field,
and identifying A with Y = X + U(X), that is, the
destination points of the displacement vectors. The com-
puted entities R, t, c are used to parametrize the similarity
transformation T−1

lin .

Since the minimization operates on a set of two corre-
sponding point sets, the method is not restricted to dense
deformations, but can be applied to arbitrary point sets. For
SSMs, a meaningful choice is to restrict the computation to
regions of interest of the deformation fields [10].

The computation is comparably fast with the complex-
ity of O(dn + d3) and has a memory consumption of
O(dn + d2). The complexities are linear in n and as we
have d << n, this makes the method very attractive for our
application. In practice, the runtimes of our MATLAB im-
plementation are for example 0.13s for a 2D example with
n = 1002 points and 6.27s for n = 1003 in 3D.

2.3. Statistical Shape Models

Principal component analysis (PCA) is the preferred
method for statistical shape models [10, 2]. The attractive
properties of the PCA for shape modeling include optimal
linear reconstruction of the data set variance, the estimated
modes of variation are orthogonal and uncorrelated, and
a closed form solution exists for calculating the principal
components at a relatively low computational cost.

The shape model is built from m given displacement
fields U = {Ui} representing the deformations. The d-
dimensional deformation fields with n displacement vectors
are linearized as column vectors ui ∈ Rdn.

From ui, a linear shape model, which approximates a
given field u is given by ū and Φ as

u = ū + Φb . (9)

Here ū is the mean of all m displacement fields, that is
ū = 1

m

∑m
i=1 ui. The matrix Φ is constructed from the

k first eigenvectors Φi of the covariance matrix C, given
by C = 1

m−1

∑m
i=1(ui − ū)(ui − ū)>. The eigenvalues

corresponding to Φi are denoted by λi. The vectors Φi are
also referred to as modes. Finally, b ∈ Rk is the parameter
vector, describing the contribution of the principal modes
contained in Φ in order to approximate u by the employed
linear model. By assuming a Gaussian distribution on the
single displacements entries, the variance of the parameter
bi can be given by λi [10].

An important measure for evaluating the constructed
model is the so called reconstruction error erec, given by

erec(ū, Φ, u, b) = ‖u− (ū + Φb)‖2 . (10)

The reconstruction error measures the error between a given
vectorized displacement field u, and the reconstruction of u
by using the parameters b corresponding to u, and the model
given by ū and Φ. The parameter vector b is computed by a
projection of u onto the model, that is by b = Φ>(u− µu),
where µu denotes the mean of u. The variance explained by
a single mode Φi corresponds to the variance of bi, which
is Var

[
Φ>

i (u− µu)
]
.



Figure 2: Example demonstrating how the largest mode
used for generation of data (blue area) is mixed with the
remaining modes (red). We measure this by the amount of
the explained variance. This behavior is due to the finite
number of samples used, in which case the PCA does not
reconstruct the actual modes which generate the data, but
rather their linear combination. The black curve shows the
true variance of the remaining modes (2nd to last).

With respect to the proposed method, the only modifica-
tion of the standard model construction process is that in-
stead of the original displacement fields U , we use minimal
deformation fields Unl, from which the maximum amount
of similarity transformation is extracted by our method as
described in Sec. 2.2.

2.3.1 Influence of Similarity Transformations in Defor-
mation Fields on SSMs

In this Section, we argue that if similarity transformation
components are not removed from the deformation fields,
this will in general lead to shape models in which the first
modes do not necessarily describe the largest variations in
shape. For a more detailed derivation of this argument,
please refer to Sec. B of the supplementary material.

It is a general property of the PCA that - when operat-
ing on a finite number of samples - it does not compute the
actual modes which generate the data, but rather a linear
combination of these. This behavior is illustrated in Fig. 2
for a general example. Here, a model is constructed from
n = 122 orthogonal samples. It can be seen how the vari-
ance which is actually generated by the first mode during
construction of the samples is explained by the first four re-
constructed modes.

In particular, this general behavior also occurs for data,
which can be seen as generated as a combination of non-
linear deformation and similarity transformations. This is
the case for non-minimal deformations. This means that the
similarity transformations will not be represented by sin-
gle modes, but their contribution is distributed over several
modes describing nonlinear deformation. Since similarity
transformations are global, the corresponding modes have a

Figure 3: Three example instances of the Deformed Spoon.

Figure 4: Analysis of the single modes of the original shape
model on the synthetic spoon data set (deformations by
NRM 1). The variance explained by single modes of the
respective model is given. The contribution for the original
model is decomposed into the variance explaining the sim-
ilarity transformation component and the nonlinear compo-
nent.

large variance, such that mostly the first modes of the model
will be influenced by the effect described above. As a con-
sequence, for non-minimal deformations, in general we can
not expect that the first modes of the model describe the
largest variations in shape. This underlines the importance
of using minimal deformation fields. Our experimental tests
on real data (Fig. 4 and Fig 5) closely resemble the behavior
predicted in Fig. 2.

3. Results and Evaluation

In the following, we discuss and evaluate the results of
the application of the proposed method to the construction
of shape models.

3.1. Test Settings

In this section we briefly present the synthetic and the
corpus callosum setting, which are used for evaluation.



3.1.1 Synthetic Example

To demonstrate some of the propositions of the presented
work on a simple example, a synthetic data set with ground
truth deformations is constructed. The set consists of 100
deformed versions of an image of a spoon - a selection is
illustrated in Fig. 3. The spoons are deformed randomly
according to two deformation modes, one altering the cup-
size and the other controlling the grip width. The outline of
the spoons in the target image is equipped with a dense set
of 50 equidistant landmarks. The transformations used for
warping the images are also applied to the landmarks. The
deformed spoons are registered by a similarity transforma-
tion which minimizes the squared norm of the errors on the
landmarks.

3.1.2 Test on Real Corpus Callosum Data

We test the proposed method on real data which is part of
the LADIS (Leukoaraiosis And DISability) study [9], a pan-
European study involving 12 hospitals and more than 600
patients. The data in question consists of 62 2D MR images
of the midsagittal cross-section of the corpus callosum brain
structure. The data set is equipped with a set of 72 corre-
sponding landmarks in each image chosen by physicians.
Attention is payed in order to achieve a possibly accurate
and well-distributed set of landmarks. For an example im-
age of the data set, please refer to Fig. 1a.

For the creation of SSMs on the corpus callosum data,
nonlinear registration is performed by two different meth-
ods after a linear preregistration. While the first method
(NRM 1) is dedicated and tested for the creation of shape
models, the second (NRM 2) is an alternative method used
for comparison in Sec. 3.2.

Linear Preregistration. The linear preregistration step is
performed by a similarity transformation based on the land-
marks in the images, minimizing the squared norm.

Nonlinear Registration. The nonlinear registration
method (NRM 1) primarily used for computation of the
deformation fields is dedicated to the construction of shape
models and is shown to generate accurate results for the
corpus callosum data in question [6].

The method computes the deformations Tlocali, based
on registering the images Ii of the data set to the reference
image IR, by solving the following minimization problem
iteratively

Tlocal = min
T ′

local

∑
i

D(IR, Ii ◦ T ′
locali) + S(T ′

locali) , (11)

where D is a similarity measure between images, and S is
a regularization term on the transformation. The process is
iterative in the sense that starting from an initial estimate of
the reference image IR, which is simply an average of all

Method Param µa ma σa maxa µ σ

NRM 1
(dense)

α 0.816 0.609 0.773 5.224 0.053 1.123
∆c 0.028 0.022 0.025 0.165 -0.001 0.037
tx 2.08 1.51 2.03 12.46 -1.08 2.70
ty 2.23 1.58 2.20 12.93 -1.07 2.95

NRM 1
(region)

α 1.361 0.972 1.357 10.112 0.090 1.920
∆c 0.028 0.016 0.034 0.191 -0.002 0.044
tx 2.61 1.83 2.74 18.54 -1.07 3.63
ty 2.60 1.66 2.86 19.47 -1.02 3.73

NRM 1
(boundary)

α 1.293 0.967 1.272 9.312 0.080 1.813
∆c 0.028 0.015 0.034 0.187 -0.001 0.044
tx 2.60 1.84 2.69 18.21 -1.07 3.59
ty 2.55 1.64 2.83 19.37 -0.99 3.69

NRM 2
(dense)

α 0.698 0.588 0.556 3.955 0.294 0.843
∆c 0.010 0.008 0.008 0.056 0.001 0.013
tx 1.28 1.15 0.91 6.02 1.03 1.19
ty 1.39 1.23 0.95 5.24 -1.10 1.28

NRM 2
(region)

α 1.458 1.158 1.365 9.034 0.321 1.972
∆c 0.019 0.011 0.022 0.157 -0.003 0.028
tx 2.10 1.46 2.04 12.80 0.84 2.81
ty 2.07 1.58 2.06 13.36 -1.05 2.72

NRM 2
(boundary)

α 1.408 1.159 1.241 8.226 0.254 1.860
∆c 0.018 0.011 0.021 0.150 -0.002 0.027
tx 2.07 1.53 1.92 11.76 0.81 2.70
ty 2.01 1.54 1.94 12.25 -0.96 2.62

Table 1: Quantification of the similarity transformations ex-
tracted for the corpus callosum data set. The amount of the
transformation is described by the mean (µa), median (ma),
standard deviation (σa) and maximum (maxa) of the norm
of the parameters. The variation is given by the mean (µ)
and standard deviation (σ) of the actual parameters. The
scaling is expressed as deviation from 1, that is ∆c = c−1.
The rotation is given in degrees, translation in millimeters,
and scaling is a unit-less factor.

the images, a new, improved estimate is computed in every
iteration until convergence. It can be shown that under an
assumption of Gaussian distribution of the noise, this choice
of reference image is optimal with respect to achieving an
unbiased coordinate frame for the shape model [8]. For the
corpus callosum data, D is chosen as sum of squared dis-
tances and S as the L2 norm on the parameter space. The
parameterization of the deformation model is performed by
free-form deformation (FFD), based on sine-kernels.

Nonlinear Registration II. This alternative method
(NRM 2) is used in Sec. 3.2, in order to demonstrate that the
occurrence of similarity components in deformation fields
is independent of the chosen nonlinear method. The method
is based on B-spline FFDs and uses discrete optimization
using Markov random fields. It differs from NRM 1 in
choice of parameters, grid resolution, and the optimization
method. For details, please refer to [4].

3.2. Quantification of Extracted
Similarity Transformation Components

In this section, we quantify the amount of similarity
transformations which were extracted from deformations
computed for the corpus callosum example. We describe



(a) Analysis of standard SSM (b) SSM built on minimal displacements

Figure 5: Analysis of single modes of SSMs built on displacements from the corpus callosum data set (results based on NRM
2 (region)). We evaluate the contributions of the similarity transformation and the actual deformation to the variance of each
mode, by decomposing the modes into respective components (areas represent component contributions). (a) illustrates an
SSM constructed from the original deformations, for which several modes capture more information about similarity trans-
formation than shape. In (b), we observe a significant improvement achieved by building the SSM on minimal displacements.
The remaining similarity is due to the approximate orthogonality of similarity and minimal displacement components.

the amount of the extracted similarity transformations by
computing the mean, median, standard deviation, and max-
imum of the norm of the computed parameters. The varia-
tion of the parameters is described by the mean and standard
deviation of the actual parameters (not their norm).

In order to show that the existence of the effect is not de-
pendent on the nonlinear registration method, we computed
the results by (NRM 1) as well as by an alternative method
(NRM 2) described in 3.1.2.

Furthermore, the extraction is performed by considering
three different regions of the image domain: 1) the com-
plete dense field on the whole image domain, 2) only the
segmented region of the corpus callosum on the reference
image, and 3) only the boundary of the corpus callosum on
the reference image. As discussed in [10], the construction
of the model based on the region of interest can be a mean-
ingful choice for a specific part of anatomy. For these cases
(region, boundary), the extracted similarity components are
larger than for the complete dense field, compare Table 1.

The results in Table 1 demonstrate that there is a large
and highly varying amount of similarity transformation con-
tained in the computed deformation fields. For a visualiza-
tion of the extracted similarity transformations (based on
the deformation in the corpus callosum region), please refer
to the supplementary material.

3.3. Effects of Proposed Method on SSMs

In this section we discuss the impact of using minimal
deformations for construction of shape models and compare
the resulting models with original SSMs. We demonstrate

that the modes of the original SSM contain a substantial
amount of similarity transformation. Creation of SSM from
minimal deformations largely reduces this negative effect.
We also performed an analysis of the reconstruction ability
of the SSMs constructed by the proposed method. The re-
sults show a slightly improved relative reconstruction error
for the SSMs created on minimal deformations. However,
since the reconstruction ability is not the focus of this work,
the results are presented in Sec. C of the supplementary
material.

To gain further insight into the reconstruction ability of
the models, the single modes of the model are examined.
For this, the modes of the original model are divided into a
similarity and a nonlinear component, as described in Sec.
2.2.1. Then, the variance is assigned to the single compo-
nents relative to their squared norms, based on the assump-
tion that the components are nearly orthogonal. In Figs. 4
and 5 we visualize and analyze the variance explained by
the single components of the original model, and compare
this with the modified model. The results correspond to the
theoretical prediction given in Sec. 2.3.1 and Fig. 2.

The most important observation is that the first modes
of the original model contain a large similarity transforma-
tion component. Actually, in all our experiments, the first
mode contains mainly a similarity transformation compo-
nent. This means that if non-minimal deformations are used
to construct the model, the first mode does not describe the
strongest variation in shape. The proposed method removes
a large amount of similarity transformation from the result-
ing SSM, which leads to a more compact model, in which



every mode mainly describes shape, compare Fig. 5.
The remaining amount of similarity in the SSM is due

to the fact that the displacement fields representing the non-
linear and linear components computed as described in Sec.
2.2 are not orthogonal. Since the similarity transformations
form a manifold and not a linear subspace in the space of
all deformations, a completely orthogonal decomposition
is not possible. Our experiments show that the proposed
method can be seen as an approximately orthogonal decom-
position which leads to only a small amount of similarity
transformations in modes of the resulting SSM.

4. Discussion and Conclusion
In this work, we show that similarity transformations are

inherently a part of the deformation fields obtained by stan-
dard nonlinear registration schemes. This is in contrast to
the assumptions usually made. We propose a method which
computes minimal nonlinear deformations by extracting the
similarity transformation components.

We show that using minimal deformations is crucial for
the construction of shape models, since otherwise the mod-
els are seen to describe other effects than change in shape.
Particularly, the proposed method eliminates the negative
effect that the first modes of a shape model do not necessar-
ily describe the largest amount of shape, which can occur
for SSMs based on non-minimal deformations.

Registering landmark sets to a joint reference frame prior
to model construction is common practice for shape models
based on landmarks, and our approach can be seen as trans-
ferring this concept to the case of deformation-based SSMs.

Existing SSM frameworks based on deformations can be
extended in a straight forward way to make use of the pro-
posed method and thus benefit from using minimal defor-
mations.
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