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Abstract

In this paper, we propose a novel feature localization
method based on a global vector concentration approach.
Our approach does not rely on the detection of local salient
features around feature points. Instead, we exploit global
structural information of the object extracted by calculat-
ing the concentration of directional vectors from sampling
points. Those vectors are combined with local pattern de-
scriptors of a query image and selected from preliminar-
ily trained extended templates by nearest neighbor search.
Due to the insensitivity of local changes, our method can
handle partially occluded and noisy objects. We apply the
proposed method to fully automatic feature localization of
the left ventricular in echocardiograms. The results show
the effectiveness of our method in comparison with a con-
ventional edge-based method in terms of accuracy and ro-
bustness.

1. Introduction

Accurate localization of feature points of an object is a
base technology for solving object detection and classifica-
tion problems. A number of feature localization methods
have been proposed to detect meaningful and reproducible
points on the object. Most conventional methods use lo-
cal structural information such as a local pattern or edge
intensity as a keypoint to extract candidates and localize
the feature points. The Harris corner detector [7] and the
SIFT descriptor [10] are representative methods using local
salient features. Although these methods have shown good
results in most cases, they may be unstable due to noise in
the image acquisition process or partial occlusion of the lo-
cal features.

Figure 1 shows examples of our feature localization of a
left ventricular (LV) boundary in an echocardiogram. The
feature localization of the endocardial boundary helps in the
diagnosis of heart disease. However, fully automatic and ac-

Figure 1. Example results of our fully automatic feature localiza-
tion of the LV boundary in an echocardiogram. The red points are
manually annotated by an expert. As shown in green, our method
accurately estimates the feature points. We also present the bound-
aries interpolated by spline curves.

curate boundary extraction is still a challenging problem be-
cause the quality of echocardiographic images varies signif-
icantly in each case and the boundary may disappear from
the imaging area because of the motion of the heart. In this
case, feature localization based on global structural infor-
mation is more suitable to represent the noisy and partially
occluded features than that of local salient features.

In this paper, we propose a novel feature localization
method which extracts global structural information of the
object using a vector concentration approach. The proposed
method represents a feature point as concentration of di-
rectional vectors from several sampling points in a query
image. Since the feature point is defined by the relative
positions from a number of the sampling points, we can
suppress the influences of local changes around the feature
points being detected. The directional vectors are combined
with a local pattern around the sampling point to form an
extended template. We learn the extended templates us-
ing all sampling points from the training images. In the
detection phase, the best matched extended template is se-
lected by nearest neighbor search (NNS) using the local pat-
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terns around sampling points of a query image. The feature
points are then localized by calculating the concentration of
directional vectors of the selected extended templates.

We apply the proposed method to fully automatic feature
localization of the LV boundary. To demonstrate the effec-
tiveness of the proposed method, comparisons have been
performed with a conventional method which localizes the
feature points based on the local salient features such as
edge information.

The main contributions are as follows. First, we propose
a novel feature localization framework. Unlike energy min-
imization and voting-based methods, our method requires
neither an initial shape, iterative processing nor cumulative
voting. Second, the global shape information is implicitly
obtained by the vector concentration approach with no prior
information about the target object. Finally, we show the
effectiveness of the proposed method through experiments.
Our method outperforms the conventional methods with re-
spect to accuracy and robustness against partial occlusions.

2. Related Work

Numerous algorithms have been proposed for feature
localization in echocardiograms. Active contour mod-
els (snakes) [8] were applied to boundary detection, which
minimize an energy function formed by weighting multi-
ple active contour models [3]. Cootes et al. introduced a
contour detection method [4] based on active shape mod-
els (ASM). The ASM incorporates global shape information
by using a statistical prior to constrain inappropriate shapes.
However, since both the methods require an energy mini-
mization process based on the local features such as edge
intensity, they may cause a serious error if the local features
cannot be reliably extracted. Furthermore, these iterative
processes require a reasonable initial position. For another
approach, Zhou and Comaniciu proposed a feature localiza-
tion method using boosting regression [13]. The regression-
based algorithm generally suffers from the curse of dimen-
sionality, and regression requires training data in proportion
to the number of the feature points being localized to pre-
vent overfitting.

From the viewpoint of the feature localization method
integrating multiple local information, the proposed method
is similar to the generalized Hough transform [2] and more
recently the bag-of-words models [6, 12, 9]. These methods
detect a feature point by voting all possible Hough param-
eters or probabilistically represented positions. The voting-
based methods are robust against local changes due to ma-
jority decision, but they may be unstable when not enough
votes are obtained and they often have a high computational
cost for the voting.
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The most similar extended template

Estimate the feature point by vector concentration
Figure 2. Overview of our method. Sampling points are located
on an image and local pattern descriptors are extracted for each
sampling point. We obtain directional vectors by matching with
trained extended template and extract feature points by vector con-
centration.

3. Overview of our approach

The goal of this paper is fully automatic localization of
the feature points on the LV boundary. We first give an
overview of the proposed method (figure 2).

In the training phase, we place sampling points on train-
ing images and extract local pattern descriptors around each
sampling point. An extended template for each sampling
point is defined as combination of a local descriptor and di-
rectional vectors from the corresponding sampling point to
the given feature points. If there are N feature points, an
extended template also has N vectors which represent the
relative positions to each feature point. We then extract a
set of the extended templates from all sampling points in
the training images.

In the localization phase, we similarly place sampling
points and extract local pattern descriptors from a query im-
age. The local pattern descriptors are used as queries for the
NNS and the search result gives the most similar extended
template to each query descriptor. Since the extended tem-
plate contains the directional vectors, we obtain N obser-
vations for each sampling point, which suggest the direc-
tions to the feature points. We estimate the N feature points
based on the vector concentration that yields the least mean
square error from the directional vectors for each feature
point.



4. Feature localization using global vector con-
centration

4.1. Setting of sampling points

For robust feature localization, we need repeatable key-
points on a target object. Most previous works utilize a key-
point detector such as the Harris corner detector [7] and the
difference of Gaussians [10] but it is a difficult problem to
extract stable keypoints from a noisy echocardiographic im-
age. By contrast, our approach does not constitutively de-
pend on keypoint detection methods.

In this paper, we define sampling points as the keypoints,
which are placed at regular grid nodes [6, 12]. We first de-
fine a region of sampling (ROI) from an average position
of training LV boundaries. The sampling points are then
placed at regular intervals in the ROI. The ROI is common
to all input images, so an initial detection is not required.

Note that we tried to use Harris corner detector for locat-
ing the sampling points, but the final localization accuracy
was worse than that of using regular grid sampling points.

4.2. Local pattern descriptors

A local pattern descriptor is used as a code which rep-
resents relative positional relationship between the corre-
sponding sampling point and all feature points being de-
tected. The descriptor is required to have a tolerance of
small changes of the local pattern due to heart motion or
partial occlusions.

We use a localy normalized histogram of oriented gra-
dients (HOG) descriptor [5]. Dalal et al. applied the HOG
to pedestrian detection and they indicated the HOG has the
potential to extract suitable features for robust visual object
recognition. The parameters of HOG descriptors are deter-
mined through a preliminary experiment, such that 3 orien-
tation bins and 144 blocks in 30×30 pixel regions, hence
the total dimension of the descriptor is 3 × 144 = 432.

We have performed a preliminary experiment to deter-
mine the parameters of the HOG and the result shows that
the orientation resolution of the descriptor is less effective
than the spatial resolution. We think this is because the LV
boundary has a smooth shape and a detailed orientation can-
not be extracted from noisy echocardiogram images.

4.3. Training extended templates from images

In the training phase, we extract extended templates from
images and use them as training samples for the NNS. An
extended template consists of combination of a local pattern
descriptor and directional vectors from the corresponding
sampling point to the feature points. We define the extended
template fi as follows:

fi = (pi, vi1, vi2, . . . , viN ), (1)

Sampling point andlocal pattern
Feature points Directional vectors

LV boundary 
Figure 3. Illustration of an extended template. The other extended
templates are also defined as a local pattern descriptor and direc-
tional vectors to the feature points for each sampling point.

where pi represents the local pattern descriptor, vij is the
directional vector to the j-th feature point and N is the num-
ber of the feature points being localized.

Figure 3 shows an example of the extended template. For
training, we assume that feature points are manually local-
ized on the LV boundary in advance. The sampling points
and local pattern descriptors are provided by the same pro-
cedure as described in 4.1 and 4.2. The directional vectors
are defined as starting from the sampling point to all fea-
ture points. We repeat this process for all sampling points
and training images and then obtain the set of the training
samples.

4.4. Matching with the extended templates

We perform matching with the local pattern descriptors
and the extended templates and retrieve the closest extended
template for each descriptor. We use approximate nearest
neighbor search (ANNS) [1] as the matching method. The
ANNS partitions the feature space into a number of clusters
by a kd-tree to make the NNS much faster. We define the
distance function of the ANNS as follows:

dij = d(pi, fj) = ||pi − fj(p)||2, (2)

where pi is the i-th local pattern descriptor of the query im-
age and fj and fj(p) are the j-th extended template and its
local pattern descriptor of the training samples. The ANNS
needs an upper bound ϵ as the allowable distance error. We
empirically set ϵ = 10.0 in the experiments.

4.5. Localizing the feature points

The ANNS provides correspondences between the lo-
cal pattern descriptors and the extended templates. The re-
trieved extended template gives the directions to the fea-
ture points. Therefore, we know the direction to the feature
points at each sampling point according to directional vec-
tors of the extended templates.

We now calculate coordinates of the feature points by
considering the vector concentration. Figure 4 illustrates
the calculation of the vector concentration. In the following
paragraphs, we explain the procedure to localize the posi-
tion of a feature point.
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Figure 4. Calculation of the vector concentration with directional
vectors. The feature point is estimated by minimizing the sum of
the square distances E2
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First, we define the error function for the vector concen-
tration. We assume that a line is written as aix+ biy + ci =
0, which passes through the i-th sampling point and directs
to the vector derived from the extended template (figure 4).
The error Ec for a point (x, y) is defined as the sum of
square distances between the point and the lines and rep-
resented by a simple quadratic form:

Ec =
Np∑
i=1

||aix + biy + ci||2 = xT Ax, (3)

where Np is the number of sampling points, x = (x, y, 1)T

and A is a 3×3 matrix. We minimize Ec by calculating the
partial derivatives as follows:

∂Ec

∂x
= A′

(
x
y

)
+ C = 0, (4)

where A′ and C are constants derived from the position of
the sampling points and the directional vectors.

We localize the feature point by solving Eq. (4). How-
ever, since the ANNS does not always give the correct
extended template, we have to take into account out-
liers. While several methods are available for rejecting
outliers, we employ the least median of squares (LMedS)
method [11]. The algorithm of outlier rejection by LMedS
is summarized as follows.

1. Randomly choose F directional vectors.
2. Estimate the vector concentration using the F direc-

tional vectors and obtain model parameters (x, y) by
Eq. (4).

3. Evaluate the model parameters using the LMedS crite-
rion:

EM = minmed
i

||aix + biy + ci||2, (5)

where med is a median operator.

4. Iterate q times from the step 1 and find the parameters
corresponding to the minimum EM .

We calculate the standard deviation σ̂ from the minimum
EM , and reject the outliers based on σ̂. In practice, we
introduce binary weights wi to the error function Ec of
Eq. (3).

wi =
{

1 if ||aix + biy + ci||2 < (2.5σ̂)2,
0 otherwise. (6)

We then calculate the final position of the feature point with
the weights wi by the least squares method. We also intro-
duce a confidence measure of the localization result, which
is represented by the ratio of the outliers with the total num-
ber of sampling points.

Conf =
1

Np

Np∑
i=1

wi, (7)

For accurate localization, we reject the localization result if
the confidence value is less than a predefined threshold.

If there is more than one feature point, we sequentially
perform the localization process for each feature point.
Note that we do not need to conduct the matching process
again because the closest extended templates are common
with respect to all feature points. Furthermore, the localiza-
tion process is performed independently, so we can avoid a
combinatorial explosion in the number of the feature points.

4.6. Recovery of the rejected feature points

We discuss an algorithm to recover the rejected feature
points in the robust estimation process using the directional
vectors utilized for the normally detected feature points.

We obtain the weight w
(j)
i of the i-th sampling point in

the j-th feature point localization from Eq. (6). We assume
that the weights w

(j)
i is set to zero when the j-th feature

point is rejected. The reliability of the extended template is
defined as:

Ci =
1
N

N∑
j=1

w
(j)
i . (8)

The reliability Ci represents the percentage of frequency
adopted for feature point detection for each sampling point.
If this reliability is greater than a predetermined threshold,
the corresponding extended template is reliable for the fea-
ture point detection.

We estimate the rejected feature point using only those
reliable extended templates. We define the weight w′

i for
the rejected feature points as follows:

w
′(k)
i =

{
1 if Ci ≥ th,
0 otherwise, (9)
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Figure 5. Result of the fully automatic feature localization with
real echocardiographic images. The graph shows the RMS error
and the standard deviation for each method.

where k is an index of the rejected feature point and th is the
predetermined threshold. The rejected feature point is then
calculated with these weights in the same as described in
4.5. This recovery process is useful when the feature point
is rejected in the case that the confidence is less than the
threshold by a small margin.

5. Experiments
In this section, we conduct some experiments with real

echocardiographic images to investigate the effectiveness of
the proposed method.

5.1. Experimental setup

The dataset consists of 82 cases (images) of end-diastolic
in the apical four-chamber view. The ground truth is pro-
vided by a single expert who outlined the inner endocardial
boundaries with several points per image. We interpolated
these points for each boundary by spline curves, and ob-
tained uniformly sampled 17 feature points.

For comparison, we implemented an ASM-based fea-
ture localization method as the conventional edge-based ap-
proach and we also provide an average shape as a baseline.
The experiments were performed using leave-one-out cross
validation for all methods. We give an initial shape of the
ASM by the average shape, whose position is estimated us-
ing the difference of Gaussian blob detector. In the pro-
posed method, a constant fixed ROI is used for all images
and cropped to 80×80 pixels. The sampling points are allo-
cated to 10×10 grid nodes. For fair comparison, we do not
apply any preprocessing to the images for all methods.

5.2. Localization result

Figure 5 describes the localization performance in form
of the root mean square (RMS) error between the localized

(a) (b) (c)

Figure 6. Examples of partially occluded images whose sizes of
the masked area are (a) 5%, (b) 10% and (c) 20%.

feature points and the ground truth data. The bar graph rep-
resents the RMS error in pixels for the proposed method,
the ASM-based method and the average shape respectively.
The error bars shows the standard deviation of the localiza-
tion results.

The experimental result shows that the proposed method
provides more accurate localization in comparison with the
other two methods. The ASM-based method is better than
the average shape result, but the standard deviation of the
error is almost equivalent to that of the average shape. This
means the ASM-based method may be unstable depending
on the input images due to misalignment of the initial shape
or failure of the iteration process. In contrast, since our
method does not require any initial shape and iterative pro-
cesses, its standard deviation of the error is much smaller
than the others.

We also measured the computational time for the lo-
calization process with a 2.66GHz Intel Core 2 Extreme
QX6700 processor. The average time of our method and
the ASM-based method are 42.4 and 46.9 milliseconds per
image respectively. This shows that our method is equiva-
lent to the ASM in terms of speed and much faster than con-
ventional voting-based methods like the generalized Hough
transform.

5.3. Partially occluded images

To evaluate the tolerance of the proposed method against
occlusion, we perform the experiment with partially oc-
cluded images. A part of the query image is masked with
a white box which is randomly located in the ROI and the
size of the masked areas is varied from 1% to 20%. Figure
6 illustrates examples of the occluded images whose sizes
of the masked area are 5%, 10% and 20% respectively.

We conducted the feature localization with the occluded
query images under the same condition described in 5.1.
Figure 7 shows the result in terms of the RMS error of the
proposed method, the ASM-based method and the average
shape, where the x-axis of the graph represents a percent-
age of the masked area. The result of the average shape is
not affected by the size of the masked area because it does
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Figure 7. Result in terms of the RMS error of the three method.
The x-axis of the graph represents a percentage of the masked area.

not utilize information derived from the query images. The
results of the other two methods are getting worse due to
increasing the occlusion size. However, the rate of increase
of the RMS error is significantly different for our method
and the ASM-based method. The RMS error of the ASM-
based method increases to the same level as that of the av-
erage shape in the 2% masked area and rapidly becomes
worse. On the other hand, our method keeps better results
than the average shape until that of the 19% masked area.
This result denotes the proposed method exhibits better per-
formance against the partial occlusions in comparison with
the conventional local search method.

5.4. Discussion and future work

According to the experimental results, our method effec-
tively works and accurately localizes the feature points by
extracting the global shape information in the case that a
part of the query image is occluded. However, since our
approach does not adjust the position with respect to local
information around the feature points being localized, the
extracted boundary is not exactly fitted to the actual bound-
ary if we can see sharp edges on the boundary. The ASM-
based method may present better results in that situation.
The other issue of our approach is the size of the training ex-
tended templates used by NNS, which increases linearly as
training samples increase. A feature-merging method may
be required such as codebook clusters described in [9] for
large training sets.

The proposed approach presented in this paper is a very
basic framework for feature localization using vector con-
centration. It is not limited to the LV boundary localization,
and so we plan to apply it to various feature localization
problems and improve it by introducing scale and rotation
invariant features. Furthermore, since our approach can be
straightforwardly extended to higher dimensions, we also
plan to localize feature points on 3D objects.

6. Conclusions
In this paper, we proposed a novel feature localization

method which exploits global shape information. The fea-
ture points are represented as the concentration of direc-
tional vectors from sampling points. Unlike voting-based
methods, such as the generalized Hough transform, our ap-
proach extracts the feature points by minimizing the dis-
tances from lines defined by the directional vectors and the
sampling points.

We applied the proposed method to fully automatic
localization of the left ventricular boundary in echocar-
diograms. The experimental results show the proposed
method outperforms the conventional edge-based localiza-
tion method in accuracy and has strong robustness against
partially occluded images.
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