
 

 

 Abstract 
The spatial distribution of fingerprint minutiae is a core 

problem in the fingerprint individuality study, the 
cornerstone of the fingerprint authentication technology. 
Previously, the assumption in most research that minutiae 
distribution is random has been proved to be inaccurate 
and may lead to significant overestimates of fingerprint 
uniqueness. In this paper, we propose a stochastic model 
for describing and simulating fingerprint minutiae patterns. 
Through coupling a pair potential Markov point process 
with a thinned process, this model successfully depicts the 
complex statistical behavior of fingerprint minutiae. 
Parameters of this model can be determined by nonlinear 
minimization. Furthermore, experiment results show that 
the statistical properties of our proposed model dovetails 
nicely with real minutiae data in terms of the false 
fingerprint correspondence probability. Such evidences 
indicate that the proposed model is a more accurate 
foundation for minutiae based fingerprint individuality 
studies as well as the artificial fingerprint synthesis when 
compared to the model of random distribution. 

1. Introduction 
Fingerprint authentication is believed to be the most 

commonly used biometric technology today [1]. Its wide 
social acceptance comes from the belief on the universality, 
stability and uniqueness of human fingerprints, among 
which the uniqueness, or the individuality, is the key to the 
discriminative power of fingerprints [2]. While fingerprint 
universality and stability can be confirmed by empirical 
anatomic observations, the individuality of fingerprints 
requires more deliberate theoretical analysis. 

As a natural born feature of fingerprints, minutiae have 
been adopted for fingerprint representation and matching in 
most fingerprint authentication systems [2]. Hence, most 
previous fingerprint individuality research has focused on 
minutiae based representations [3, 4, 5, 6]. Although 
various models have been proposed to describe minutiae 
configuration to quantitatively evaluate the fingerprint 
individuality; the fundamental problem in the minutiae 
based fingerprint individuality study remains as finding a 
suitable model to depict the spatial distribution of minutiae. 
Previous research in this topic all reveal that fingerprint 

minutiae, when considered as two dimensional spatial point 
patterns, are NOT uniformly distributed [7, 8, 9]. In [7], 
Sclove showed that minutiae tend to cluster; while in [8] 
Stoney found that fingerprint minutiae demonstrate a slight 
tendency towards an overdispersed distribution. A unified 
view given in [9] claims that due to the growth stress during 
minutiae formation, fingerprint minutiae tend to be 
overdispersed when observed on a small scale; while 
clustering tendency dominate for large scales. Nevertheless, 
these qualitative conclusions do not provide enough help to 
the quantitative analysis of the fingerprint individuality. 

Recently, a major advancement of this problem is the 
GMM (Gaussian Mixture Model) based minutiae model 
proposed in [10], in which the clustering tendency of 
minutiae is modeled. It is demonstrated that this mixture 
model gives rise to more realistic fingerprint individuality 
estimates than the uniform distribution model adopted in [3, 
5, 6]. Nonetheless, this model assumes local independences 
among neighbor minutiae and ignores the minutiae 
overdispersing tendency [10]. Such an assumption could 
have limited the accuracy that the model may achieve. 

To solve this problem, we propose a quantitative 
stochastic model for fingerprint minutiae distribution 
considering both the clustering and the overdispersing 
tendencies. Parameters of this model can be estimated 
through an ad hoc model fitting approach. Artificial 
minutiae patterns bearing similar statistical properties to 
real life fingerprints can be deterministically simulated 
from the model. Our model as well as the simulated 
artificial minutiae patterns can serve as a foundation for 
building more delicate fingerprint individuality models. 

The remaining part of this paper is organized as follows. 
Section 2 introduces the spatial point analysis technologies. 
Section 3 describes the proposed model. Validating 
experiments performed on the simulated minutiae patterns 
will be presented in section 4. The last section is a 
conclusion of our work. The statistical calculations and 
simulations in this paper were implemented on the R 
platform and the following extension R packages have been 
used: Spatstats, Splancs, Stats and MASS [11]. 

2. Spatial Point Pattern Analysis 
For a fingerprint, its minutiae form a two dimensional 

spatial point pattern. A fingerprint minutiae pattern from 
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the NIST4 database is shown in Figure 1. For each minutia, 
its location, direction and type are the most widely used 
features [2]. In this work, we only concentrate on the 
statistical modelling of fingerprint minutiae spatial 
locations. All types of minutiae are treated equally because 
minutiae types cannot be automatically discriminated with 
a high level of accuracy [5]. For the minutiae direction, its 
statistical property and the way of incorporating it into 
fingerprint individuality models are fairly straightforward 
[6, 10], and will not be discussed in this paper. 

Statistical analysis for spatial point patterns has been 
long and widely used in the field of geography, astronomy, 
epidemiology and microanatomy [12, 13, 14, 15]. Given 
one or a group of spatial point patterns, there are two 
essential questions to be answered. First, what are the 
statistical properties of the given patterns? Second, how to 
formulate a parametric stochastic model (or process) that 
can be fitted to the given data appropriately? 

For fingerprint minutiae patterns, the first question is 
partly answered in [9]. It is revealed that minutiae patterns 
are complex spatial point patterns demonstrating various 
distribution tendencies on different observation scales. As 
to the second question, there are generally two kinds of 
model fitting techniques: the likelihood-based method and 
the ad hoc method [13]. In the likelihood-based methods, 
the likelihood function of the model is calculated based on 
the input data; then the parameters are calculated by 
maximizing this function. As a formal statistical inference 
technique, the likelihood-based method has prevailed 
recently mainly due to the development of Monte Carlo 
methods [16] for calculating approximate likelihood 
functions for a wide range of stochastic models. However, 
this method is not suitable for minutiae pattern modelling 
due to two major reasons. Firstly, as is revealed in [9], 
fingerprint minutiae patterns need to be described by 
complex coupled models so that the resultant likelihood 
function will become notoriously intractable [13]. 
Secondly, the number of minutiae in a single fingerprint is 
relatively small so that the parameters cannot be stably 
estimated and may vary a lot among different fingerprints. 

Therefore, we have adopted the ad hoc method which is 
based on comparing certain theoretical and empirical 
statistical properties, between the model and the original 
data. Compared to the likelihood based method, the ad hoc 

method is both computationally easier and is able to 
provide direct, visual methods for assessing the 
effectiveness of the fitting result. As suggested by Cressie 
in [12] and by Diggle in [13], we have chosen Ripley’s K 
function as the statistical property for comparison. For a 
stationary isotropic spatial point process, its K function is 
defined as Equation (1), where λ is the expectation of the 
point density and E[N(t)] is the expectation of the number 
of further points within distance t of an arbitrary point [17]. 

 ( ) ( )1K t E N tλ − ⎡ ⎤= ⎣ ⎦  (1) 

Compared to first order statistical properties such as the 
intensity function, K function is more suitable for small 
samples as it is more related to the probability density 
function of the distances between pairs of points. A 
fingerprint minutiae pattern is a rather small sample for 
statistical analysis considering the number of minutiae in 
one fingerprint seldom exceeds one hundred. Also, the K 
function is invariant under a random thinning procedure in 
which each point of a given pattern is retained or not 
according to a series of mutually independent Bernoulli 
trials. Considering that the minutiae patterns we used as 
original data were marked by human experts, the case of 
missing any minutia can be approximated by a Bernoulli 
process and thus will not affect the K function.  
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For a given spatial point pattern containing n points in a 
planar region A with the area |A|, an unbiased estimator of 
K(t) was given by Ripley in [17] as Equation (2), in which 
uij is the distance between points xi and xj; Λ(●) denotes the 
indicator function; ω(x, u) was introduced by Ripley to 
eliminate the negative bias caused by boundary effects. It is 
defined as the proportion of the circumference of the circle 
with center x and radius u lying within A. The explicit 
formula for ω(x, u) can be deduced if A is rectangular [13]. 

 ( ) ( ) 2D t K t tπ= −  (3) 

If the target point pattern is a CSR (Complete Spatial 
Randomness) pattern, in which points are independently 
randomly distributed, its K function estimator should 
converge to πt2 given n is big enough. Thus, D(t) in 
Equation (3) can be  used for indicating the point pattern’s 
deviation from the CSR. Positive D(t) values usually 
indicate a clustering tendency while negative D(t) tells a 
overdispersing tendency [13]. This method is used in [9] to 
reveal the complex distribution tendency of minutiae. 

For a bunch of replicated spatial point patterns generated 
by the same underlying process, their corresponding K 
functions are identically distributed. A reasonable overall 

Figure 1: A NIST4 fingerprint and its minutiae pattern.



 

 

estimate of the K function for the underlying process can be 
obtained by simply averaging the estimated K functions of 
all the replicated patterns using Equation (4), in which ni is 
the number of points in the ith point pattern, of which the K 
function estimator is ( )iK t .  
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 A critical step of the ad hoc method is to propose an 
appropriate stochastic model. Diggle recommends plotting 
the K function estimator for suggesting potential candidate 
models, and to provide initial parameter estimates [13]. The 
number of parameters in the model should be appropriate, 
since too few parameters will downgrade the model 
flexibility, while too many parameters will lead to 
convergence difficulties in the minimization step. Suppose 
the proposed model incorporates a parameter vector ζ. Let 
K(t; ζ) denotes the ground true K function of the model. A 
family of criteria for measuring the discrepancy between 
the model and the original data is suggested in [12] as 
Equation (5). The value of the parameter vector ζ can thus 
be found by applying nonlinear minimization or regression 
methods, such as the Gauss-Newton algorithm or the 
Golub-Pereyra algorithm [18], to minimize Q(ζ). 
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3. Fingerprint Minutiae Pattern Modelling 
Fingerprints from three different databases were chosen 

for model designing and fitting. These three databases are: 
NIST4 (512×512, ~500dpi); FVC2002 DB1 (388×374, 
500dpi) and FP383 [19] (256×256, 450dpi). These three 
databases were collected in different regions around the 
world and from various populations. Hopefully, they can 
ensure the universality of conclusions made based on them. 

Not all the fingerprints in these databases were used. 
Three criteria were followed when selecting fingerprints. 
First, all the fingerprints selected were from different finger 
tips. Second, only fingerprints with sufficiently high image 
quality were selected. Since the minutiae of the selected 
fingerprints were manually marked, high image quality 
helps to improve the reliability of the marking results. 
Third, only fingerprints with a big enough (> 220×220 
pixels) ROI (Region of Interest) were picked up to ensure 
that for each fingerprint minutiae pattern, there is enough 
number of minutiae for the statistical analysis. As a result, 
we selected 133 fingerprints from NIST4, 103 fingerprints 
from FP383 and 56 fingerprints from FVC2002 DB1. A 
stochastic model was designed and it was then fitted to the 
selected fingerprints from the three databases respectively. 

All the selected fingerprints were normalized to 500dpi; 
their minutiae were carefully marked and double checked 
by human experts. A square area of 220×220pixels was 
randomly selected inside the ROI of each fingerprint. The 
minutiae patterns inside these squares were used as the 
original data for the model fitting. Without loosing 
generality, we change the unit so that these squares become 
unity. Figure 2 shows three selected fingerprint samples. 

To get a universal K function estimator for minutiae 
patterns, we treat the fingerprint minutiae patterns from the 
same database as replicated spatial point patterns generated 
by one identical underlying process. Under such an 
assumption, Equation (4) can be applied. This seemingly 
bold assumption can actually be justified. Although there 
are numerous environmental and mental factors affecting 
the physical growth of an individual throughout her/his life, 
the formation of fingerprints is finished within a relatively 
short period and in a relatively stable environment. It is 
believed that fingerprints are fully formed at about seven 
months of fetus development and the formulated finger 
ridge configurations do not change throughout the whole 
life of an individual except due to accidents such as bruises 
and cuts on the fingertips [2]. A deterministic mathematical 
model has been proposed for modeling the mechanism of 
fingerprint formation [20]. Besides the formation 
mechanism, fingerprint acquisition is another major factor 
affecting the statistical properties of the minutiae patterns. 
The acquisition procedure can vary in many ways for 
different databases, such as acquisition technique, 
fingerprint sensors and collection settings. Nevertheless, 
fingerprints from the same database can be expected to 
have been collected through a relatively consistent 
procedure. 

Figure 3 shows the estimated K functions, together with 
plus and minus two bootstrap standard deviations [13], for 
the three databases. From Figure 3, we can observe a clear 
‘small scale overdispersing and large scale clustering’ [9] 
distribution tendency for all the three databases, leading to 
a ‘tick’ shape for all the three curves. We can also notice 
that that the overdispersing tendency is much more obvious 
in the NIST4 database then in the other two databases. This 
is because that NIST4, unlike the other two databases, was 
created by scanning inked fingerprints. The ink technique 
requires users to roll their fingers against the media with a 
heavy pressure. The finger tip deformation thus caused will 

Figure 2: Sample selected fingerprint minutiae patterns



 

 

inevitably increases the inter minutiae distances, in other 
words, further disperses the minutiae. Also, FVC2002 and 
FP383 have very similar K functions, indicating the 
rationality of our replicated pattern assumption. 

Such a complex distribution tendency indicates that a 
composite stochastic model should be more suitable than 
any simple models for describing minutiae patterns. To 
model the small scale overdispersing tendency, we choose 
the pair potential Markov point process; to describe the 
large scale clustering tendency, a thinned process is used. 
Theoretically, a composite model consists of these two 
models is suitable for describing any point patterns whose 
K functions resemble the ‘tick’ shape curves in Figure 3. 

A Markov point process is a spatial point process in 
which the conditional intensity at any point s only depends 
on the points inside a closed ball of radius r1 centered at s 
[12]. In other words, this kind of point process only 
involves local or Markovian dependences amongst points. 
A Markov point process is usually defined by its likelihood 
ratio function f(χ) with respect to a Poisson process of unit 
intensity. A Poisson process is defined to generate CSR 
point patterns. The pair potential Markov point process is a 
special kind of Markov point process whose f(χ) only 
depends on inter-point distances as is shown in Equation 
(6), where h(●) is a non-negative function of the inter-point 
distance and is usually called the interaction function. 
When 0≤h(●)<1, this model can stably generate 
overdispersed point patterns; while h(●)=1 means no 
overdispersing and h(●)=0 means strict inhibition; 
otherwise the smaller the value of h(●) is, the more obvious 
the overdispersing effect will be [13]. 
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To design a specific pair potential Markov model, it is 
crucial to propose a suitable form for h(●). Based on our 

observation, we propose an interaction function as 
Equation (7), which can be interpreted as an extension of 
the VSC (Very-Soft-Core) model proposed in [21], with 
one more degree of freedom. We let r1=0.2 and r0 be equal 
to the smallest t for the value of K function to be positive. 

 ( ) ( ) ( ){ }
0

0 0 1

1

0
1 exp

1

r r
h r r r ar b r r r

r r

⎧ <
⎪

= − − − × + ≤ <⎨
⎪ ≤⎩

 (7) 

A thinned process P(x) is defined by a basic point 
process P0(x) and a thinning field Z(x). Z(x) is also a 
stochastic process independent of P0(x). The points xi in 
P0(x) are retained independently with probabilities Z(xi). 
Thus, P(x) consists of the retained points of P0(x) [13]. It is 
a common practice to use the thinned process to model 
various large scale distribution tendencies. In our case, the 
basic point process P0(x) is the pair potential Markov point 
process defined above, and Z(x) is designed to generate 
large scale clustering tendencies. We have observed that 
fingerprint minutiae tend to cluster around points where the 
ridge directions change abruptly, such as core points and 
delta points. In other words, fingerprint regions with 
smooth ridges usually have less probability of minutiae 
emergence. Thus we define Z(x) as follows: discs of radius 
δ centered on the points generated by a Poisson process of 
intensity λ. As such, Z(x)=p (0<p≤1) inside the union of all 
such discs, and Z(x)=1 otherwise. The resulting process 
displays small scale overdispersing due to the pair-wise 
interaction; and large scale clustering induced by higher 
minutia density in areas outside the discs defined by Z(x). 
Figure 4 shows the generation of a sample point pattern 
through the proposed composite process. 

Summing up, the proposed model contains five 
parameters, or ζ = (a, b, λ, δ, p) in Equation (5). Ideally, if 
the theoretical K function of this process can be explicitly 
expressed, the five parameters can be evaluated by 
minimizing Q(ζ). Unfortunately, although the K function of 

Figure 3: Estimated K functions for the three fingerprint databases.

(a)       (b)       (c) 
Figure 4: Point pattern generation using the proposed model.

(a) A pair potential Markov point process point pattern. 
Overdispersing can be observed. (b) The thinning field Z(x)
consists of four discs inside which p=0.5. Altogether 7 points 
are removed. (c) The resultant point pattern demonstrates large 
scale clustering caused by the thinning process. Points tend to 
concentrate in the region outside the four discs. 



 

 

the thinned process can be explicitly formulated [13], the K 
function of the pair potential Markov point process defined 
by Equations (6) and (7) cannot be expressed in a closed 
form [12]. For such a situation in which the theoretical 
K(t;ζ) is unknown, Diggle suggested using KS(t;ζ), the 
point-wise mean of the estimated K functions calculated 
from S simulated realizations of the model [13]. KS(t;ζ) is 
calculated using a formula similar to Equation (4). 

The simulated realization of the proposed model consists 
of the simulations of the pair potential Markov point 
process and the thinned process. The definition of the 
thinned process is by itself the procedure for its simulation. 
For the pair potential Markov point process, Diggle 
proposed a depletion-replacement procedure conditioned 
on a given number of points, n, in the resultant simulated 
pattern [13]. In our work, we have used a simple 
mechanism to guarantee that the number of points in the 
simulated patterns has a distribution similar to that of the 
original fingerprint minutiae data. It is revealed in [9] that 
fingerprint minutiae number inside a given area 
approximately follows a Poisson distribution. Thus, we 
generated the values of n as random numbers following a 
Poisson distribution with mean mp. The value of mp can be 
calculated using Equation (8) from mf, which is the mean 
number of minutiae in the original fingerprint data. The 
denominator of Equation (8) is the mean of the thinning 
field Z(x). For NIST4, FVC2002 and FP383, mf equals to 
21.2, 29.0 and 27.7 respectively. 

 ( ) ( )( ){ }21 1 1 expp fm m p πλδ= − − × − −  (8) 

We chose c=0.5 as suggested in [12] and S=800. The 
Newton-type algorithm proposed in [18] was adopted to 
perform the nonlinear minimization of Equation (5), in 
which K(t;ζ) should be replaced by KS(t;ζ). The estimated 
model parameter values for the three databases are listed in 
Table 1. The values in the last column of Table 1 are the 

mean ratios of the fingerprint regions with high minutiae 
density (regions outside the thinning discs). 

We can notice that FVC2002 and FP383 yield nearly the 
same values for all the five parameters. This is reasonable 
since the K functions of the two databases are very close to 
each other as shown in Figure 3d. Figure 5a-5c visualize 
the model fitting results in terms of the K function for the 
three databases. It can be seen that the proposed model is 
flexible enough to fulfill the estimated K functions for 
fingerprint minutiae patterns from different databases. 
Figure 5d compares the interaction functions h(r) for 
NIST4 and FVC2002. NIST4 has smaller h(r) than 
FVC2002 for most values of r, indicating a stronger 
overdispersing tendency caused by the ink technique. 

Table 1: Estimated model parameters for three databases. 

Database a b λ δ p exp(-πλδ2)

NIST4 31.003 18.990 3.478 0.199 0.121 0.649 

FVC2002 40.947 29.703 2.712 0.270 0.256 0.538 

FP383 40.952 29.709 2.712 0.269 0.261 0.539 

 Figure 6 shows several sample patterns generated by the 
proposed model using the parameters listed in Table 1. 
Visually, they resemble real fingerprint minutiae patterns 
demonstrated in Figure 1 and Figure 2 in terms of the 
distribution tendencies. This is expected since the K 
function used in the model fitting is an effective descriptor 
of the distribution tendency. In the next section, we will 
propose a novel statistical property, the bipartite matching 
score distribution, to further validate our proposed model. 
For fingerprint minutiae patterns, this statistical property is 
significant as it can be directly linked to the fingerprint 
matching score.  We will demonstrate through experiments 
that in terms of this new statistical property, the point 
patterns generated from the proposed model are also 
analogous to the real fingerprint minutiae patterns. 

Figure 5: Results of the K function fitting for three databases.

Figure 6: Sample simulated patterns of the proposed model. 
(a,b) NIST4; (c,d) FVC2002; (e,f) FP383. 



 

 

4. Experiments 
In this section, we will further validate our proposed 

statistical model by its application in investigating a 
fundamental problem in fingerprint individuality studies [3, 
4, 5, 6], the imposter minutiae matching score distribution. 
In an imposter matching, the two fingerprints for matching 
are from different fingertips. Therefore, the probability 
distribution of the score for such a matching is by definition 
closely related to the fingerprint individuality, which refers 
to the differences among the fingerprints obtained from 
different fingers. As minutiae direction is not considered in 
this paper, we will only investigate fingerprint matching 
using the minutia location information. 

The basic idea of the fingerprint matching is to count the 
number of minutia point correspondences between two 
fingerprints. Although many effective algorithms have 
been proposed for minutiae matching [2], most of them are 
heuristic and may be implemented in diverse ways. To 
avoid uncertainties, we propose a new deterministic and 
symmetric approach for point pattern matching. Suppose 
two point patterns are of the identical size, and are aligned 
through simple overlapping. Their bipartite matching score 
is defined as the maximum possible number of point 
correspondences between these two patterns. There are two 
criteria for two points, x and y, from the two patterns to be 
matched. First, the Euclidean distance between x and y is 
equal to or smaller than a threshold d0. Second, neither x 
nor y is matched to any other points. 

This problem can be formulated as a bipartite graph 
matching problem, for which the Hungarian algorithm is 
one of the most efficient solutions [22]. Suppose xi and yi 
are points from two point patterns. They are converted to 
the vertices of a bipartite graph, in which xi and yi are 
connected by an edge if and only if their Euclidean distance 
is equal to or smaller than d0. Thus, the maximum number 
of point correspondences, or the bipartite matching score, 
is equal to the number of edges covered by the maximum 
matching of the graph. The bipartite matching score is 
invariant to the order of the input, and is thus symmetric. 
For a group of replicated point patterns generated by a 
stochastic process, the probability distribution Pb(s;d0) of 
the bipartite matching scores for all the possible point 
pattern pairs can be used as a statistical property for 
describing the underlying process. For fingerprints, Pb(s;d0) 
is merely the imposter matching score distribution of the 
one to one verification experiment. 

For each database, Pb(s;d0) is computed for three groups 
of point patterns: a) the selected fingerprint minutiae 
patterns; b) 1000 simulated realizations of the proposed 
composite model; c) 1000 CSR point patterns. We use the 
CSR point pattern for comparison because randomness or 
quasi randomness is assumed for fingerprint minutiae 
distribution in most previous fingerprint individuality 
studies [3, 5, 6]. The results are shown in Figure 7. The 

score distributions for the proposed composite model 
nearly overlap those of real fingerprint minutiae patterns, 
indicating a high validity of our work. 

Table 2: Probability values Pb(s;d0) (%) for relatively high scores. 
 Score 15 16 17 18 19 

d0= FP383 2.9 1.8 1.4 0.8 0.4
0.07 Proposed Model 2.3 1.6 1.0 0.6 0.4

 CSR model 0.9 0.4 0.2 0.1 0.04
 Score 22 23 24 25 26 

d0= FP383 2.5 2.1 1.9 1.3 1.2
0.114 Proposed Model 2.5 1.9 1.5 1.1 0.8

 CSR model 1.4 0.9 0.5 0.3 0.2

For the CSR model, the distributions obviously deviate 
from that of the minutiae patterns. A considerable 
underestimate of the probability can be observed for 
relatively high matching scores scenarios. These scenarios 
are usually the focus of the fingerprint individuality study. 
For clarity, part of the data for plotting the curves in Figure 
7(c) and 7(d) are listed in Table 2.  

Basically, this problem is caused by ignoring the 
clustering tendency of minutiae when assuming the random 
distribution. We have observed that the matching score 
between two minutiae patterns is greatly affected by the 
area of the overlapped clustering minutiae regions. 
Ignoring the clustering tendency causes an underestimate 
of the minutiae density inside these regions. 

Underestimating the probability of false fingerprint 
correspondences is fatal for the fingerprint individuality 
study because it will probably impair suspects in a criminal 
investigation by preventing them from doubting the 
certainty level of the fingerprint matching [7]. Actually, 
ignoring the overdispersing tendency also bias the 

(c)           (d) 
Figure 7: Probability distribution of the bipartite matching scores 
for three databases. In (a), (b) and (c), d0=0.07 (~15 pixels for 
500 dpi images); in (d) d0=0.114 (~25 pixels). 

(a)            (b) 



 

 

probability estimates. Hence, compared to the CSR model 
used in [3, 5, 6], our proposed model provides a more 
precise description of the fingerprint minutiae spatial 
distribution, and may serve as a better foundation for more 
accurate fingerprint individuality studies. 

5. Conclusions 
The spatial distribution of fingerprint minutiae is a core 

problem of the fingerprint individuality study. Due to the 
complexity of the formation process, the spatial 
distribution of fingerprint minutiae cannot be accurately 
described by simple statistical models. Based on the 
qualitative conclusions made in previous research, we have 
proposed a deterministic composite stochastic model for 
describing and simulating fingerprint minutiae patterns. 
This model consists of a pair potential Markov point 
process and a thinned process. The Markov point process is 
employed to simulate the overdispersing among minutiae. 
Its interaction function is designed to be exponentially 
increasing with respect to the inter minutiae distances. The 
thinned process simulates the large scale clustering of 
minutiae by creating low minutiae density regions where 
the probability of the emergence of minutiae is generally 
lower than the remaining parts of fingerprints. An ad hoc 
method is adopted to fit the model to real life fingerprint 
minutiae data through minimizing the discrepancy between 
the theoretical and estimated K functions. 

Experimental results show that the proposed model over 
performs the commonly used CSR model by enabling more 
accurate estimation of false fingerprint correspondence 
probabilities, indicating that it can serve as a foundation for 
more accurate theoretical analysis of the fingerprint 
individuality. Moreover, the simulating realization of the 
model can be used in fingerprint synthesis systems for 
generating more realistic artificial fingerprints. 

To further improve our model, there are mainly two 
challenges. Firstly, incorporating the minutiae direction 
into the proposed model is necessary. The Von-Mises 
distribution based random angle generation process 
proposed in [10] provides a possible solution. Secondly, 
the K function of the pair potential Markov process defined 
by Equation (7) cannot be expressed in a closed form [12]. 
This greatly jeopardizes the usability of the proposed 
model for any further theoretical analysis. Nonetheless, this 
difficulty can be overcome by approximating Equation (7) 
using a piecewise function, which enables the explicit 
expression of the K function [12]. 
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