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Abstract
This paper addresses the problem of exactly inferring

the maximum a posteriori solutions of discrete multi-label
MRFs or CRFs with higher order cliques. We present
a framework to transform special classes of multi-label
higher order functions to submodular second order boolean
functions (referred to as F2

s ), which can be minimized ex-
actly using graph cuts and we characterize those classes.
The basic idea is to use two or more boolean variables to
encode the states of a single multi-label variable. There are
many ways in which this can be done and much interesting
research lies in finding ways which are optimal or minimal
in some sense. We study the space of possible encodings
and find the ones that can transform the most general class
of functions to F2

s . Our main contributions are two-fold.
First, we extend the subclass of submodular energy func-
tions that can be minimized exactly using graph cuts. Sec-
ond, we show how higher order potentials can be used to
improve single view 3D reconstruction results. We believe
that our work on exact minimization of higher order energy
functions will lead to similar improvements in solutions of
other labelling problems.

1. Introduction
The last few years have seen discrete energy minimiza-

tion emerge as an indispensable tool for computer vision.
It enables inference of the maximum a posteriori solutions
of Markov and conditional random fields (MRFs and CRFs),
which can be used to model labelling problems such as im-
age segmentation, stereo, image restoration and many oth-
ers [3, 22, 23]. The problem of minimizing a general func-
tion is NP-hard. However, due to its immense applicability,
a number of approximate energy minimization algorithms
have been proposed which produce a locally optimal so-
lution with certain guarantees in polynomial time. A few
popular examples of these algorithms are graph cuts [3, 13],
tree-reweighted message passing [27] and variants of belief
propagation (BP) [17, 29].

It is well known that a special class of functions called
submodular functions can be minimized globally in poly-
nomial time. These functions are discrete analogues of con-
tinuous convex functions. The current best algorithm for
general submodular function minimization has complexity
O(n5Q + n6), where n is the number of random variables
and Q is the time taken to evaluate the function [16]. This
makes their use infeasible for problems in computer vi-
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sion which, in general, involve a large number of variables.
However, certain subclasses of submodular functions can
be minimized much more efficiently. For example, boolean
submodular functions of order1 at most three can be mini-
mized by solving an st-mincut problem, for which efficient
algorithms are known [1, 8, 13]. In CVPR 2005, Freed-
man and Drineas [6] extended this work and proved that
a subclass of submodular boolean functions of order four
or more can be minimized. It was also shown that multi-
label CRFs with convex energy functions of order two can
be minimized in polynomial time [10, 25]. However, it has
not been known what the analogue of this is for higher order
cliques. We aim to study this in the paper.

Most labelling problems in computer vision involve
multi-label MRFs or CRFs [3, 23]. Further, the use of higher
order clique structures has proved beneficial [12, 14, 20]
for solving certain computer vision problems. However,
efficient st-mincut based algorithms used for minimizing
submodular second order boolean functions are not directly
applicable to these functions. Our work overcomes this
restriction by showing how we can transform some sub-
modular multi-label higher order functions to submodular
boolean functions, thus enabling their exact minimization.
Before proceeding further, we briefly introduce our notation
for denoting different classes of energy functions. Let Fk

s

and F̄k
s denote the class of submodular and non-submodular

boolean energy functions of order k respectively. Similarly,
let Mk

s and M̄k
s denote the class of submodular and non-

submodular multi-label energy functions of order k respec-
tively.

A generic transformation framework: The basic idea of
our framework is to use two or more boolean variables to
encode the states of a single multi-label variable. While do-
ing this, we have to ensure that the minimum cost labelling
of the boolean problem also encodes the minimum cost la-
belling of the multi-label energy function. There are sev-
eral possible ways to encode a multi-label variable using
boolean variables. In the rest of the paper, we use the term
encoding to refer to the mapping between the labellings of
the multi-label variable and the corresponding binary vari-
ables. The term transformation will refer to the conversion
of multi-label energy functions to functions of binary vari-
ables.

Different transformations are important because the
choice of transformation dictates the size of the resulting
boolean function and the class of multi-label functions that

1Clique size in a CRF corresponds to order of the energy function.
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can be transformed to F2
s . For example, Ishikawa [10]

described a transformation that used l boolean variables
to encode a single l-label variable. Using this transfor-
mation pairwise convex functions of the difference of la-
bels, which is a subclass of M2

s, can be transformed to
F2

s . Later, Schlesinger and Flach [25] gave a concise defi-
nition of submodularity for (ordered) multi-label functions
and used l− 1 encoding boolean variables to transform any
function in M2

s to F2
s . In this paper, we study the space

of all possible transformations and find the subclasses of
multi-label functions that they can transform to F2

s . In other
words, the transformations we develop will lead to submod-
ular boolean functions under some constraints. These con-
straints will serve to characterize the class of Mk that can
be minimized exactly.

The main novelties of this paper are as follows:
• A principled framework for transforming Mk

s func-
tions to F2

s .
• The identification of constraints that enable the trans-

formation of Mk
s of any order into F2

s in polynomial
time.

• The result that there exists no polynomial transforma-
tion from submodular multi-label functions of order
four or more (Mk≥4

s ) to submodular boolean second
order functions (F2

s ).
• The use of higher order functions to improve the

performance of single view 3D reconstruction algo-
rithms [9].

Overview of the paper: §2 describes the basic theory of
pseudo-boolean optimization and its relation to minimiz-
ing multi-label higher order functions using st-mincut al-
gorithms. The problem statement is given in §3. §4 shows
how to encode multi-label variables using boolean (or bi-
nary) ones. A characterization of multi-label higher order
functions that can be transformed to F2

s in polynomial time
is given in §5. We show improvement in single view 3D
reconstruction using higher order priors in §6. Potential ap-
plications of our work and directions for future research are
discussed in §7.

2. Notation and Preliminaries
Let B denote the boolean set {0, 1} and R the set of

reals. Let the vector x = (x1, ..., xn) ∈ B
n, and V =

{1, 2, ..., n}, be the set of all boolean variables and their in-
dices respectively. A pseudo-boolean function f : B

n → R

is a function which takes a boolean vector as an argument
and returns a real number. These functions can be uniquely
represented using a multi-linear polynomial form [2]. An
example is f(x1, x2, x3, x4) = 2− 4x2x4 + 7x1x2x3. An-
other useful representation known as posiform involves the
complements (x̄1, ..., x̄n) of variables. Such a representa-
tion for the above example is:

φ(x1, x2, x3, x4) = −2 + 4x̄4 + 4x̄2x4 + 7x1x2x3. (1)

(a) (b) (c)

Figure 1. Converting an energy minimization problem to an st-
mincut problem [13]. (a) and (b) show unary potentials are rep-
resented using edges in the graph, while (c) shows the same for
submodular pairwise potentials.

An important property of the posiform representation is
that all the coefficients, except the constant, are non-
negative [2].

2.1. Graph Cuts for Energy Minimization

Let G = (V , E) be a directed graph with non-negative
edge weights and two special nodes, namely, the source s
and the sink t, which represent the labels {0, 1}. An st-cut
partitions the set of vertices in V into two disjoint sets S and
T , such that s ∈ S and t ∈ T . The cost of this cut is the
sum of edge weights (i, j), where i ∈ S and j ∈ T . The
st-mincut problem involves finding the st-cut with the min-
imum cost. Any F2

s function can be minimized exactly by
computing the st-mincut in an equivalent graph [13]. The
key idea is to design a graph such that cuts in the graph cor-
respond to labellings of the binary variables, with the cost
of the cut equal to the cost of the labelling (plus a constant).
We call this the equivalent graph.We now show how to con-
struct this graph. Consider a second order boolean energy

Eb(x) =
∑
i∈V

Eb(xi) +
∑

(i,j)∈E
Eb(xi, xj), (2)

where Eb(xi) and Eb(xi, xj) represent the first and second
order terms of the energy function respectively. Let θi;a be
the cost of assignment xi = a, and θij;ab be the cost of the
assignment xi = a, xj = b (a, b ∈ B).

The graph constructed for minimizing a F2
s function has

a vertex i for each boolean random variable xi ∈ B. There
is a mapping between st-cuts in the graph and label assign-
ments. Node i ∈ S implies xi = 0, while i ∈ T implies
xi = 1. We now show how to create the equivalent graphs
for functions belonging to the classes F1

s and F2
s .

The class F1
s : The unary term Eb(xi) of the energy can

be written as: Eb(xi) = θi;0x̄i + θi;1xi. If θi;1 − θi;0 ≥ 0,
we write the energy as: Eb(xi) = (θi;1 − θi;0)xi + θi;0.
The minimization of this energy is equivalent to finding the
st-mincut in the graph shown in figure 1(a). Cutting the
edge (s, i) is equivalent to the assignment xi = 1. Simi-
larly, if θi;1 − θi;0 < 0, we write the energy as Eb(xi) =
(θi;0 − θi;1)x̄i + θi;1, and the corresponding graph is given
in figure 1(b).



The class F2
s : The pairwise energy Eb(xi, xj) =

θij;00x̄ix̄j + θij;01x̄ixj + θij;10xix̄j + θij;11xixj can be
written as: Eb(xi, xj) = cij x̄ixj + (θij;10 − θij;00)xi +
(θij;10 − θij;11)x̄j + θij;00 + θij;11 − θij;10, where cij =
(θij;01 + θij;10 − θij;00 − θij;11). The equivalent graph con-
struction is given in figure 1(c). Since our overall goal is to
transform multi-label functions to F2

s , we do not focus on
F3

s and higher order functions [6, 13].

Multi-label functions: Let Gm = (Vm, Em) be a directed
graph with a set of vertices Vm = {1, 2, ..., m} and edges
Em. Let yi be a variable taking values in some discrete
space L = {1, 2, ..., l}, and let y = {y1, ..., ym}. We
use Θ to denote the set of higher order potentials whose
sum defines the energy function. The unary potential is de-
noted by Θi;a, pairwise by Θij;ab, where i, j ∈ Vm and
a, b ∈ L. Let i = i1i2...ik ∈ Vm × Vm...Vm (k times)=Vk

m

and a = a1a2...ak ∈ L × L...L (k times)= Lk. Under this
notation, a kth order energy function is written as:

Em(y) =
∑

i∈Vk
m,a∈Lk

Θi;a

∏
i∈i,a∈a

δ(yi, a), (3)

where

δ(yi, a) =
{

1 if yi = a,
0 otherwise.

(4)

2.2. Submodular functions
Submodular functions are set functions f : 2n → R

satisfying the following condition:

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ), (5)

where X and Y are subsets of the set V, and ∪ and ∩
denote union and intersection of sets respectively. We
briefly describe how the above definition of submodular-
ity maps to functions of boolean variables [13]. A function
of one boolean variable is always submodular. A function
θ : B

2 → R of two boolean variables {xi, xj} is submodu-
lar if and only if:

θij:00 + θij:11 ≤ θij:01 + θij:10. (6)

A function θ : B
n → R is submodular if and only if all its

projections on 2 variables are submodular [2, 13]. The sub-
modularity conditions can be extended to multi-label vari-
ables. Let L be a completely ordered set, where between
every pair of states l1 and l2, an ordering (above/below) is
present. A function Θ : L2 → R is submodular if

Θij:l1l2 + Θij:(l1+1)(l2+1) ≤ Θij:(l1+1)l2 + Θij:l1(l2+1), (7)

for all l1, l2 [25]. Using the work of Schlesinger [24] on
permuted submodular functions we can find an ordering (if
it exists) for which the functions become submodular. Thus,
we can work with a notion of submodularity of multi-label
functions which is independent of the ordering of the labels.
A function Θ : Lm → R is submodular if and only if all its
projections on 2 variables are submodular [5].

3. Problem Statement
The main goal of this paper is to obtain a boolean sec-

ond order function Eb(x) equivalent to a given multi-label
higher order function Em(y) in polynomial time. The
boolean function also needs to satisfy the following con-
ditions:
• There is an encoding T : L|Vm| → B

|V| which is
1-1 between the feasible labellings of x and y, and
bijective between the set of optimal labellings of the
boolean and multi-label variables.

• The minimum value of Em(y) over y is equal to the
minimum value of Eb(x) over x:

min
x

Eb(x) = min
y

Em(y). (8)
The energy functions need not be equal at labellings
that are not their respective minima.

We also want to answer the following questions:
1. What is the class of multi-label higher order functions

for which we will always be able to find an equivalent
F2

s function? We characterize the class by finding the
constraints on the potentials Θ of the function.

2. How can the boolean function with the smallest num-
ber of variables be obtained?

Before we present our algorithm in detail we mention the
three important steps in our algorithm.

1. A second order pseudo-boolean function is constructed
which enforces 1-1 mapping between the feasible la-
bellings of y and x (See §4).

2. Encoding functions that can replace all occurrences of
y in Em(y) using x are computed (See §5).

3. We transform the problem of minimizing the multi-
label energy function into that of minimizing a F2

s

function (See §5).
For simplicity, we demonstrate our method on a specific

4-label energy function. The algorithm is presented as an
interplay between graph constructions and transformation
of energy functions. As studied in §2.1 both operations are
closely related. In what follows we will explain the different
steps of our algorithm in detail.

4. Boolean encoding for multi-label variables
In this section we propose a method to construct a sec-

ond order pseudo-boolean function such that the labellings
of the boolean variables have a 1-1 mapping with the la-
bellings of the original multi-label variables. For example,
in figure 2(a) we show a graph construction2 to encode a 4-
label variable y1 using three boolean variables {x1, x2, x3}.
The encoding representing the change of variables is:

{y1 = 1} ↔ {x1 = 1, x2 = 1, x3 = 1}, (9)

{y1 = 2} ↔ {x1 = 0, x2 = 1, x3 = 1}, (10)

{y1 = 3} ↔ {x1 = 0, x2 = 0, x3 = 1}, (11)

{y1 = 4} ↔ {x1 = 0, x2 = 0, x3 = 0}. (12)

2This is commonly referred to as the battleship construction.



(a) (b)

Figure 2. (a) The battleship transformation [10, 25, 26]: The cuts
in the graph are annotated by green arrows. Four possible cuts
are shown and each cut corresponds to the assignment of one of
the four labels to y1. For example, if the edge (x1, x2) is cut then
the labelling for x1x2x3 is 011 and the corresponding labelling
for y1 is 2. Overall, the four labels of a multi-label variable y1 =
{1, 2, 3, 4} are mapped to the labellings of three binary variables
x1x2x3 = {111, 011, 001, 000}. (b) The log transformation: The
four labels of y1 = {1, 2, 3, 4} are mapped to the labellings (cuts)
of two binary variables x1x2 = {11, 10, 01, 00}.

Since three binary variables can take eight (23) different
labellings, the remaining four labellings (23 − 4) are not
mapped to any labellings of y1. In order to ensure a bijective
encoding between the binary variables and the multi-label
variable, these labellings need to be made infeasible. This
can be achieved by assigning a very high cost to the unused
labellings. In the above encoding the unused labellings are
given by x1x2x3 = {010, 101, 100, 110}. Thus we can use
the following penalty term:

P (x) = λ(x̄1x2x̄3 + x1x̄2x3 + x1x̄2x̄3 + x1x2x̄3), (13)

where λ → ∞. This can also be seen as using the following
third order penalty function:


φ123;000 φ123;001

φ123;010 φ123;011

φ123;100 φ123;101

φ123;110 φ123;111


 =




0 0
∞ 0
∞ ∞
∞ 0


 . (14)

The above function is submodular and has four (23 − 4)
penalty terms to restrict the infeasible labellings. The
penalty function in equation (13) can be simplified to:

P (x) = λx1x̄2 + λx2x̄3, (15)

using simple boolean algebra. The pairwise terms of P (x)
correspond to the edges (x2, x1) and (x3, x2) with infinity
costs3.

A natural question to ask would be whether a different
encoding is possible for a 4-label problem. To address this
question we consider figure 2(b), where two boolean vari-
ables are used to encode a 4-label problem. We refer to
this graph construction as the log transformation since it
uses log(l) boolean nodes to encode an l-label variable. We
present the generalization of this framework for solving any

3In practice, we do not need an edge with infinite cost, but some edge
having a cost greater than the sum of all edge costs.

l label problem using k nodes, along with few examples for
different transformations, in [18]. For simplicity, we chose
a specific transformation to describe our algorithm. So from
this point onwards, we will propose algorithms which are
very specific to the battleship transformation shown in fig-
ure 2(a). This transformation can handle the most general
class of energy functions. The proof is involved and can be
found in [18].

5. Encoding Functions
Our overall goal is to transform a given multi-label

higher order energy function into a boolean one. To do this,
we need to define a boolean function which maps the labels
of the multi-label variable to that of the encoding boolean
variables. We refer to these functions as encoding functions.
They enable us to replace multi-label variables in the en-
ergy function by boolean ones. More precisely, an encoding
function is defined as fy1;a(x1, x2, x3) : B

3 → B such that
fy1;a(x1, x2, x3) = 1 when y1 = a and 0 otherwise. We
show a general method to compute these functions in [18].
The following example is shown to illustrate the main idea.

Let us assume that the function fy1;a(x1, x2, x3) is lin-
ear4. We assume the following representation for the linear
function using four unknown parameters c0, c1, c2, and c3:

fy1;a = c0 + c1x1 + c2x2 + c3x3. (16)

Returning to our example, the possible solutions for the
triplet x1x2x3 are (111, 011, 001, 000). When y1 = 1,
x1x2x3 = 111. This can be written as fy1;1(x1 = 1, x2 =
1, x3 = 1) = 1 and fy1;1(x1, x2, x3) = 0 for other val-
ues of x1, x2 and x3. Since there are only four possible
solutions for the boolean variables x1x2x3, we obtain the
following conditions:

fy1;1(x1 = 1, x2 = 1, x3 = 1) = c0 + c1 + c2 + c3 = 1,

fy1;1(x1 = 0, x2 = 1, x3 = 1) = c0 + c2 + c3 = 0,

fy1;1(x1 = 0, x2 = 0, x3 = 1) = c0 + c3 = 0,

fy1;1(x1 = 0, x2 = 0, x3 = 0) = c0 = 0.

On solving the above linear system, we get fy1;1 = x1.
Using the same approach we solve for fy1;2, fy1;3 and fy1;4.


δ(y1, 1)
δ(y1, 2)
δ(y1, 3)
δ(y1, 4)


 =




fy1;1

fy1;2

fy1;3

fy1;4


 =




x1

x2 − x1

x3 − x2

1 − x3


 . (17)

With the encoding functions in place, we can finally ad-
dress the energy transformation problem. The main idea
is straightforward; as mentioned earlier, the encoding func-
tions are used to replace all occurrences of the multi-label
variable in the energy function by boolean variables. This

4The function fy1;a need not always be linear (See the log construction
in [18]).



substitution produces a pseudo-boolean higher order func-
tion. We study this reduction and give a characterization of
the class of multi-label higher order energy functions that
can be transformed to F2

s , and thus be minimized exactly
using graph cuts.

We first show that it is possible to transform all functions
in class Mk

s to functions in F2
s if k ≤ 2. This is not a

new result and follows from [24, 25]. We then go on to
show that it is not possible to transform all functions in Mk

s

to F2
s in polynomial time when k ≥ 4. In what follows,

we present the transformation for different classes of multi-
label functions.

The class M1
s: We now show how to transform a first or-

der energy function Em(y) involving a single 4-label vari-
able y1 to a first order boolean energy function Eb(x) in-
volving three boolean variables x = {x1, x2, x3}. Let
L = {1, 2, 3, 4}. Em(y) can be written as:

Em(y) =
∑
a∈L

Θ1;aδ(y1, a). (18)

We replace all occurrences of δ(y1, a) using the corre-
sponding boolean functions fy1;a(x1, x2, x3) given in equa-
tion (17). This results in an energy function that depends
only on x:
Eb(x) = Θ1;1x1 +Θ1;2(x2−x1)+Θ1;3(x3−x2)+Θ1;4(1−x3). (19)

Since the above energy function belongs to F1
s , all multi-

label first order functions can be minimized exactly.

The class M2
s: Let y1 and y2 be two 4-label random vari-

ables in the following second order energy function:

Em(y) =
∑

a,b∈L
Θ12;abδ(y1, a)δ(y2, b). (20)

We transform this energy into a boolean energy function
Eb(x) involving triplets (x1, x2, x3) and (x′

1, x
′
2, x

′
3) re-

placing y1 and y2 respectively. The encoding function fi;a

(given by equation (17)) is used to replace δ(yi, a) resulting
in the boolean energy:

Eb(x) =
∑

i,j∈{1,2,3}
αijxix

′
j + L1, (21)

where αij = (Θ12;ij − Θ12;(i+1)j − Θ12;i(j+1) +
Θ12;(i+1)(j+1)), and L1 stands for some first order terms.
If the coefficients of all quadratic terms in a boolean sec-
ond order energy function are non-positive, then the energy
function is submodular [6, 8]. Thus, for the above energy
function in equation (21) to be submodular, we need to en-
sure that αij ≤ 0, i.e.

Θ12;ij−Θ12;(i+1)j−Θ12;i(j+1)+Θ12;(i+1)(j+1) ≤ 0. (22)

Note that the above condition is nothing but the submodu-
larity condition for second order multi-label functions (See
equation (7)). Thus we prove that all submodular multi-
label second order functions M2

s can be transformed to F2
s .

Figure 3. The graph construction for characterizing a general kth

order multi-label energy function. The variable z is an auxiliary
node that is connected to k boolean nodes and the source with the
same edge cost α. As a result if all the k boolean nodes take the
label 0 then the cost of the cut is 0. In all other cases there is
a uniform cost of α. This can be seen as a generalization of the
graph construction given in [13].

The class M3
s: Here we focus on transforming energy

functions involving cliques of size three. Let y1, y2 and y3

be the three multi-label variables in the third order energy
function Em(y):

Em(y) =
∑
a,b,c

Θ123;abcδ(y1, a)δ(y2, b)δ(y3, c). (23)

We use three boolean triplets (x1, x2, x3), (x′
1, x

′
2, x

′
3) and

(x′′
1 , x′′

2 , x′′
3 ) to encode y1, y2 and y3 respectively. After

replacing δ(yi, a) with fi;a and applying algebraic transfor-
mations we can rewrite the energy function using boolean
variables as:

Eb(x) =
∑

i,j,k∈{1,2,3}
αijkxix

′
jx

′′
k + L2, (24)

where L2 refers to second and first order terms. Similar to
previous cases, the coefficients (αijk’s) are functions of Θ.
Next, we reduce the above third order function to a second
order one. The underlying idea is to substitute a product of
variables by a new one5. In addition, appropriate penalty
terms are added to make sure that at any point of minimum,
the new variable takes the value of the product of the sub-
stituted variables. The basic idea of this reduction is similar
to the one shown in [6, 13]. We show additional constraints
under which it is possible to transform M3

s to F2
s in poly-

nomial time (Proof in [18]).

The class Mk
s : We now consider the problem of trans-

forming fourth or higher order functions. We will show that
not all functions in Mk

s , k ≥ 4, can be transformed to the
class F2

s in polynomial time. To prove this we need the
following lemma.

Lemma 1 The recognition of submodularity in quartic (de-
gree 4) posiforms is co-NP-complete6 [7].

5Note that this idea is different from [2, 19]
6A problem X is co-NP if and only if its complement X̄ is in NP.



In simple words, this lemma says that it is a hard prob-
lem to say whether a general posiform, involving quartic or
higher order terms, defines a submodular function or not.

We say that a transformation Tp : Fk → F2 is a preserv-
ing transformation if it satisfies the following conditions.
• If f ∈ Fk

s then T (f) ∈ F2
s .

• If f /∈ Fk
s then T (f) /∈ F2

s .

A boolean function of order k is the one that can be ex-
pressed by a multi-linear polynomial expression of degree
k in boolean variables. We say that a transformation works
in polynomial time when we can compute a second or-
der multi-linear polynomial expression for Ts(f) in O(nk)
time, where n is the number of variables.
Theorem 1 There is no preserving transformation with re-
spect to Fk (F̄k

s ∪Fk
s ) for k ≥ 4, which works in polynomial

time unless P = NP .
Proof If such a transformation exists, we can transform any
function in Fk to F2. Since submodularity can be checked
in F2 in polynomial time7, this gives a way to check
whether any function in Fk is submodular or not in polyno-
mial time, which is in contradiction with the Lemma 1.

The above theorem states that it is not possible to trans-
form all functions in Mk

s to F2
s in polynomial time. Next,

we show that it is possible to transform some functions in
Mk

s to F2
s in polynomial time.

Characterizing F2
s -transformable Mk functions: We

will now characterize some Mk functions that can be trans-
formed to F2

s function in polynomial time. The character-
ization will be specified by a set of constraints on the po-
tentials of the multi-label higher order functions. We will
refer to these constraints as ξ ≤ 0. In order to specify these
constraints, we need to explain the notion of the derivatives
of a discrete multi-label function [2, 5]. The derivative of a
kth order function Θi;a (See equation (3)) with respect to a
variable yj is given below:

∆jΘi;a =
{

Θi;a − Θi;a1...aj−1(aj−1)aj+1...ak
aj > 1,

0 aj = 1.

Recall that aj specifies the label taken by variable yj . The
derivatives can also be obtained with respect to several vari-
ables as shown below:

∆jΘi;a = ∆j1 ...∆jk
Θi;a, j1, ..., jk ∈ j. (25)

The constraints ξ ≤ 0 that will enable us to transform Mk
s

functions to F2
s functions are:

∆jΘi;a ≤ 0, j ⊆ i, |j| ≥ 2. (26)

The proof for this claim is presented in [18]. For illustrative
purposes we now present the graph construction for func-
tions belonging to a subclass of the Mk

s family. The func-
tions belonging to this subclass have the form:

7The recognition of submodularity in F2 can be done in polynomial
time by checking the coefficients of the quadratic terms [8].

Θk;i =
{

α ∃i ∈ i : yi < li,
0 otherwise.

(27)

The corresponding graph construction is shown in figure 3.
We connect a set of encoding variables to an auxiliary node
z, and connect z to the source node s with edges having the
same cost α. It is important to observe the functionality of
z: for a group of variables yj , j ∈ i, if any variable yi takes a
label less than a specified label li there is a penalty of α. Our
method can automatically find the required auxiliary nodes
and various edge costs for the graph needed to minimize
any Mk

s -function that satisfy constraints (26). It is possible
to characterize a relatively larger class of functions using
different costs for edges connecting the auxiliary variable,
as given in the following lemma.

Lemma 2 For any natural m > 2 and a > 0 the
boolean polynomial P (x1, x2, ...xn) = ax1x2...xm −
a

∑
1≤i≤j≤m xixj is graph representable.

More details including the exact procedure for such graph
representations are given in [30]. As a result, a given
higher order multi-label function that can be transformed
to a boolean one, which satisfies lemma 2, is also graph
representable. Note that such a function does not satisfy
equation (26).

5.1. Non-submodular problems
The above transformations succeed when the origi-

nal multi-label problem satisfies the necessary conditions
shown in the previous section. For problems that do not sat-
isfy these constraints we use an alternative two-step trans-
formation procedure. First we use the encoding functions to
transform the multi-label higher order function to a boolean
higher-order one. We then use the reduction techniques [19]
to reduce higher order functions to second order ones8.
Note that these reduction techniques do not preserve sub-
modularity. The resulting class of non-submodular func-
tions F̄2

s can be minimized using QPBO [21] or trunca-
tion [22], which are approximate and are not guaranteed to
give the global optimum.

6. Application: Single View Reconstruction
We now show how the higher order functions character-

ized in the previous section can be used to improve single
view reconstruction results. Given a 2D image of a scene,
the goal is to recover a theatre stage representation con-
taining major surfaces and their geometrical relationships to
each other. Hoiem et al. [9] formulated this as a classifica-
tion problem where every pixel in the image is assigned one
of the three labels, namely, support (surfaces that lie paral-
lel to the ground plane), vertical (surfaces that rise from the
ground plane), and sky. They obtained impressive results
by learning appearance based models of the three classes.

8The minimization of a pseudo-boolean function of any degree can al-
ways be reduced in polynomial time to the minimization of a quadratic
pseudo-boolean function (second order) [19].



(a) (b)

(c)

Figure 4. (a) Original image. (b) Triplets of vertically aligned su-
perpixels are chosen from the superpixel segmented images. The
labellings for individual triplet combinations are studied from sev-
eral ground truth images. Negative log-likelihoods are computed
for each of these triplets and used as third order priors in the la-
belling problem, formulated as an energy minimization task. (c)
The three columns, from left to right, show the unary likelihood
images of ground, vertical and sky respectively.
Their method works as follows. The given image is first seg-
mented into superpixels [4] (see second column of figure 5),
which provide spatial support for computing features like
texture filter responses and vanishing points. Using boosted
decision tree classifiers, geometrical likelihoods are com-
puted for individual superpixels (cf. figure 4). The final ge-
ometrical labelling is achieved using these likelihoods along
with pairwise smoothness priors in an energy minimization
framework.

In this work we focus on improving the results in [9]
using priors obtained from natural statistics. Such pri-
ors can only be imposed through CRFs with higher order
cliques [14, 20]. We formulate the single view 3D re-
construction problem as a MAP estimation problem in a
Bayesian framework. The superpixels extracted from the
image act as nodes (variables) in a higher order CRF. The
most probable labelling of the superpixels is found by min-
imizing an equivalent energy function. We minimize a third
order three-label energy function, where the three labels for
each superpixel correspond to ground, vertical and sky.

The unary likelihoods θi;a of the energy function are
computed using boosted decision tree classifiers9. Moti-
vated by the work of [28], we compute the second and
third order energy terms using natural statistics. Yang and
Purves [28] study the distribution of geometrical features
like size, shape and depth of planar surfaces, from a large
training database. Using a similar approach, the second
order terms are computed by learning the statistics of all
neighbouring superpixel pairs in the training dataset.

As the images are generally taken by people standing
on the ground, with the optical axis approximately parallel
to the ground, there is a natural ordering of the superpix-

9http://www.cs.cmu.edu/∼dhoiem/projects/software.html

Image Results of [9] Our method

street 20.78 5.82
highway 19.47 7.32
buildings 31.94 13.36

road 18.52 10.82
college 29.47 13.26

Table 1. Percentage misclassifications.
els labels in the vertical direction. To capture this order-
ing, we study the distribution of the labelling of vertically-
aligned superpixel triplets from several groundtruth labelled
images. These statistics, in the form of negative log likeli-
hoods, are shown in figure 4(b). The likelihoods are di-
rectly used as the higher order potential θijk;abc in the en-
ergy function. As an example, to see the effectiveness of
natural statistics, consider the cost of the triplet labelling
[Top:Ground, Middle:Vertical, Bottom:Sky] from the fig-
ure. Given the label ordering, this configuration is unlikely
to occur naturally, and thus has a high cost. We use our al-
gorithm explained in §5 to construct the equivalent boolean
graph. A simple truncation method is used to remove the
negative edges in the graph [22].

We observed significant improvement over the results
of [9], as shown in figure 5. The labelling accuracy is sum-
marized in table 1. The accuracy is reported in terms of the
misclassification of individual pixels in the image. In fig-
ure 5 we show the original image, superpixel segmentation,
results using only pairwise clique potentials, and our results
using higher order clique potentials.

Higher order clique potentials are useful for the single
view reconstruction problem for several reasons. In the
street image shown in the first row of figure 5, the ground
between the two buildings is incorrectly labelled as vertical,
when only pairwise smoothness prior is used. On the other
hand, the usage of higher order priors results in the correct
labelling. The major advantage comes from the ability to
impose priors based on natural statistics. For example, in
the second row of figure 5, unary potentials favour the la-
belling sky for the van due to its high similarity to the ‘sky’
region. However, our method using priors learned from nat-
ural statistics obtains the correct labelling.

7. Discussion
Submodular functions: Development of global mini-
mization algorithms is very important because researchers
very often use heuristic methods for optimization, even for
problems where exact ones exist. Our transformations can
be used for vision problems such as stereo [10], panoramic
stitching [15], and image restoration. Recently, the transfor-
mation proposed by [10] was used to develop a new move
algorithm [26]. Similar techniques can be produced for the
transformations proposed in this paper.
Non-submodular functions: Most vision problems are
non-submodular in practice. Given a non-submodular sec-
ond order boolean energy function, recent works using



Figure 5. Original image, superpixel segmentation, ground truth
labelling, results from [9] and our results are shown (left to right).
Street, highway, buildings and road are the images in rows 1 to 4
respectively. (Best viewed in colour)

QPBO techniques [2, 21] compute global optimum for a par-
tial set of variables, and use an approximation algorithm for
the rest. Our framework can transform any higher order
multi-label function, which can also be learned using fields
of experts model [20], to a boolean second order function,
and if the resulting second order boolean energy function is
non-submodular we can use QPBO techniques. We believe
that our algorithm can be used to obtain better solutions for
vision problems such as stereo, image restoration and image
inpainting where the higher order priors are learned through
models like fields of experts [20].
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