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Abstract
In this paper, we present novel techniques that improve

the computational and memory efficiency of algorithms for
solving multi-label energy functions arising from discrete
MRFs or CRFs. These methods are motivated by the ob-
servations that the performance of minimization algorithms
depends on: (a) the initialization used for the primal and
dual variables; and (b) the number of primal variables in-
volved in the energy function. Our first method (dynamic α-
expansion) works by ‘recycling’ results from previous prob-
lem instances. The second method simplifies the energy
function by ‘reducing’ the number of unknown variables,
and can also be used to generate a good initialization for
the dynamic α-expansion algorithm by ‘reusing’ dual vari-
ables.

We test the performance of our methods on energy func-
tions encountered in the problems of stereo matching, and
colour and object based segmentation. Experimental results
show that our methods achieve a substantial improvement
in the performance of α-expansion, as well as other popu-
lar algorithms such as sequential tree-reweighted message
passing, and max-product belief propagation. In most cases
we achieve a 10-15 times speed-up in the computation time.
Our modified α-expansion algorithm provides similar per-
formance to Fast-PD [15]. However, it is much simpler and
can be made orders of magnitude faster by using the initial-
ization schemes proposed in the paper. †

1. Introduction
Many problems in computer vision such as image

segmentation, stereo matching, image restoration, and
panoramic stitching involve inferring the maximum a poste-
riori (MAP) solution of a probability distribution defined by
a discrete MRF or CRF [4, 19, 23]. The MAP solution can be
found by minimizing an energy or cost function. In the last
few years, driven by its applicability, energy minimization
has become a very active area of research [23]. Although,
minimizing a general MRF energy function is an NP-hard
problem [13], there exist a number of powerful algorithms
which compute the exact solution for a particular family of
energy functions in polynomial time. For instance, max-
product (min-sum) belief propagation exactly minimizes
energy functions defined over graphs with no loops [5].
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Similarly, certain submodular energy functions can be min-
imized by solving an st-mincut problem [3, 6, 7, 13].

Efficient algorithms have also been proposed for func-
tions which do not fall under the above classes [4, 11, 24].
Expansion and swap move making algorithms, sequential
tree-reweighted message passing, and belief propagation
are examples of popular methods for solving these func-
tions. They have been shown to give excellent results on
discrete MRFs typically used in computer vision [4, 23].
However, these algorithms can take a considerable amount
of time to solve problems which involve a large number of
variables. As computer vision moves towards the era of
large videos and gigapixel images, computational efficiency
is becoming increasingly important. The last few years have
seen a lot of attention being devoted to increasing the per-
formance of minimization algorithms.

We make two main contributions to improve the effi-
ciency of energy minimization algorithms. Our first con-
tribution is a method which works by reusing results from
previous problem instances, providing a simpler alternative
to the recent work of [15] on dynamic energy minimization.
Our second contribution is a method which simplifies the
energy function by reducing the number of variables. Fur-
ther, it can also be used to speed-up the inference of the
optimal values of the remaining variables.

Recycling Solutions: Our first method is inspired by the
dynamic computation paradigm [8, 10, 15]. It improves the
performance of the α-expansion algorithm by reusing re-
sults from previous problem instances. The idea of dynamic
computation has been used in the recent work of [8, 10]
on minimizing submodular energy functions. In particu-
lar, [10] showed how flow can be reused in maxflow algo-
rithms, and [8] showed how cuts (or previous labelling) can
be reused. However, these methods are only applicable for
the special case of dynamic MRFs1 that are characterized
by submodular energy functions. Our work extends these
methods to non-submodular multi-label energy functions.
It is most similar to the interesting work of Komodakis et
al. [15] on the Fast-PD algorithm, which generalizes the
work of [10]. Fast-PD works by solving the energy min-
imization problem by a series of graph cut computations.
This process is made efficient by reusing the primal and
dual solutions of the linear programming (LP) relaxation of
the energy minimization problem, achieving a substantial
improvement in the running time. Our modified dynamic

1MRFs that vary over time [8, 10].
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α-expansion algorithm is conceptually much simpler and
easier to implement than Fast-PD whilst giving similar per-
formance. Our method of initializing the α-expansion algo-
rithm can make both methods orders of magnitude faster.

Simplifying energy functions using partially optimal so-
lutions: Most discrete MRFs encountered in computer vi-
sion problems are composed of easy and difficult compo-
nents [12, 16]. The globally optimal labels for variables
constituting the easy component of the MRF energy func-
tion can be found in a few iterations of the minimization al-
gorithm, while those of the difficult part typically cannot be
found in polynomial time. Energy minimization algorithms
generally do not take advantage of this decomposition, and
process all the random variables in every iteration.

We propose a novel strategy which solves a given dis-
crete MRF in two phases. In the first phase a partially opti-
mal solution of the energy function is computed [1, 12, 16].
In such solutions, not all variables are assigned a label.
However, the set of variables which are assigned a label, are
guaranteed to take the same labelling in at least one of the
optimal solutions of the energy function. This is referred
to as the property of partial optimality. Using the partial
solutions to fix values of these variables results in a projec-
tion (cf. section 2) of the original energy function [13]. In
the second phase we minimize this simplified energy which
depends on fewer variables, and is easier and faster to min-
imize compared to the original energy function. We also
show how to achieve a substantial speed-up in the mini-
mization of the simplified energy by initializing the corre-
sponding dual variables based on the algorithm for estab-
lishing a partially optimal solution.
Outline of the Paper: In section 2, we provide the no-
tation and definitions. Algorithms for approximate energy
minimization [4, 12] and partially optimal solutions [1, 16]
are briefly described in the same section. In section 3,
we present methods to improve the running time of algo-
rithms for minimizing multi-label energy functions. Sec-
tion 4 compares the performance of our methods on the
problems of colour and object based segmentation [2, 22],
and stereo matching [23]. Summary and discussion are pro-
vided in section 5.

2. Preliminaries
The notation and basic definitions relevant to our work

are provided here. Consider a set of random variables
X = {X1, X2, . . . , Xn}, where each variable Xi ∈ X
takes a value from the label set L = {l1, l2, . . . , lk}. A la-
belling x refers to any possible assignment of labels to the
random variables and takes values from the set Ln. The la-
bel set corresponds to disparities in the case of stereo match-
ing problem, and segments in the case of the segmentation
problem.

An energy function E : Ln → R maps any labelling
x ∈ Ln to a real numberE(x) called its energy or cost. En-

ergy functions are the negative logarithm of the posterior
probability distribution of the labelling. Maximizing the
posterior probability is equivalent to minimizing the energy
function and leads to the MAP solution, which is defined as
xmap = argminx∈LE(x).

Energy functions typically used in computer vision can
be decomposed into a sum over unary (φi) and pairwise
(φij) potential functions as:

E(x) =
∑
i∈V

φi(xi) +
∑

(i,j)∈E
φij(xi, xj), (1)

where V is the set of all random variables and E is the set
of all pairs of interacting variables. However, see [9] for
potential functions with three or more interacting variables.
The unary potential φi(xi) represents the cost of the assign-
ment: Xi = xi, while the pairwise potential φij(xi, xj)
represents that of the assignment: Xi = xi and Xj = xj .
Energy Projection: A projection of any function f(.) is a
function fp obtained by fixing the values of some of the ar-
guments of f(.). For instance, fixing the value of t variables
of the energy functionE : Ln → R produces the projection
Ep : Ln−t → R.
Energy Reparameterization: Energy functions E1 and
E2 are called reparameterizations of each other if and only
if ∀x, E1(x) = E2(x) [1, 11]. Note that this simply means
that all possible labellings x have the same energy under
both functions E1 and E2, and does not imply that E1 and
E2 are composed of the same potential functions.
Submodular Functions: Submodular functions are dis-
crete analogues of convex functions. They are particularly
important because they can be minimized in polynomial
time [1]. Given an ordering over the label set L, a func-
tion f(.) is submodular if all its projections on two variables
satisfy the constraint:
fp(a, b)+fp(a+1, b+1) ≤ fp(a, b+1)+fp(a+1, b), (2)

for all a, b ∈ L. Kolmogorov and Zabih [13] showed that
all submodular functions of binary variables which can be
decomposed into potential functions with at most three vari-
ables as arguments can be minimized exactly by solving
an st-mincut problem. Later, Ishikawa [7], Zalesky [25],
Schlesinger and Flach [21] provided solutions for the multi-
label case.

Most multi-label energy functions encountered in com-
puter vision do not satisfy the constraint (2) and thus are
not submodular. For instance, it can be clearly seen that the
Potts model potential ψ defined as:

ψij(xi, xj) =
{

0 if xi = xj ,
γ otherwise,

(3)

does not satisfy the constraint (2). For example, choosing
a = k and b = k + 1 in (2) violates the constraint.

A number of algorithms have been proposed to effi-
ciently find approximate or partially optimal solutions of
these energy functions [1, 4, 12, 16, 24]. Our techniques
to improve the computational efficiency are based on these
algorithms.



2.1. Approximate Energy Minimization
We now give a brief summary of popular and commonly

used algorithms for approximate energy minimization.
Move making algorithms: The α-expansion and αβ-
swap algorithms are widely used for approximate energy
minimization [4, 23]. These algorithms work by starting
from an initial labelling x and making a series of moves
(label changes) which lower the energy iteratively. Con-
vergence is achieved when the energy cannot be decreased
further. An optimal move (one that decreases the energy of
the labelling by the most amount) is made at every step.

An α-expansion move allows a random variable to either
retain its current label or take a label α. One iteration of the
algorithm involves performing expansions for all α ∈ L in
some order successively. An αβ-swap move allows a ran-
dom variable whose current label is α or β to either take
a label α or β. One iteration of the algorithm involves per-
forming swap moves for all pairs of labels α, β ∈ L in some
order successively.
Message passing algorithms: These algorithms work by
passing messages between nodes representing the different
random variables of the model. Max-product belief prop-
agation (BP) is a popular and well-known message passing
algorithm for MAP inference [18]. Other message passing
algorithms have also been proposed. Tree-reweighted mes-
sage passing (TRW), which is motivated from the problem
of maximizing a lower bound on the energy [11, 24], and
dual decomposition [14] are a few examples.

2.2. Computing Partially Optimal Solutions
Some algorithms for minimization of non-submodular

functions return a partial solution x ∈ (L ∪ {ε})n of the
energy. The assignment xi = ε implies that no label has
been assigned to random variable Xi. For instance, the
QPBO algorithm [1, 12] for minimizing energy functions of
binary variables returns a partially labelled solution x with
the property that there exists a global minimum x∗ of the
energy function such that xp = x∗p for all variables Xp that
are labelled, i.e. xp �= ε. This property of a partial solution
is called weak persistency. There are certain partial solu-
tions of the energy for which a stronger condition called
strong persistency holds true. This property states that if a
variable Xp is labelled, then it is assigned the same label
in all global minima x∗ of the energy, i.e. xp = x∗p for all
x∗ ∈ {argminxE(x)}.

3. Efficient Energy Minimization
We now present methods to improve the performance of

algorithms for minimizing multi-label MRFs. For brevity,
we explain the working of these techniques in the context
of the α-expansion algorithm. However, our methods are
general and are applicable to all popular algorithms such as
αβ-swap, BP and TRW-S (sequential TRW). Experimental
results using all these algorithms are presented in the latter
sections.

The techniques proposed in this paper are inspired from
the observations that the computation time of energy mini-
mization algorithms primarily depends on (a) the initializa-
tion used, and (b) the number of variables involved in the
energy function. Thus, our primary goals are:

1. To generate a good initialization for the current prob-
lem instance which results in a reduction in the amount
of computation required for solving the problem.

2. To reduce the number of variables involved in the en-
ergy function in an efficient manner.

3.1. Recycling Primal and Dual Solutions
We achieve our first goal of obtaining a good initializa-

tion by reusing results from previous problem instances. We
now explain the dynamic α-expansion algorithm. As dis-
cussed earlier, the α-expansion algorithm works by making
a series of changes to the current solution to decrease its en-
ergy. A set of changes is called a move. In one iteration of
the algorithm, it makes moves with respect to each label ‘α’
(∈ L). It finds the optimal changes to be made (or move)
by minimizing a binary energy function using the st-mincut
algorithm. The binary energy function corresponding to a
particular ‘α’ move will be denoted by Eα(xα). It is de-
fined as:

Eα(xα) =
∑
i∈V

φα
i (xα

i ) +
∑

(i,j)∈E
φα

ij(x
α
i , x

α
j ), (4)

where xα
i , x

α
j ∈ {0, 1}. The unary potential φα

i (xα
i ) is

given by:

φα
i (xα

i ) =
{
φi(xi = α) if xα

i = 0,
φi(xi = ᾱ) if xα

i = 1,
(5)

where ᾱ is the current label assignment for Xi. The pair-
wise potentials are defined as:

φα
ij(x

α
i , x

α
j ) =




0 if xα
i = 0, xα

j = 0,
γ(1 − δ(xi − xj)) if xα

i = 1, xα
j = 1,

γ otherwise,
(6)

where δ(xi − xj) = 1, if xi = xj , and 0 otherwise.
The above function is pairwise and submodular, if the

energy is metric [4]. The problem of minimizing any such
function is equivalent to finding the st-mincut in a particular
graph. The st-mincut is found by solving the dual problem
of maxflow on the same graph. Thus, the primal solution
of the above defined problem corresponds to the labels as-
signed to each variable xα

i , while the dual solution corre-
sponds to the feasible flow solution of the maxflow prob-
lem.
Reusing Flow across Iterations: When solving an ex-
pansion move in a particular iteration, we reuse the flow
from the corresponding move in the previous iteration to
make the new computation faster. In the first iteration of the
algorithm, we build one graph G1

i , i = 1, . . . , k, for each
label expansion. The optimal expansion move for a given
label li is computed by solving the st-mincut/maxflow prob-
lem on the graph G1

i . Maxflow problems corresponding to



all the labels are solved just as in standard α-expansion. In
iterations u > 1 of the algorithm, instead of creating a new
graphGu

i for a label expansion, we dynamically update [10]
the corresponding graph Gu−1

i from the previous iteration.
This step involves updating the flows and the residual edge
capacities. After these update operations, the maxflow al-
gorithm is performed on the residual graph. As the number
of changes in the graphs decrease in the latter iterations,
the number of update and maxflow computations decrease.
Hence, the optimal moves in these iterations are computed
efficiently.

For large problems, i.e. when the number of labels, k, or
the number of pixels, n, is very large, maintaining multiple
dual solutions may not be viable due to memory require-
ments. We overcome this issue by working with a projected
energy function obtained from a partially optimal solution
(cf. section 3.2). Thus our method is not only time-efficient
but also memory-efficient. The recycle scheme for single
MRFs is summarized as follows:

1. Construct graphs G1
i , i = 1, . . . , k, in the first itera-

tion.
2. Compute the maxflow solutions to get the optimal

moves.
3. For iterations u > 1,

• Update graphs from iteration u− 1.
• Compute the new maxflow solutions for the

residual graphs.

Efficiently Solving Dynamic MRFs: For Dynamic
MRFs [10], the task is to solve a problem where the data
changes from one problem instance to the next. For in-
stance, this occurs when solving a labelling problem on
the image frames of a video sequence. The conventional
method to solve such a problem is to use the standard α-
expansion algorithm on each problem instance (e.g. each
time instance) independently. This method is inefficient and
would require a lot of computation time. Our method works
by using both the primal and dual solutions. The primal so-
lution is generated by reusing the labelling of the previous
problem instance. Intuitively, if the data changes minimally
from one problem instance to the next, the solution of a par-
ticular problem instance provides a good initialization for
the subsequent instance.

Consider a labelling problem defined on a video se-
quence. The first frame in the video sequence is labelled
using the single MRF method described above. The pri-
mal and dual solutions thus obtained are used to initial-
ize the maxflow/st-mincut problems for the next frame.
The labelling (primal solution) of a frame t is initialized
with the solution obtained for frame t − 1. The graphs
G1

i (t), i = 1, . . . , k, corresponding to the first iteration for
frame t are obtained by dynamically updating [10] the
graphs from the last iteration for frame t − 1. With these
initializations the maxflow problem for each label is solved
as in the single MRF case. In summary,

1. Solve frame 1 as a ‘single MRF’.
2. For all frames t > 1,

• Initialize the labelling (primal) using the solution
of frame t− 1.

• Initialize the graph flow (dual) from the corre-
sponding solutions for frame t− 1.

• Solve as a ‘single MRF’.

These techniques for α-expansion provide similar speed-
ups as the Fast-PD algorithm as shown in Section 4.1.

3.2. Reducing Energy Functions
We now propose a method to simplify (reduce the num-

ber of unknown variables in) the MRF by solving the easy
part. We also show how computations performed during
this procedure can be used to efficiently initialize the dy-
namic α-expansion algorithm described in the previous sec-
tion.

As discussed earlier, there are many algorithms for ob-
taining partially optimal solutions of non-submodular en-
ergy functions. We chose to use the algorithm recently pro-
posed by Kovtun [16] because of its efficiency. The key step
of this algorithm is the construction of k auxiliary problems
Pm, one for each label lm ∈ L. Kovtun showed that the
solution of problem Pm could be used to find variables that
have the persistency property (as described in § 2.2). Thus,
by solving all subproblems Pm, ∀lm ∈ L, a partial solution
which satisfies strong persistency can be obtained.

Specifically, problem Pm is the minimization of the fol-
lowing binary energy function

Em(xm) =
∑
i∈V

φm
i (xm

i ) +
∑

(i,j)∈E
φm

ij (xm
i , x

m
j ), (7)

where xm
i , x

m
j ∈ {0, 1}. The unary potential φm

i (xm
i ) is

given by:

φm
i (xm

i ) =
{
φi(xi = lm) if xm

i = 0,
φi(xi = lmin) if xm

i = 1,
(8)

where lmin = arg minl∈L−{lm} φi(xi = l). For the case of
Potts model, the pairwise potentials are defined as2:

φm
ij (xm

i , x
m
j ) =




0 if xm
i = 0, xm

j = 0,
0 if xm

i = 1, xm
j = 1,

γ otherwise.
(9)

Em(xm) defines a submodular energy function and can be
minimized by solving an st-mincut problem. Let xm∗ de-
note the optimal solution of the subproblemPm. We extract
a partially optimal solution x ∈ (L ∪ {ε})n of the multi-
label function E(x) as:

xi =
{
lm if xm

i = 0,
ε otherwise.

(10)

We repeat this process for all the labels lm ∈ L, and merge
the solutions to obtain the final partially optimal solution of
the original energy function E(x).

2Although the algorithm proposed in [16] only handles Potts model
energies, it can be easily extended to general energy functions [17].



1. Cow 2. Garden 3. Tsukuba 4. Venus 5. Cones 6. Teddy 7. Plane 8. Bikes 9. Road 10. Building 11. Car

Figure 1. Some of the images used in our experiments. 1-2 Colour-based segmentation problems with 4 labels each. 3-6 Stereo matching
problems with 16, 20, 60, 60 labels respectively. 7-11 Object-based segmentation problems with 4, 5, 5, 7, 8 labels respectively.

To make this procedure computationally efficient, we
project the energy function after every subproblem compu-
tation. This involves fixing values of all variables whose
optimal labels have already been extracted from the solu-
tion of previous subproblem Pm. This reduces the number
of unknown variables in the multi-label energy function and
makes the computation of subsequent auxiliary problems
faster. Our hope is that after solving all auxiliary problems,
we would be left with a projection of the original energy
function which involves far fewer variables compared to the
original function E(x). The experiments described in the
next section on MRFs commonly encountered in computer
vision confirm this behaviour.

The energy function projection obtained from the proce-
dure described above corresponds to the difficult component
of the energy function. It depends on the variables whose
optimal labels were not found. The original problem is now
reduced to finding the labels of these variables. This can
be done using any algorithm for approximate energy min-
imization. Results of this method are shown in Figure 3.
Next, we show how this process can be made efficient by
reusing the solutions of subproblems solved during the par-
tial optimality algorithm. Again, we will describe our tech-
nique using the α-expansion algorithm.

Reusing solutions from the partial optimality algorithm
Next we explain how to achieve computational efficiency
for solving the difficult part of the MRF. From equations
(4) and (7), it can be seen that the energy functions corre-
sponding to the subproblems of the partial optimality and
α-expansion algorithms have the same form. Thus we can
reuse the solutions of the partial optimality subproblems
to make the computation of the α-expansion moves faster.
Specifically, we use the dual (flow) solutions of the partial
optimality problems to generate an initialization for the ex-
pansion moves of the first iteration of the α-expansion algo-
rithm (in a manner similar to that described in the previous
section).

The speed-up obtained depends on the similarity of the
two problems [10, 15]. Thus, by making the subproblems
of the partial optimality and α-expansion algorithms sim-
ilar, we can improve the running time. We note that for
unassigned labels we have some choice as to their initial-
ization, and a natural question arises as to whether any
particular initialization is better. Consider the expansion
and partial optimality subproblems with respect to a label
α ∈ L, i.e. lm = α in equation (8). From equations (5)
and (8) it can be seen that the unary potentials of the par-

tial optimality and α-expansion subproblems are identical
if ᾱ = lmin. This can be done by initializing the labelling
for the α-expansion algorithm by setting xi = lmin, where
lmin = argminl∈L φ(xi = l). The pairwise potentials may
differ at most by the constant γ for the case xα

i = 1, xα
j = 1

(cf. equations (6) and (9)). This change makes the two prob-
lems similar and as shown in the experimental results in
Figure 4 results in a speed-up in running time.
Our method is summarized as follows:

1. Compute the partially optimal solution and project the
energy function. (Reduce)

2. To label the remaining nodes using α-expansion,

• Initialize the labelling of each node i to lmin,
where lmin = argminl∈L φi(xi = l).

• Update the residual graphs from the k auxil-
iary problems to construct graphs for the first α-
expansion iteration. (Reuse)

• Restart the maxflow algorithms to compute opti-
mal moves, using flow recycling between expan-
sion moves. (Recycle)

4. Experiments
We evaluated our methods on a variety of multi-label

MRF problems such as stereo matching [4], colour [2] and
object [22] based segmentation. The details of the unary
and pairwise potentials of the energy functions used for for-
mulating these problems are given below.

Colour-based Segmentation: For the colour-based seg-
mentation problem, we used the energy function defined
in [2]. The unary potential functions φi(xi), i ∈ V are de-
fined using the RGB distributions Ha, a = l1, . . . , lk, of the
k segments as follows:

φi(xi) = − log p(xi = a|Ha), (11)

The distributions Ha are obtained using user specified con-
straints. The pairwise potentials encourage contiguous seg-
ments while preserving the image edges [2], and take the
form of a Generalized Potts model defined as:

φij(xi, xj) =

{
λ1 + λ2 exp(−g2(i,j)

2σ2 ) 1

dist(i,j) if xi �= xj ,

0 if xi = xj ,
(12)

where λ1, λ2 and σ are parameters of the model. The terms
g(i, j) and dist(i, j) give the difference in the RGB values
and the spatial distance respectively between pixels i and
j. We use the following parameter values for all our exper-
iments with this energy function: λ1 = 5, λ2 = 100 and
σ = 5. Segmentation results are shown on the well-known
garden image and a cow image used in [8, 10].
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Figure 2. Reusing primal and dual solutions for (a), (b) single and (c) dynamic MRF problems: Comparison of run-times of standard
and dynamic versions of α-expansion, and Fast-PD are shown for (a) object-based segmentation problem: ‘Building’ image from the
TextonBoost dataset [22], (b) stereo matching problem: Tsukuba (Left image), and (c) colour-based segmentation problem: cow video
sequence [8, 10]. In (a), (b) reusing the dual solution provides a speed-up of at least 4-10 times in subsequent iterations. In some cases, the
first iteration of Fast-PD was slightly slower compared to both versions of α-expansion algorithm, but the overall computation time was
better than ‘standard’ and comparable to ‘dynamic’. For example, times for the ‘Building’ image are: Fast-PD: 0.65s, dynamic: 0.64s,
standard: 1.88s. Note that the run-times of Fast-PD and our dynamic version are very similar in (a) and (b). In (c) the dynamic version
reuses primal and dual solutions from the previous frames in the video sequence and results in 3-4 times speed-up. We also show that the
strategy of maintaining only one graph while recycling solutions (denoted by ‘1 Graph’) provides insignificant speed-up (see text).

Stereo Matching: We used the standard energy function
for stereo matching problem [16, 20]. The unary potentials
of the energy are computed using a fixed size window-based
method similar to the one used in [16]. The pairwise poten-
tials take the form of a Potts model (3). Stereo matching re-
sults are shown on “Tsukuba”, “Venus”, “Cones”, “Teddy”
images from the Middlebury stereo data set [20]. The Potts
model smoothness cost γ was set to 20 for all our experi-
ments on this energy function.

Object-based Segmentation: For this problem we used
the energy function defined in [22]. The unary potentials of
this energy are based on shape-texture, colour, and location.
They are learnt using a boosting procedure with textons and
shape filter features. The pairwise potentials take the form
of a contrast sensitive Potts model (12). The reader is re-
ferred to [22] for more details on the energy function. We
evaluated our algorithms on energy functions corresponding
to some images of the MSRC-21 database.

The following sections describe the results of primal and
dual, and partially optimal solution initializations. Stan-
dard, publicly available implementations are used for com-
parison3. All experiments were performed on a Intel Core
2 Duo, 2.4 GHz, 3GB RAM machine. Source code for the
proposed methods will be made available online.

4.1. Dynamic α-expansion
We now discuss the effect of primal and dual solu-

tion initializations on the α-expansion algorithm. Fig-
ures 2(a), 2(b) show the result of recycling the dual (flow)
solution in a single MRF on two examples. The standard
and dynamic versions take the same time in the first itera-
tion, as no flow is recycled. In the subsequent iterations, the
dynamic version provides a speed-up of 4-10 times. Sim-

3We thank the authors of TRW-S and Fast-PD for providing the original
implementation of their methods for comparison.

Figure 3. Running times for various single MRF problems: Com-
parison of the run-times (in seconds) of the standard and optimized
(opt) versions of α-expansion (α-exp), BP, TRW-S is shown. The
optimized version refers to computing the partial solution followed
by solving the energy projection with the corresponding algorithm.
The optimized versions are significantly faster in all the examples.
The speed-up obtained depends on the nature and difficulty of the
problem. The run-times shown for both BP and TRW-S versions
correspond to the first 70 iterations. The numbers in () denote the
number of labels in each problem.

ilar results were observed for other problems as well. The
approach of initializing both primal and dual solutions in a
dynamic MRF was tested on the cow video sequence [8, 10].
These run-times for a sequence of 6 images are shown in
Figure 2(c). The primal-dual initialized (dynamic) version
provides a speed-up of 3-4 times. In the case of dynamic
MRFs, we observed that using only primal or only dual ini-
tializations provides a very small improvement in computa-
tion time. The graphs also compare the dynamic methods
with Fast-PD [15]. Note that our methods resulted in very
similar run-times compared to Fast-PD.

We also tested a simple of way of using the flow/cut from
the solution of the previous expansion move (i.e. with a dif-
ferent label) as an initialization for the current move. From
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Figure 4. (a) The percentage of nodes labelled by the partially op-
timal solution algorithm by varying the smoothness cost for two
energy functions. The Tsukuba stereo matching problem with en-
ergy functions given in [16] (Energy 1) and [23] (Energy 2) is
used as the example here. For the smoothness cost γ = 20, only
13% of the nodes are labelled in the case of ‘Energy 2’. (b) The
speed-up obtained by reusing the flows from the partially optimal
solution auxiliary problems (Par-opt) for this smoothness cost is
shown. Reusing the flows provides a run-time improvement of at
least 5 times in the last two iterations, and more than 2 times over-
all improvement. Note that even when the partially optimal solu-
tion algorithm fails, we obtain a significant speed-up.

equation (4) it can be observed that the energy functions
corresponding to two consecutive moves are substantially
different. Hence, this scheme provides no significant speed-
up. Figure 2 confirms this expected behaviour.

4.2. Using Partially Optimal Solutions
We now show the results of our partially optimal solution

based method (cf. §3.2) on a variety of energy minimization
algorithms for the problems defined above. Specifically,
α-expansion, BP and TRW-S are used for the experiments.
Optimized versions of BP and TRW-S refer to the compu-
tation of partially optimal solution followed by running the
corresponding algorithm on the projected energy function.
A comparison of the run-times for all these algorithms is
shown in Figure 3. It is observed that the run-time speed-up
is 10-15 times for most of the examples. In some cases (e.g.,
Cow image with 3 labels), the speed-up is more than 100
times for optimized versions of TRW-S and BP algorithms.

An analysis of the partially optimal solution algorithm
shows that in some cases very few nodes may be labelled.
One such case is when the smoothness cost γ is very high,
as shown in figure 4(a). As the smoothness cost increases,
the percentage of labelled nodes decreases and the projected
component of the energy function remains large. Thus, only
a small improvement in run-time performance is achieved.
However, our strategy of reusing the flow from the par-
tially optimal solution auxiliary problems always provides
improved performance in these cases (see Figure 4(b)).

Segmentation and stereo matching results of some of
the images used in our experiments are shown in Figure 7.
Note that even when majority of the nodes are unlabelled in
the partially optimal solution, e.g. Teddy sequence in Fig-
ure 7(c), our method provides more than 6 times speed-up.
The proposed method is not only computationally efficient,
but also provides a lower energy solution empirically in the
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Figure 5. (a) Energy of the solution and lower bound obtained
by running TRW-S algorithm on the Road image example [22].
Note that optimized TRW-S algorithm finds better energies (lower
solution energy and higher lower bound) at any given point in
time. It also finds an optima in only 0.64 seconds. Standard TRW-S

converged to this energy after 37.24 seconds. Thus, the optimized
version is more than 50 times faster. (b) Solution energies obtained
by running standard and optimized BP algorithm on the Building
image example [22]. Optimized BP refers to the computation of
partially optimal solution followed by running the BP algorithm
on the projected energy function. It finds an energy closer to the
global optimum, while standard BP does not reach this energy even
after 30 seconds.

case of TRW-S and BP. Furthermore, the optimality of the
solutions is not compromised. Figure 5(a) compares the
energies of the solutions and lower bounds obtained using
standard and optimized versions of TRW-S. The optimized
version using the energy function projection converges to
the global optima of the energy in only 0.64 seconds. Fig-
ure 5(b) compares the energies of the solution obtained us-
ing the standard and optimized BP algorithms. Optimized
BP converges to a low energy (although not the global op-
tima), in 0.85 seconds, while standard BP converges to a
much higher energy in 11.12 seconds. The solutions corre-
sponding to these energies are shown in Figure 6.

5. Summary
This paper proposes techniques for improving the per-

formance of algorithms for solving multi-label MRFs. As
there are no disadvantages in using them and many advan-
tages we would expect them to become standard. Our meth-
ods work by recycling solutions from previous problem in-
stances, and reducing energy functions utilizing algorithms
for generating partially optimal solutions. Our work on
reusing the dual (flow) solution for computing optimal la-
bel moves across successive iterations of the α-expansion
algorithm results in a dynamic algorithm. It can be seen as
an extension of the work of [8, 10] for minimizing multi-
label non-submodular energy functions. Experimental re-
sults show that our methods provide a substantial improve-
ment in the performance of α-expansion, TRW-S, and BP al-
gorithms. Our method also provides similar or better perfor-
mance compared to Fast-PD. We expect that our techniques
for simplifying energy functions, and the subsequent recy-
cling of computations performed during this procedure can
be used to make Fast-PD faster. This is a topic for future
research.
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Figure 6. (a) Building image [22], and (b) the global optimum so-
lution computed by the TRW-S algorithm. Solutions obtained using
(c) standard BP, (d) and optimized BP with an 8-neighbourhood.
Neither the optimized nor the standard versions converge to the
optimal solution. However, optimized BP is closer to the optima.

(a) (b) (c)

Figure 7. A sample result of object-based segmentation is shown
in (a) Plane. Some of the stereo matching results are shown in (b)
Tsukuba-Left and (c) Teddy-Left. The first row shows the origi-
nal images. The second row shows the partially optimal solution.
The regions marked in red denote the unlabelled pixels. The third
and fourth rows show α-expansion and TRW-S solutions on the
projected energy function. Our method provides more than 6×
speed-up even when majority of the nodes are unlabelled in the
Teddy example. (This figure is best viewed in colour.)
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