
Integrated Feature Selection and Higher-order Spatial Feature
Extraction for Object Categorization

David Liu1, Gang Hua2, Paul Viola2, Tsuhan Chen1

Dept. of ECE, Carnegie Mellon University1 and Microsoft Live Labs2

dliu@cmu.edu, {ganghua,viola}@microsoft.com, tsuhan@cmu.edu

Abstract

In computer vision, the bag-of-visual words image
representation has been shown to yield good results.
Recent work has shown that modeling the spatial re-
lationship between visual words further improves per-
formance. Previous work extracts higher-order spatial
features exhaustively. However, these spatial features
are expensive to compute. We propose a novel method
that simultaneously performs feature selection and fea-
ture extraction. Higher-order spatial features are pro-
gressively extracted based on selected lower order ones,
thereby avoiding exhaustive computation. The method
can be based on any additive feature selection algorithm
such as boosting. Experimental results show that the
method is computationally much more efficient than
previous approaches, without sacrificing accuracy.1

1. Introduction

The traditional pipeline of pattern recognition sys-
tems consists of three stages: feature extraction, fea-
ture selection, and classification. These stages are nor-
mally conducted in independent steps, lacking an inte-
grated approach. The issues are as follows: 1. Speed:
Feature extraction can be time consuming. Features
that require extensive computation should be gener-
ated only when needed. 2. Storage: Extracting all fea-
tures before selecting them can be cumbersome when
they don’t fit into the random access memory.

Many object recognition problems involve a pro-
hibitively large number of features. It is not uncom-
mon that computing the features is the bottleneck of
the whole pipeline. Techniques such as “classifier cas-
cade” [17] reduce the amount of computation for fea-
ture extraction in run time (in testing), while the aim
here is to improve the feature extraction and selection

1The majority of the work was carried out while David Liu
was a research intern at Microsoft Live Labs Research.

1st Order
Feature Pool

1st Order
Feature Pool

2nd Order
Feature Pool

2nd Order
Feature Pool

1st Order
Feature Pool

1st Order
Feature Pool SelectionSelection

SelectionSelection

Extracted 2nd-order Features

Figure 1. The top figure shows the traditional approach
where 1st and 2nd order features are extracted before fea-
ture selection. In this paper, 2nd order features encode
spatial configurations of visual words and are expensive in
terms of computation and storage. The proposal is to ex-
tract 2nd order features based on previously selected 1st

order features and to progressively add them into the fea-
ture pool.

procedure in training.
In this work, we focus on the bag-of-local feature

descriptors image representation [3] and its recent ex-
tensions [15][10][18]. Local feature descriptors are im-
age statistics extracted from pixel neighborhoods or
patches. Recent work of [15][10][18] focused on model-
ing the spatial relationship between pixels or patches.
We call the features originated from local feature de-
scriptors as 1st order features, and features that encode
spatial relationship between a set of two, three, or N
patches as 2nd, 3rd, or N th order features, respectively.
Features with order larger than one are called higher-
order features. These are analogous to N-grams [2]
used in statistical language modeling. It is worth men-

1

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

tioning that, by higher-order features, we do not mean
algebraic expansions (monomials) of lower order ones,
such as cross terms (x1x2), squares or cubes (x3

1).
In the recent works of [15][10][18], higher-order

features are extracted exhaustively. However, these
higher-order features are prohibitively expensive to
compute: first, their number is combinatorially explod-
ing with the number of pixels or patches; second, ex-
tracting them requires expensive nearest neighbor or
distance computations in image space [4]. It is the ex-
pensive nature of higher-order features that motivates
our work.

Instead of exhaustively extracting all higher-order
features before feature selection begins, we propose to
extract them progressively during feature selection, as
illustrated in Fig. 1. We start the feature selection
process as early as when the feature pool consists only
of 1st order features. Subsequently, features that have
been selected are used to create higher-order features.
This process dynamically enlarges the feature pool in
a greedy fashion so that we don’t need to exhaustively
compute and store all higher-order features.

A comprehensive review of feature selection methods
is given by [8]. Our method can be based on any addi-
tive feature selection algorithm such as boosting [20] or
CMIM [7][16]. Boosting was originally proposed as a
classifier and has also been used as a feature selection
method [17] due to its good performance, simplicity
in implementation, and ease of extension to multiclass
problems [20]. Another popular branch of feature selec-
tion methods is based on information-theoretic criteria
such as maximization of conditional mutual informa-
tion [7][16].

2. Integrated feature selection and ex-
traction

Each image is represented as a feature vector which
dynamically increases in the number of dimensions.
Initially, each feature corresponds to a distinct code-
word. The feature values are the normalized histogram
bin counts of the visual words. These features are the
1st order features, and this is the bag-of-visual words
image representation [3]. Visual words, with textons
[9] as a special case, have been used in various applica-
tions. A dictionary of codewords refers to the clusters
of local feature descriptors extracted from pixel neigh-
borhoods or patches, and a visual word refers to an
instance of a codeword.

Our method maintains a ‘feature pool’ which ini-
tially consists only of 1st order features. Subsequently,
instead of exhaustively building all higher-order fea-
tures, the process of feature selection and higher-order

Round 2

Round 2’

Round 1

1st order features Higher order features

Figure 2. The ‘feature pool’ is dynamically built by alter-
nating between feature selection and feature extraction.

feature extraction are run alternately. At each round,
feature selection picks a feature, and feature extraction
pairs this feature with each of the previously selected
features. The pairing process can be generic, and we
will explain the implementation in Sec. 3. The pairing
process creates new features which are concatenated to
the feature vector of each image. In the next round of
feature selection, this enlarged ‘feature pool’ provides
the features to be selected from.

In Fig. 2, we illustrate this process for the first few
rounds. In the first round, feature selection picks a
feature (the light gray squares) from the ‘feature pool’
and puts it in a 1st order list (not shown in Fig. 2) that
holds all previous selected 1st order features. Since the
list was empty, we continue to the second round. In
the second round, feature selection picks a feature (the
dark gray squares) from the ‘feature pool’ and places
it in the 1st order list. At the same time, feature ex-
traction pairs this newly selected feature with the pre-
viously selected feature (the light gray square) and cre-
ates new features (the diagonally patterned squares).
These 2nd order features are then augmented into the
‘feature pool’. In general, we may maintain 1st, ..., Lth-
order lists instead of only 1st order lists. If a selected
feature has order L1, then it was originated from L1

codewords, and pairing it with another feature of or-
der L2 means that we can create new features that
originate from a set of L1 + L2 codewords.

In Algorithm 1 we detail the procedure of computing
features up to the 2nd order. We use Discrete AdaBoost
with decision stumps for feature selection as in [17],
although other feature selection methods could be used
as well. AdaBoost maintains a set of sample weights,
{vn}, n = 1, ..., N , on the N training images (Line 1).
At each round, a decision stump tries to minimize the
weighted error rate by picking an optimal feature and
threshold (Line 4). The selected feature could be a
1st or 2nd order feature. If it is a 1st order feature, it
is placed in the 1st-order list z(.) (Line 8), and then

Building

Grass

Sky

Cow

1st order

2nd order

1st order

2nd order

1st order

2nd order

1st order

2nd order
Number of features

Figure 3. The order (1st vs 2nd) of a selected feature in each round.

Algorithm 1: Integrated-Feature-Selection-And-
Spatial-Feature-Extraction

Sample weights v
(1)
n ← 1/N , n = 1, ..., N.1

k ← 0.2

for m=1,...,M do3

Fit decision stump ym(x) to training data by4

minimizing weighted error function

Jm =
N∑

n=1
v
(m)
n I(ym(xn) �= tn)

Denote feature index selected by decision5

stump as i(m)
if i(m) corresponds to a 1st order feature6

then
k ← k + 17

z(k)← i(m)8

for j=1,...,k-1 do9

for each image do10

BuildSecondOrderFeatures(z(k), z(j))11

end12

Augment feature pool13

end14

end15

εm ←
N∑

n=1
v(m)

n I(ym(xn) �=tn)

N∑

n=1
v
(m)
n

and αn ← ln 1−εm

εm

16

v
(m+1)
n ← v

(m)
n exp {αnI(ym(xn))}17

end18

Selected features are {xi(1), ...,xi(M)} for any19

vector x

paired with all previous members in the 1st-order list
to generate new 2nd order features (Line 11). The new
features are augmented into the feature pool (Line 13).

Lines 16 and 17 are standard update rules of Ad-
aBoost. It updates the sample weights in a manner
so that the decision stumps can focus on the source
of error. This eventually drives the choice of features.
Using AdaBoost as a feature selection tool is justified

by its taking into account the classification error when
selecting features [7]. However, the concept of inte-
grating feature selection and extraction is general, and
the feature extraction procedure in lines 6 to 15 can be
embedded into other feature selection methods as well.

To show that different object categories result in dif-
ferent temporal behaviors of the integrated feature se-
lection and extraction process, we show in Fig. 3 the
order of a selected feature at each round of boosting,
from rounds 1 to 200. AdaBoost is used in a binary one-
vs-rest classification manner. In the first few rounds,
1st order features are being selected and 2nd order fea-
tures are being built. Structured objects such as ‘Cow’
and ‘Building’ soon start to select 2nd order features.
At the end, structured objects tend to select more 2nd

order features compared to homogeneous objects such
as ‘Sky’. This agrees with the expectation that sky has
less obvious geometrical structure between pairs of 1st

order features.
After feature selection and extraction, to make pre-

dictions, one can:
1. treat boosting solely as a feature selection tool and
use the selected features, {xi(1), ...,xi(M)}, as input to
any classifier; or,
2. proceed as in AdaBoost and use a thresholded
weighted sum, Y (x) = sign(

∑M
m=1 αmym(x)), as the

final classifier; or,
3. as we propose, use the set of weighted decision
stumps, {α1y1(x), ..., αMyM (x)}, as features and train
a linear SVM.
We will experiment with the last two methods later.

3. Second-order spatial features

The algorithm introduced in the previous section is a
generic method for integrating the feature selection and
feature extraction processes. In this section we provide
examples of building 2nd order features, given a pair of
1st order features, (wa, wb) (Line 11 in Algorithm 1).
In the Experiments section, we will explain how 3rd

order features can be built.
Different kinds of spatial histograms can be used for

Figure 5. Second-order features. These are best viewed in color.

(a) (b)

Figure 4. Examples of spatial histograms.

building 2nd order features. In Fig. 4(a), we illustrate
a spatial histogram with distance approximately in log
scale, similar to the shape context histogram [1]. The
log scale tolerates larger uncertainties of bin counts
in longer ranges. The four directional bins are con-
structed to describe the semantics ‘above’, ‘below’, ‘to
the left’, and ‘to the right’. In Fig. 4(b), directions are
ignored in order to describe how the co-occurrence of
(wa, wb) varies in distance. In [15], squared regions are
used to approximate the circular regions in Fig. 4(b)
in order to take advantage of the integral histogram
method [14]. Of course, squared regions and integral
histogram can be used in our work as well.

The goal is to build a descriptor that describes how
wb is spatially distributed relative to wa. Let us first
suppose that there is only a single instance of wa in
an image, but multiple wb’s. Using this instance of
wa as a reference center of the spatial histogram, we
count how many instances of wb fall into each bin. The
bin counts form the descriptor. Since there are usually
multiple instances of wa in an image, we build a spatial
histogram for each instance of wa, and then normalize
over all spatial histograms; the normalization is done
by summing the counts of corresponding bins, and di-
viding the counts by the number of instances of wa.
This takes care of the case when multiple instances of
an object appear in an image. The whole process is

summarized in Algorithm 2.
The spatial histograms yield translation invariant

descriptors, since the reference center is always in re-
spect to the center word wa, and describes the relative
position of instances of wb. The descriptors can also
be (quasi-)scale invariant. This can be achieved by de-
termining the normalized distance between instances
of wa and wb, where the normalization is done by con-
sidering the geometric mean of the scale of the two
patches. To make the descriptor in Fig. 4(a) rotation
invariant, we can take into account the dominant ori-
entation of a patch [19]. However, rotation invariance
may diminish discriminative power and hurt perfor-
mance [19] in object categorization.

Algorithm 2: BuildSecondOrderFeatures
Goal: create feature descriptor given a word pair1

Input: codeword pair (wa, wb)2

Output: a vector of bin counts3

Suppose there are Na instances of wa, and Nb4

instances of wb in the image
Initialize Na spatial histograms, using each5

instance of wa as a reference center
for i=1,...,Na do6

Count the number of instances of wb falling in7

each bin
end8

Sum up corresponding bins over the Na spatial9

histograms
Divide bin counts by Na10

In Fig. 5, red circles indicate words used as reference
center. The red-green pairs correspond to a highly dis-
criminative 2nd order feature that has been selected in
early rounds of boosting. The images are those that
are incorrectly classified when only 1st order features
are used for training a classifier. We can see that 2nd

0 500 1000 1500 2000
0.6

0.7

0.8

0.9

1

Number of features

A
cc

ur
ac

y

Number of features

El
ap

se
d

tim
e

(s
ec

)

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5 x 104

0 1000 2000
0

500

1000

1500

0 1000 2000
0

2

4

6

8 x 104

Number of features

C
um

ul
at

iv
e

ex

tra
ct

ed
 2

nd
or

de
r f

ea
t

Number of features

C
um

ul
at

iv
e

se

le
ct

ed
 2

nd
or

de
r f

ea
t

proposed

proposed

baseline

baseline

Number of features

R
at

io
 o

f s
ha

re
d

w
or

ds
 +

 w
or

d
pa

irs

0 1000 2000
0

0.2

0.4

0.6

0.8

1

proposed

baseline

proposed

baseline

(a) (b)

(c) (d) (e)

Figure 6. Integrated vs separated: After around 800 rounds of boosting, the proposed method outperforms baseline both in
(a) testing accuracy and (b) required training time.

order features can detect meaningful patterns in these
images. As a result, most of these images are correctly
classified by a classifier using both 1st and 2nd order
features.

4. Experiments

We use three datasets in the experiments: the PAS-
CAL VOC2006 dataset [5], the Caltech-4 plus back-
ground dataset used in [6], and the MSRC-v2 15-class
dataset used in [15]. We used the same training-testing
experiment setups as in these respective references.

For each dataset we use different local feature de-
scriptors to show the generality of our approach. For
the PASCAL dataset, we adopt the popular choice of
finding a set of salient image regions using the Harris-
Laplace interest point detectors [5]. Another scheme is
to abandon the use of interest point detectors [13] and
sample image patches uniformly from the image. We
adopt this approach for the Caltech-4 dataset. Each
region or patch is then converted into a 128-D SIFT
[12] descriptor. For the MSRC dataset, we follow the
common approach [15] of computing dense filter-bank
(3 Gaussians, 4 Laplacian of Gaussians, 4 first order
derivatives of Gaussians) responses for each pixel.

The local feature descriptors are then collected from
the training images and vector quantized using K-
means clustering. The resulting cluster centers form
the dictionary of codewords, {w1, ..., wJ}. We use
J = 100 for the MSRC dataset, and J = 1000 for the
other two datasets; these are common choices for these
datasets. Each local feature descriptor is then assigned
to the closest codeword and forms a visual word.

For the MSRC dataset, we used the spatial his-
togram in Fig. 4(b), in order to facilitate comparison
with the recent work of [15]. We followed the specs in
[15] with 15 distance bins of equal spacing, the out-
ermost bin with a radius of 80 pixels, and no scale
normalization being performed. For the Caltech and
PASCAL datasets, we used the spatial histogram in
Fig. 4(a), where the scale is normalized according to
the patch size or interest point size as explained ear-
lier, and the outermost bin has a radius equal to 15
times the normalized patch size. The scale invariance
can be observed in Fig. 5 from the different distances
between red-green word pairs.

4.1. Integrated vs Separated

Here we present the main result of this paper. In
Fig. 6 we show the experiment on the 15-class MSRC

dataset. We use a multiclass version of AdaBoost [20]
for feature selection, and linear SVM for classification
as explained in Sec. 2. In Fig. 6(a), we see that the ac-
curacy settles down after about 800 rounds of boosting.
Accuracy is calculated as the mean over the diagonal
elements of the 15-class confusion matrix. In Fig. 6(b),
we see the integrated feature selection and extraction
scheme requires only about 33% of training time com-
pared to the canonical approach where feature extrac-
tion and selection are two separate processes.

Surprisingly, we can see in Fig. 6(a) that, in addi-
tion to being more efficient, the proposed scheme also
achieves better accuracy in spite of its greedy nature.
This can be explained by the fact that 2nd order fea-
tures are sparser than 1st order features and hence sta-
tistically less reliable; the integrated scheme starts with
the pool of first order features and gradually adds in
2nd order features, hence it spends more quality time
with more reliable 1st order features.

In Fig. 6(c)-(e) we examine some temporal behaviors
of the two methods. In Fig. 6(c), we show the cumu-
lative number of 2nd order features being extracted at
each round of feature selection. While the canonical
procedure extracts all features before selection starts,
the proposed scheme aggressively extracts 2nd order
features in earlier rounds and then slows down. This
logarithmic type of curve signifies the coupling between
the feature extraction and the feature selection pro-
cesses; if they weren’t coupled, features would have
been extracted at a constant (linear) speed instead of
a logarithmic.

In Fig. 6(c), we also noticed that at 800 rounds of
boosting, only about half of all possible 2nd order fea-
tures were extracted. This implies less computation in
terms of feature extraction, as well as more efficient
feature selection, as the feature pool is much smaller.

In Fig. 6(d), it appears that the canonical approach
selects 2nd order features at roughly the same pace as
the integrated scheme, both selecting on average 0.7
second-order features per round of boosting. But in
fact, as shown in Fig. 6(e), the overlap between the
selected features of the two methods is small; at 800
rounds of boosting, the share ratio is only 0.14. The
share ratio is the intersection of the shared visual words
and visual word pairs of the two methods divided by
the union. This means that the two methods have very
different temporal behaviors.

4.2. Importance of feature selection

Here we compare with the recent work of [15], where
feature selection is not performed, but first and second-
order features are quantized separately into dictionar-
ies of codewords. A histogram of these codewords is

used as a feature vector. In Table 1, all three methods
use the nearest neighbor classifier as in [15] for fair com-
parison 2. We see that our method yields state-of-the-
art performance, compared to the quantized (Method
2) and non-quantized (Method 1) versions. In addition,
since the 2nd order features need not be exhaustively
computed and also no vector quantization on 2nd or-
der features is required, our method is also much faster
than the method in [15].

Proposed Method 1 Method 2 [15]

Feature selection √ × ×

Quantization × × √

Accuracy 75.9% 71.3% 74.1%

Table 1. Importance of feature selection.

4.3. Linear SVM on weighted decision stumps

As explained in Sec. 2, we propose to concate-
nate the weighted output of all weak classifiers,
{α1y1(x), ..., αMyM (x)}, from AdaBoost as a feature
vector and then run a linear SVM. Results are shown in
Table 2. The superior result over AdaBoost comes from
a re-weighting of the terms {α1y1(x), ..., αMyM (x)}.

PASCAL
(EER)

MSRC
(1-accuracy)

AdaBoost classifier (1st order feat) 13.4% 24.1%

AdaBoost classifier (1st & 2nd order) 12.1% 21.2%

Linear SVM on weighted decision stumps 10.9% 16.9%

Table 2. Performance on the PASCAL car-vs-rest and
MSRC 15-class datasets.

The best results [5] reported on the PASCAL
VOC2006 and VOC2007 datasets employ the Spatial
Pyramid [11] technique on top of the bag of words rep-
resentation. The Spatial Pyramid technique is orthog-
onal to the proposed method and combining them is
expected to yield even better results.

4.4. Increasing the order

In Fig. 7, we experiment on the MSRC dataset and
see that the classification accuracy obtained from using
a feature pool of 1st and 2nd order features is higher
than using 1st order features alone. Including 3rd order
features does not improve accuracy. We generated 3rd

2We re-implemented the work of [15], because they used an
untypical quantization scheme to generate 1st order codewords,
and results are not comparable; also, their spatial histogram is
square-shaped.

order features by counting the number of times three
codewords (wa, wb, wc) fall within a radius of 30 pix-
els, i.e., the spatial histogram has only one bin. Third
order features are generated every time a 1st order fea-
ture is selected (which corresponds to wa) and paired
with each of the previously selected 2nd order features
(recall that a 2nd order feature comes from a word
pair, (wb, wc)), or vice versa. The reason for reduc-
ing the number of bins to one is to account for the
data sparseness of higher-order features, which we will
discuss later.

0 500 1000 1500 2000
0.6

0.7

0.8

0.9

1

Number of features

A
cc

ur
ac

y

1st order

2nd order

3rd order

Figure 7. Accuracy and feature complexity.

4.5. Robustness of co-occurrence counts

Instead of assigning a local feature descriptor to a
single codeword, one can assign it to the top-N closest
codewords. In Table 3, we vary the parameter c1 from
one to four and ten, which is the number of codewords
each image patch is assigned to. In three out of four
categories, the performance of the bag of words repre-
sentation (using 1st order features only) degrades as c1

increases from one to four or ten, which manifests the
popular practice of assigning a descriptor to a single
codeword.

0 1 2 3 4 5 6 7 8 9 10 11 12 130 1 2 3 4 5 6 7 8 9 10 11 12 13

(a) (b)

Figure 8. Effect of parameter c2 on the spatial histogram
bin counts. (a) Using c2 = 1. (b) Using c2 = 10.

Yet, the top-N technique can help avoid the data-
sparseness problem of 2nd order features. We define
the parameter c2 as the number of visual words each
image patch is assigned to when constructing 2nd or-
der features. Notice that c1 and c2 can have different
values. In Fig. 8 we show the benefit of increasing

c2 from one to ten when constructing spatial features.
In Fig. 8(a), two normalized spatial histograms with
twelve spatial bins are collected from two different face
images. The size of the bubbles indicates normalized
bin counts. Recall that spatial histograms collect spa-
tial co-occurrence of word pairs; in this case the specific
word pair corresponds to a person’s nose and eye from
real data. Ideally the two histograms would be nearly
identical, but image variations and clustering artifacts
prevent it from being so. In Fig. 8(b), using the top-N
technique, the two histograms become more similar to
each other. The reason that 2nd order features benefit
more from this technique than 1st order ones is due
to the sparsity of co-occurrence of a word pair. The
chance of co-occurrence between a pair of visual words
within a specific spatial bin is at the order of approxi-
mately 1/(J2×12), where J is the size of the dictionary
of codewords. Compared to the order of 1/J for the
histogram of visual words, slight image variations and
clustering artifacts can result in larger disturbances in
the spatial feature bin counts than in the visual word
bin counts. The top-N technique increases the bin
counts (before normalization) and reduces the sensi-
tivity to variations. In Fig. 9 we see the population of
a particular codeword getting denser as c2 increases. In
Fig. 9(i)(ii), this codeword rarely appears ‘correctly’ on
the chin of the face. Increasing c2 increases its occur-
rence on the chin, but also increases its occurrence at
other locations, so increasing c2 indefinitely would lead
to performance degrading. Overall, this suggests that
using a small value of c1 but a moderate value of c2

should give the best result. Indeed, using AdaBoost as
classifier, we found that (c1 = 1, c2 = 10) gives state-
of-the-art performance, as shown in Table 3.

(1,1) (4,4) (10,10) (1,10)

Face
1st order feat 4.15 3.23 5.53 4.15

1st and 2nd order feat 1.84 1.84 0.92 0.92

Motorbike
1st order feat 1.50 2.00 2.75 1.50

1st and 2nd order feat 1.50 1.25 1.00 1.00

Airplane
1st order feat 2.75 4.00 4.00 2.75

1st and 2nd order feat 2.25 2.50 2.00 1.75

Car
1st order feat 1.00 1.50 2.25 1.00

1st and 2nd order feat 0.50 0.75 1.00 0.50

Class

(c1,c2)

Table 3. Equal error rates (%) for the Caltech-4 dataset. By
integrating feature selection and extraction, state-of-the-art
results are obtained.

(a) Top 1 (b) Top 4 (c) Top 10

(i)

(ii)

(iii)

(iv)

Figure 9. Effect of increasing the number of visual words a patch is assigned to.

5. Conclusion and future work

We have presented an approach for integrating the
process of feature selection and feature extraction.
The integrated approach is three times faster than
the canonical procedures of feature selection followed
by feature extraction. In addition, the integrated ap-
proach can achieve comparable or even better accuracy
than the exhaustive approach, in spite of its greedy na-
ture.

Our approach is generic and can be used with other
feature selection methods. It can also be applied to
all kinds of spatial histograms. In this work, we con-
sidered non-parametric histograms (with spatial bins),
but parametric ones could be used as well, where the
parameters (e.g., the mean and covariance of point
clouds) could be used as features.

Finally, we presented detailed experiments on three
different object categorization datasets which have
been widely studied. These datasets cover a wide range
of variations on object category (20 in total), object
scale (most noticeably in the PASCAL dataset) and
pose. For each dataset, we used different state-of-
the-art local feature descriptors. These experiments
demonstrate that our approach applies to a wide range
of conditions.

References

[1] S. Belongie, J. Malik, and J. Puzicha. Shape matching
and object recognition using shape contexts. PAMI,
24:509–522, 2002.

[2] P. Brown, V. Della Pietra, P. de Souza, J. Lai, and
R. Mercer. Class-based n-gram models of natural lan-
guage. Comp. Linguistics, 18(4):467–479, 1992.

[3] G. Csurka, C. Dance, L. Fan, J. Willamowski, and
C. Bray. Visual categorization with bags of keypoints.
In ECCV Workshop Statistical Learning, 2004.

[4] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry, Chap. 5.
Springer-Verlag, second edition, 2000.

[5] M. Everingham, A. Zisserman, C. K. I.
Williams, and L. Van Gool. PASCAL

VOC2006 Results. http://www.pascal-
network.org/challenges/VOC/voc2006.

[6] R. Fergus, P. Perona, and A. Zisserman. Object class
recognition by unsupervised scale-invariant learning.
CVPR, 2003.

[7] F. Fleuret. Fast binary feature selection with condi-
tional mutual information. JMLR, 5:1531–1555, 2004.

[8] I. Guyon and A. Elisseeff. An introduction to variable
and feature selection. JMLR, 3:1157–1182, 2003.

[9] B. Julesz. Textons, the elements of texture perception
and their interactions. Nature, 290:91–97, 1981.

[10] X. Lan, C. L. Zitnick, and R. Szeliski. Local bi-gram
model for object recognition. Technical report, MSR-
TR-2007-54, Microsoft Research, 2007.

[11] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags
of features: Spatial pyramid matching for recognizing
natural scene categories. In CVPR, 2006.

[12] D. G. Lowe. Distinctive image features from scale-
invariant keypoints. IJCV, 60:91–110, 2004.

[13] E. Nowak, F. Jurie, and B. Triggs. Sampling strate-
gies for bag-of-features image classification. In ECCV,
2006.

[14] F. Porikli. Integral histogram: a fast way to extract
histograms in cartesian spaces. CVPR, 2005.

[15] S. Savarese, J. Winn, and A. Criminisi. Discrimina-
tive object class models of appearance and shape by
correlatons. CVPR, 2006.

[16] M. Vidal-Naquet and S. Ullman. Object recogni-
tion with informative features and linear classification.
ICCV, 2003.

[17] P. Viola and M. Jones. Rapid object detection using a
boosted cascade of simple features. CVPR, 2001.

[18] L. Yang, P. Meer, and D. Foran. Multiple class seg-
mentation using a unified framework over mean-shift
patches. CVPR, 2007.

[19] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid.
Local features and kernels for classification of texture
and object categories: A comprehensive study. IJCV,
73 (2):213–238, 2007.

[20] J. Zhu, H. Zou, S. Rosset, and T. Hastie. Multi-class
adaboost. Submitted, 2005.

