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Abstract

We consider the task of dimensionality reduction for re-
gression (DRR) whose goal is to find a low dimensional rep-
resentation of input covariates, while preserving the statis-
tical correlation with output targets. DRR is particularly
suited for visualization of high dimensional data as well as
the efficient regressor design with a reduced input dimen-
sion. In this paper we propose a novel nonlinear method
for DRR that exploits the kernel Gram matrices of input and
output. While most existing DRR techniques rely on the in-
verse regression, our approach removes the need for explicit
slicing of the output space using covariance operators in
RKHS. This unique property make DRR applicable to prob-
lem domains with high dimensional output data with poten-
tially significant amounts of noise. Although recent kernel
dimensionality reduction algorithms make use of RKHS co-
variance operators to quantify conditional dependency be-
tween the input and the targets via the dimension-reduced
input, they are either limited to a transduction setting or lin-
ear input subspaces and restricted to non-closed-form solu-
tions. In contrast, our approach provides a closed-form so-
lution to the nonlinear basis functions on which any new
input point can be easily projected. We demonstrate the
benefits of the proposed method in a comprehensive set of
evaluations on several important regression problems that
arise in computer vision.

1. Introduction

The task of dimensionality reduction for regression
(DRR) is to find a low dimensional representation, z ∈ Rq,
of the input covariates, x ∈ Rp, with q � p, for regress-
ing the output, y ∈ Rd, given n i.i.d. data {(xi,yi)}n

i=1.
DRR has found many applications in visualization of high
dimensional data, efficient regressor design with a reduced
input dimension, and elimination of noise in data x by un-
covering the essential information z for predicting y. In all

these tasks DRR is not tied to a particular regression esti-
mation method, but can be rather seen as a prior task to the
regressor design for a better understanding of data.

DRR differs from other well-known dimensionality re-
duction algorithms in several ways. One can view DRR
as a supervised learning technique with real multivariate
labels y. Most other supervised techniques focus on the
classification setting (i.e., discrete y), including Linear Dis-
criminant Analysis (LDA), kernel LDA, general graph em-
bedding [21], and metric learning [5, 17, 20]. Unsupervised
dimension reduction methods, on the other hand, assume
that y is unknown. Principal subspace methods (PCA and
kernel PCA [14]), nonlinear locality-preserving manifold
learning (LLE [11], ISOMAP [15], and Laplacian Eigen-
map [2]), and probabilistic methods like GPLVM [6] be-
long to this class of approaches that do not leverage known
target values. DRR has been a focus of several important
lines of research in the statistical machine learning commu-
nity ([3, 4, 9, 10]). However, it has received significantly
less attention in the domain of computer vision.

The crucial notion related to DRR is that of sufficiency
in dimension reduction (SDR, [3, 4, 9]). SDR states that
one has to find the linear subspace bases B = [b1, . . . ,bq]
with bl ∈ Rp, (or basis functions in the nonlinear case,
B = {b1(·), . . . ,bq(·)}) such that y and x are condition-
ally independent given B>x. As this condition implies that
the conditional distribution of y given x equals that of y
given z = B>x, the dimension reduction entails no loss of
information for the purpose of regression. It is known that
such B always exists (at least the identity B = I for q = p)
with non-unique solutions1. Hence, one is naturally inter-
ested in the minimal subspace or the intersection of all such
subspaces, often called the central subspace 2.

Two schools of approaches have been suggested to find
the central subspace: the inverse regression (IR) [9, 19] and

1Any set of bases that spans the subspace of B will be a solution.
2Although the term subspace is usually meant for a linear case, how-

ever, we abuse the term for both linear and nonlinear cases throughout the
paper.
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the kernel dimension reduction (KDR) [4, 10]. KDR [4]
directly reduces the task of imposing conditional indepen-
dence to the optimization problem that minimizes the condi-
tional covariance operator3 in a RKHS (reproducing kernel
Hilbert space). This is achieved by quantifying the notion
of conditional dependency (between y and x given B>x)
using a positive definite ordering of the expected covari-
ance operators in what is called the probability-determining
RKHS (e.g., the RBF kernel-induced Hilbert space).

Although KDR formulates the problem in RKHS, the fi-
nal projection is linear in the original space. For a nonlin-
ear extension, [10] proposed the manifold KDR which first
maps the original input space to a nonlinear manifold (e.g.,
by Laplacian Eigenmap learned from x only), and applies
the KDR to find a linear subspace in the manifold. However,
this introduces a tight coupling between the central sub-
space and the separately learned input manifold, restricting
the approach to a transduction setting. That is, for a new in-
put point, one has to rebuild the manifold entirely with data
including the new point4. Moreover, neither of the methods
has a closed-form solution and resorts to a gradient-based
optimization.

The inverse regression (IR) is another interesting frame-
work for DRR. IR is based on the fact that the inverse re-
gression, E[x|y], lies on the subspace spanned by B (the
bases of the central subspace), provided that the marginal
distribution of x is ellipse-symmetric (e.g., a Gaussian).
Thus B coincides with the principal directions in the vari-
ance of the inverse regression, namely, V(E[x|y]). In [9],
this variance was estimated by slicing the output space (i.e.,
clustering y), lending the name sliced IR (or SIR).

Despite its simplicity and a closed-form solution, SIR
assumes a linear central subspace, with a strong restric-
tion on the marginal distribution of x. To cope with the
limitation, a natural kernel extension (KSIR) was proposed
in [19]. KSIR discovers a nonlinear central subspace and
allows few restrictions on the class of distribution on x, for
example, admitting a nonparametric kernel density. How-
ever, KSIR still resorts to slicing of y, which can result in
unreliable variance estimates for high dimensional y.

In this paper we propose a novel nonlinear method for
DRR that exploits the covariance functions of input as well
as the output. We estimate the variance of the inverse re-
gression under the IR framework but avoid explicit slicing
by an effective use of covariance operators in RKHS. This
leads to a general solution with KSIR as its special case.
Our approach can be reliably applied to the cases of high
dimensional output, while suppressing potential noise in the
output data.

The main contributions of this work address important

3Refer to Sec. 3.1 for the definition.
4One may estimate the manifold image of the new point by ex-

tra/interpolation. However, this requires additional estimation effort.

limitations of existing DRR techniques. In particular, our
approach provides the following benefits: (1) a closed-form
solution, (2) a nonlinear central subspace, (3) mild assump-
tion on the input distribution, (4) reliable estimation for high
dimensional output, (5) robustness to noise, and (6) ease of
generalization to new input points.

The paper is organized as follows: We briefly review the
inverse regression framework and slicing-based techniques
(SIR and KSIR) in Sec. 2. Sec. 3 introduces our approach.
In Sec. 4 the benefits of the proposed method are demon-
strated in a comprehensive set of evaluations on several re-
gression problems. We conclude the paper with Sec. 5.

2. Background
Throughout the paper, we assume that the data pair (x ∈

Rp,y ∈ Rd) is drawn from an unknown joint distribution
P (x,y), where all the expectations and (co)variances that
appear in the paper are taken w.r.t. P (x,y).

2.1. Sliced Inverse Regression (SIR)

The following theorem plays a crucial role in the IR
framework. See [9] for the proof. Without loss of gener-
ality, we assume that x is centered, i.e., E[x] = 0.

Theorem 1. If (a) there exists a q-dimensional central sub-
space with bases B = [b1, . . . ,bq], i.e., y⊥x|B>x, and (b)
for any a ∈ Rp, E[a>x|B>x] is linear in {b>l x}q

l=1
5, then

E[x|y] ∈ Rp (traced by y) lies on the subspace spanned by
{Σxxbl}q

l=1, where Σxx is the covariance of x.

According to Thm. 1, B can be obtained from the q prin-
cipal directions of E[x|y]; the column vectors of B are
the q largest eigenvectors of V(E[x|y]), pre-multiplied by
Σ−1

xx . Given the data {(xi,yi)}n
i=1, SIR of [9] suggests to

slice (or cluster) y so as to compute the sample estimate
of V(E[x|y]). More specifically, after clustering {yi}n

i=1

into J slices, S1, . . . , SJ , and computing the slice means,
mj = 1

|Sj |
∑

i∈Sj
xi, to approximate E[x|y ∈ Sj ], the

sample estimate is, V =
∑

j pjmjm>
j , where pj = |Sj |/n

is the j-th slice proportion.
SIR finds the directions of maximum variance, with n

data points collapsed into J slice means using the affinity in
y. Not surprisingly, for the extreme case of J = n, when
each slice identifies with a single data point, V becomes the
sample covariance of x, gives rise to the PCA. However, for
J < n, the y labels have an effect on suppressing the vari-
ance of directions within the same slice, which is a desirable
strategy for the purpose of regression.

It is known that the condition (b) in Thm. 1 equivalently
imposes an elliptically-symmetric distribution (e.g., a Gaus-
sian) of x. Hence, SIR relies on two assumptions: the

5∃{αl}q
l=0 s.t. E[a>x|b>1 x, . . . ,b>q x] = α0 +

Pq
l=1 αl · b>l x.



linearity of the central subspace and the elliptical symme-
try of the marginal distribution of x. These assumptions
can be strong in certain situations, leading to failure of the
SIR if the conditions are not met. In what follows, one
can consider a rather natural nonlinear extension via the
RKHS mapping x → Φ(x), which helps relax the strong
constraints of SIR.

2.2. Kernel extension of Inverse Regression

In the kernel extension of SIR, x is mapped to Φ(x) ∈
Hk, where Hk is the Hilbert space induced from the ker-
nel function k(·, ·) defined on the x space. We assume that
Φ(x) is centered6 inHk. The kernel extension consequently
results in: (1) B has nonlinear basis functions bl(·) ∈ Hk,
l = 1, . . . , q, (2) E[Φ(x)|y] lies on a nonlinear function
space spanned by {Σxxbl}q

l=1
7, and (3) we estimate the

operator, V(E[Φ(x)|y]), and its major eigenfunctions.
Similarly to SIR, KSIR of [19] estimates V(E[Φ(x)|y])

by slicing the output, leading to the following algorithm:

1. Cluster {yi}n
i=1 into J slices: S1, . . . , SJ . Com-

pute cluster means, mj = 1
|Sj |

∑
i∈Sj

Φ(xi) for j =
1, . . . , J . pj (= |Sj |/n) is the j-th cluster proportion.

2. Estimate the sample covariance of the slice-wise in-
verse regression, i.e., V =

∑J
j=1 pjmjm>

j . Its q ma-
jor eigenfunctions are denoted as {vl}q

l=1.

3. The central subspace directions are obtained as bl =
Σ−1

xxvl for l = 1, . . . , q.

Even though the above computations can be accom-
plished in the original input space (i.e., SIR), they cannot
be represented explicitly in the RKHS. For instance, mj is
a function and V is an operator. However, using the rep-
resenter theorem [12], the eigenfunctions v and the central
subspace directions b can be obtained in dual forms. The
trick is similar to that of kernel PCA [14].

In Step-2, to solve the eigensystem V · v = λ · v,
we represent v as a linear combination of {Φ(xi)}n

i=1,
i.e., v =

∑n
i=1 αiΦ(xi). Pre-multiplying by Φ(xr)> (for

r = 1, . . . , n) yields the LHS of the eigensystem as:

J∑
j=1

pj

(
m>

j Φ(xr)
)
·
( n∑

i=1

αi

(
m>

j Φ(xi)
))

. (1)

Since mj = 1
|Sj |

∑
i∈Sj

Φ(xi) and Φ(x)> · Φ(x′) =
k(x,x′), stacking up n equations (r = 1, . . . , n) results in
the following dual version of the eigensystem:

GPG>α = λKxα, (2)
6The centralization of the kernel matrix is fairly straightforward and

can be found in Appendix A of [14].
7Here, we abuse the notation Σxx to indicate the covariance operator,

and the multiplication means applying the operator to the function.

where G is the (n×J) matrix with G(r, j) = m>
j Φ(xr) =

1
|Sj |

∑
i∈Sj

k(xi,xr), P is the (J×J) diagonal matrix with
P(j, j) = pj , Kx is the kernel Gram matrix for x, i.e.,
Kx(i, r) = k(xi,xr), and α = [α1, . . . , αn]>. It is often
the case that the eigenfunctions need to be normalized to
unit-norm, which introduces extra constraints, α>Kxα =
1. Eq.(2) is the generalized eigenvalue problem, where we
find the q major eigenvectors α.

We note several interesting aspects of KSIR: First, the
(linear) SIR can be simply derived from the KSIR algorithm
with a linear kernel, k(x,x′) = x>x′. Secondly, similarly
to the relationship between SIR and PCA, when J = n,
KSIR is equivalent to the kernel PCA on {xi}n

i=1. To see
this, as J → n, note that P → 1

nIn, (In is the (n × n)
identity) and G → Kx. Hence Eq.(2) reduces to Kxα =
nλα, which is the exact derivation for the kernel PCA [14].

Once we have v (from the dual solution α), the corre-
sponding central subspace direction b of Step-3 can be ob-
tained using a similar trick. To solve Σxx · b = v, we
replace the covariance operator Σxx by the sample esti-
mate 1

nWxW>
x , where Wx = [Φ(x1), . . . ,Φ(xn)]. Let-

ting b =
∑n

i=1 βiΦ(xi) and pre-multiplying by Φ(xr)>

(for r = 1, . . . , n), leads to the closed-form solution:

β = nK−1
x α, (3)

where β = [β1, . . . , βn]>.

The nonlinear central subspace is then represented by q
basis functions, {bl}q

l=1 from the dual solutions {βl}q
l=1.

For a new test input point x∗, its low dimensional repre-
sentation z∗ ∈ Rq can be obtained by projecting Φ(x∗)
onto the central subspace. That is, the l-th element of z∗

is, z∗l = b>l Φ(x∗) = k>∗ βl, for l = 1, . . . , q, where
k∗ = [k(x1,x∗), . . . , k(xn,x∗)]>.

The kernel extension of inverse regression resolves cer-
tain limitation of the (linear) SIR. Not restricted to a linear
central subspace, it allows the distribution of x to be within
a rich family of nonparametric kernel densities. However,
KSIR’s slicing-based estimation of V(E[Φ(x)|y]) may be
unreliable for high dimensional y. This makes KSIR re-
stricted to single-output regression or classification set-
tings [19].

In the following section, we propose a novel estimation
method that avoids slicing by exploiting the kernel matri-
ces of the input and the output. As we will see in Sec. 4,
our approach is successfully applied to regression problems
with a large number of output variables that often arise in
computer vision (e.g., 3D body pose estimation, image re-
construction with noise removal).



3. Proposed Approach
3.1. IR using Covariance Operators in RKHS

Our estimation of V(E[Φ(x)|y]) is based on the (cross)
covariance operator theorems [1, 4]. First, we introduce
the covariance operator as a natural RKHS extension of
the covariance matrix in the original space. For two ran-
dom vectors y and x endowed with Hilbert spaces Hy with
ky(·, ·) andHx with kx(·, ·), respectively, we define Σyx ,
Cov(Φ(y),Φ(x)), namely, the (cross) covariance in the fea-
ture spaces8. Note that Σyx is an operator that maps from
Hx to Hy, thus having dimension (dim(Hy)× dim(Hx)).
One can similarly define other covariance operators, Σxy,
Σyy, or Σxx.

For notational convenience, we treat the covariance op-
erators as if they were matrices. For instance, for g ∈ Hy

and f ∈ Hx, g>Σyxf means the inner product 〈g,Σyxf〉 in
Hy space. Besides, f>Φ(x) and f(x) are used interchange-
ably, as they are equivalent from the Riesz representation
theorem [16]. We then define the conditional covariance
operator of y given x, denoted by Σyy|x, as:

Σyy|x , Σyy −ΣyxΣ−1
xxΣxy. (4)

The following theorem [4] states that under fairly mild
condition, Σyy|x equals to the expected conditional vari-
ance of Φ(y) given x (i.e., E[V(Φ(y)|x)]). See Appendix
for the proof.

Theorem 2. For any g ∈ Hy, if there exists f ∈ Hx such
that E[g(y)|x] = f(x), then Σyy|x = E[V(Φ(y)|x)].

The condition in Thm. 2 implies that the regression func-
tion from x to g(y) for any given g ∈ Hy has to be
linear in RKHS, namely, of the form f>Φ(x) for some
f ∈ Hx. This is a reasonable condition as it corresponds
to a rich family of smooth functions in the original space
(i.e., f>Φ(x) = f(x)) [13].

We next propose to represent V(E[Φ(x)|y]) of IR in
terms of the conditional covariance operators. More specif-
ically, using the well-known E-V-V-E identity9, it can be
written as:

V(E[Φ(x)|y]) = V(Φ(x))− E[V(Φ(x)|y)]. (5)

From Thm. 2, the second term of the RHS in Eq.(5) equals
to Σxx|y (changing the role of x and y in Eq.(4)), assuming
that the inverse regression, E[f(x)|y], is a smooth function
of y for any f ∈ Hx (i.e., ∃g ∈ Hy s.t. E[f(x)|y] = g(y)).
As V(Φ(x)) = Cov(Φ(x),Φ(x)) = Σxx, we have:

V(E[Φ(x)|y]) = ΣxyΣ−1
yyΣyx. (6)

8A more precise definition would be: for ∀g ∈ Hy and ∀f ∈ Hx,
〈g,Σyxf〉 = E[(g(y) − Eg(y))(f(x) − Ef(x))].

9V(Y ) = E[V(Y |X)] + V(E[Y |X]) for any X , Y .

Given the data {(xi,yi)}n
i=1, the sample estimate of

Eq.(6) can be written as V̂(E[Φ(x)|y]) = Σ̂xyΣ̂
−1

yyΣ̂yx.
The sample covariance operators (Σ̂) can be estimated sim-
ilarly. For instance, Σ̂xy = 1

nWxW>
y , where Wx =

[Φ(x1), . . . ,Φ(xn)] and Wy = [Φ(y1), . . . ,Φ(yn)]. Then
V̂(E[Φ(x)|y]) is:

(
1
n
WxW>

y )(
1
n

(WyW>
y + nεI))−1(

1
n
WyW>

x )

=
1
n
WxW>

y (WyW>
y + nεI)−1WyW>

x

=
1
n
WxW>

y Wy(W>
y Wy + nεIn)−1W>

x (7)

=
1
n
WxKy(Ky + nεIn)−1W>

x . (8)

Here I is the (dim(Hy) × dim(Hy)) identity operator,
and In is the (n × n) identity matrix. Note that we add a
small positive ε to the diagonals of WyW>

y to circumvent
potential rank deficiency in estimating Σyy and its inverse.
As will be discussed in Sec. 3.2, ε plays a crucial role as a
kernel regularizer in smoothing the affinity structure of y.
In Eq.(7), we use the fact that Wy(W>

y Wy + nεIn) =
(WyW>

y + nεI)Wy. In Eq.(8), Ky = W>
y Wy is the

(n× n) kernel matrix on y, i.e., Ky(i, r) = ky(yi,yr).
The eigenfunctions of Eq.(8) can be obtained by pre-

multiplying the eigensystem, V̂(E[Φ(x)|y]) · v = λ · v,
by W>

x . From v =
∑n

i=1 αiΦ(xi) = Wxα, we have:

1
n
Ky(Ky + nεIn)−1Kxα = λα, (9)

where Kx = W>
x Wx is the kernel matrix on x. Once we

obtain v, the Step-3 of KSIR follows to find b. From now
on, we denote the inverse regression technique described in
this section by COIR (i.e., Covariance Operator IR).

COIR has a closed-form solution (Eq.(9)) to the nonlin-
ear central subspace, while making few assumptions on the
input distribution. Notably, COIR avoids KSIR’s slicing-
based estimation by incorporating a smooth output kernel.
This makes COIR not only able to handle high-dimensional
output reliably, but also robust to potential noise in the out-
put data. Furthermore, we show that, under this formula-
tion, KSIR becomes a special case of COIR.

3.2. KSIR as a special case of COIR

Recall from KSIR that P is the (J×J) cluster proportion
diagonal matrix with the j-th element, pj = |Sj |/n. We let
C be the (n×J) cluster indicator 0/1 matrix whose i-th row
has all 0’s but 1 at the j-th position where i ∈ Sj . Noticing
that G = 1

nKxCP−1, the KSIR equation in Eq.(2) can be
written as:

1
n
Kx(

1
n
CP−1C>)Kxα = λKxα. (10)



On the other hand, the COIR equation in Eq.(9) is (after
pre-multiplying by Kx):

1
n
Kx(Ky(Ky + nεIn)−1)Kxα = λKxα. (11)

From Eq.(10) and Eq.(11), the equivalence between KSIR
and COIR is made by:

Ky(Ky + nεIn)−1 =
1
n
CP−1C>. (12)

Now we consider an ideal case where the output data
{yi}n

i=1 is collapsed to J distinct points that are infinitely
far apart from one another. Assuming an RBF kernel, this
in turn makes Ky a block 0/1 matrix10, where each block
of 1’s corresponds to each of J clusters. For instance, when
n = 6, J = 3, |S1| = 3, |S2| = 1, and |S3| = 2,

Ky =

 E3 0 0
0 E1 0
0 0 E2

 , (13)

where Em denotes the (m×m) matrix with all 1’s.
We show that under the above assumption, Eq.(12) is in-

deed true when ε → 0. For the block 0/1 Gram matrix Ky

(e.g., Eq.(13)), the LHS of Eq.(12) can be expressed as:

Ky(Ky+nεIn)−1 =

 c1E|S1| 0
. . .

0 cJE|SJ |

 , (14)

where cj = 1
|Sj |+nε . One can easily verify this by post-

multiplying both sides of Eq.(14) by (Ky +nεIn). It is also
straightforward to rewrite the RHS of Eq.(12) as:

1
n
CP−1C> =


1

np1
E|S1| 0

. . .
0 1

npJ
E|SJ |

 . (15)

Therefore, Eq.(12) reduces to:

|Sj |+ nε = npj , for j = 1, . . . , J. (16)

As ε → 0, Eq.(16) implies that pj = |Sj |/n, which
is exactly the maximum likelihood (ML) estimate of the
cluster proportion employed by KSIR. That is, KSIR is a
special case of COIR having 0/1 Gram matrix Ky (from
the assumed J-collapsed perfect clustering) with a vanish-
ing ε. For a non-negligible ε, the equivalence turns into
pj = |Sj |/n + ε, where ε now serves as a regularizer (or a
smoothing prior) in the ML estimation.

For a general (non-0/1) kernel matrix Ky, COIR can
be naturally viewed as a smoothed extension of KSIR.
Hence, COIR exploits the kernel structure of the output
space through an effective use of covariance operators in
RKHS, where ε acts as a kernel regularizer.

10After reordering the data according to its slice index.

4. Empirical Evaluation

We demonstrate the benefits of COIR by contrasting it to
the existing DRR techniques, SIR and KSIR. We also com-
pare it with an unsupervised dimension reduction technique,
the kernel PCA (denoted by KPCA)11 to illustrate the ad-
vantage of DRR. Unless stated otherwise, the kernel-based
methods (i.e., COIR, KSIR, and KPCA) employ the RBF
kernel. SIR and KSIR use the k-means clustering algorithm
for output slicing12.

4.1. Synthetic curves dataset

The dataset called curves was devised for testing KSIR
in [19], where it is generated by: y = sign(b>1 x + ε1) ·
log(|b>2 x + a0 + ε2|) for some b1,b2 ∈ R15, x ∼
N (0, I15), ε1, ε2 ∼ N (0, 1), and a constant a0. The in-
put is 15-dim, but the central subspace is at most 2-dim as
y is decided by {b>l x}2

l=1. The output y is 1-dim. For 300
data points generated, we plot the 2D central subspaces esti-
mated by the competing methods in Fig. 1. In the plots, each
point is colored by its true y value, depicting higher values
as warmer (reddish) and lower as cooler (bluish). For SIR
and KSIR, we vary J (#slices), where the extreme case of
J = n gives rise to PCA and KPCA, respectively.

In SIR (regardless of J), the data points are roughly
grouped into 4 clusters by y values: red, yellow, green, and
blue. However, the partial overlap of points in red (higher
y) and blue (lower y) can result in significant error in the
regression estimation based on it. KSIR is more sensitive
to the choice of J . When J = 5, the clusters are separated
better, but mixed within each cluster. Increasing J resolves
mixing, but the clusters get closer to one another. On the
other hand, COIR (Fig. 1(g)) exhibits smooth and clear dis-
crimination of data along the y values. Moreover, COIR
does not require choosing the parameter J , a sensitive task
necessary for KSIR. The unsupervised PCA and KPCA pro-
duce random clutter since they simply project the isotropic
Gaussian data onto a 2D plane with no information about y.

To simulate the noisy nature of real-world data, we de-
vise an interesting setting by adding 4 Gaussian white noise
dimensions to y (5-dim in total). The results of KSIR and
COIR are shown in Fig. 1(h) and Fig. 1(i), respectively, col-
ored by true (noise-removed) y values. In KSIR, due to
the clustering error induced by noise, each cluster contains
mixed data points with different y values (e.g., red, yel-
low, and green points in the same cluster). However, COIR
still lays out the data along the y values (from blue/left
to red/right), which enables even a simple linear regressor
(e.g., linear in the X axis) to produce good predictions of tar-

11Although we do not present other unsupervised methods here, their
results are not significantly different from those of the KPCA.

12Additional experiments and results can be found on
http://seqam.rutgers.edu/projects/learning/regression/coir/coir.html.
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Figure 1. Central subspaces for the curves dataset.

get values from the central subspace coordinates. COIR’s
robustness to noise originates from its utilization of the
smooth output kernel.

4.2. Head pose estimation

We consider a regression setting that estimates the head
(or facial) pose from the face image. We collected n = 683
images containing faces of about 100 subjects instructed to
move their heads in arbitrary rotation. A standard face de-
tector was applied (with a manual refinement) to locate a
tight bounding box around the face. To suppress the in-
plane head tilt, we align the face in up-front. The image is
further resized to (80× 80), a 6400-dim input vector.

For the output, we recorded approximate angles for the
out-of-plane rotation along X and Y axes. Note that this
introduces substantial amount of noise in the output data.
We denote the 2D output by y = [y1, y2]>, where y1 and
y2 are vertical and horizontal rotation angles, respectively.
In addition, the data is sparse in the y space as most of the
data points (about 90%) have one of the angles equal to 0
(i.e., purely horizontal or vertical movement).

Fig. 2 shows the 2D central subspaces estimated by the
competing nonlinear methods13. For visualization, we col-
ored the dim-reduced input point by each of y1 and y2 (e.g.,
Fig. 2(a) and Fig. 2(d) depict the same points for COIR,
but colored by y1 and y2, respectively). We see that COIR
lays out the data points along the head pose quite obviously,
where X and Y axes roughly correspond to horizontal (y2)
and vertical (y1) angles, respectively. On the other hand,

13We skip the (linear) SIR result as its performance is worse than KSIR.
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Figure 2. Central subspaces for head pose estimation.
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Figure 3. Test face images on the COIR central subspace.

KSIR exhibits severe ambiguity in y1. For COIR, we also
superimpose some of the held-out test face images (whose
y are not known to the algorithm) in Fig. 3. Despite the
sparsity and the noise in the output data, COIR generalizes
well even for the combined rotation (e.g., the face image at
around (40, 70)).

4.3. Human body pose estimation

Another interesting problem is to estimate the human
body pose from a silhouette image. It is advantageous to
apply DRR techniques as one often wants to find the intrin-
sic low-dimensional (2D or 3D as is widely believed) rep-
resentation of the input image in predicting the body pose.

We use the walking sequence of length ∼ 400 (contain-
ing about 3 walking cycles) obtained from the CMU mo-
tion capture database14. The output y is composed of 59

14Available at http://mocap.cs.cmu.edu.



t=56 t=62 t=68 t=73 t=85 t=97 t=105 t=110 t=120

Figure 4. Selected skeleton and silhouette images for a half walk-
ing cycle: From stand-up (t = 56), right-leg forwarding, left-leg
catching-up, and back to stand-up (t = 120). The skeleton images
are drawn using the 3D joint angles.

Input Space COIR KSIR KPCA Image x

NN Regression 6.1782 8.9054 8.6592 6.5151
GP Regression 5.8632 8.1602 8.5436 5.9535

Table 1. Test (RMS) errors in 3D body pose estimation.

3D joint angles at 31 articulation points. The input x is the
silhouette image of size (160 × 100) taken at a side view.
As the silhouette image is ambiguous in discriminating two
opposite poses with left/right arms/legs switched, we focus
on a half cycle as shown in Fig. 4.

Trained on the first 80% of the frames, the 2D central
subspaces estimated by COIR, KSIR, and KPCA are shown
in Fig. 5. COIR yields a circular trajectory unambiguous
within a half cycle. On the other hand, KSIR is distorted at
the beginning/end of the half cycle. Especially, the points
at t = 62 and t = 110 adjoin each other too closely, which
would result in a large estimation error in pose prediction.
This illustrates that KSIR’s slicing-based estimation is unre-
liable for high-dimensional output. Note that the unsuper-
vised KPCA shows a much severer distortion than KSIR.
Moreover, COIR generalizes well for the test (red) points.

The actual regression estimation is also conducted. We
employ two most popular regression methods: the nearest
neighbor (NN) and the Gaussian Process (GP) regression15

[18]. See Table 1 for the test RMS errors. Even though
the regressors are built on the dimension-reduced (2D) input
space, the prediction performance of COIR is never worse
than that based on the silhouette image x itself as input. On
the other hand, dimension reduction by KSIR (or KPCA)
entails significant loss of information in predicting the out-
put.

4.4. Hand-written digit image reconstruction

To test the behavior of COIR on high-dimensional out-
put data we devise an image denoising experiment with the
USPS hand-written digit images [8]. By adding random
scratch lines with varying thickness and orientation on the
normalized (16 × 16) digit images, the task is to denoise
or reconstruct the image. So, the regression problem is to

15For the multiple output regression, we assume independent GP priors,
which results in independent GP prediction for each output dimension [7].

Input Space COIR KSIR Image x

NN Regression 8.5334 11.4909 9.3605
GP Regression 8.1454 10.7259 9.1036

Table 2. Test (RMS) errors in scratched digit image denoising.

Figure 6. Denoising USPS scratched digit images. Each 5-tuple
is composed of, from left to right, (1st) the noise-free test image,
(2nd) randomly scratched image, (3rd) denoised by NN on COIR,
(4th) NN on KSIR, and (5th) NN on the scratched image x itself.

predict the original unscratched image (output y) from the
scratched image (input x). Both y and x are of 256-dim.

From the database, we use a subset of 2000 images for
training and another 2000 for testing. The central subspace
dimension is chosen as 30. The test reconstruction (de-
noising) RMS errors are shown in Table 2, while some of
the denoised test images by the NN regression are depicted
in Fig. 6. We can see that COIR is robust to noise with
improved prediction accuracy compared to the regression
based on the image input itself. KSIR again suffers from
unreliable slicing-based estimation in the high dimensional
output space.

5. Conclusion

The DRR framework, as a supervised dimension reduc-
tion with a real multivariate label, is useful for visualization
of high dimensional data, efficient regressor design with a
reduced input dimension, and elimination of noise in input
data by uncovering the essential information for predicting
output. We have proposed a novel nonlinear method for
DRR that exploits the kernel matrices of the input and the
output using the covariance operators in RKHS. In a com-
prehensive set of evaluations, we have demonstrated that
our approach can successfully discover central subspaces
reliably and robustly for high dimensional noisy data. In
future work, we plan to extend the framework to a semi-
supervised setting to take advantage of large datasets with
sparsely labeled data.
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Figure 5. Central subspaces for silhouette images from walking motion: The blue (red) points indicate train (test) data points.
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Appendix: Proof of Thm. 2
To prove Thm. 2, we need the following lemma which states

that Σyy|x is tightly related to the optimal linear (in RKHS) re-
gressor in terms of the variance of the error. More specifically,
when we regress from x to g(y) for a given g ∈ Hy, the variance
of the prediction error cannot be smaller than g>Σyy|xg.

Lemma 3. For any g ∈ Hy, inff∈Hx V(g(y) − f(x)) =
inff∈Hx V(g>Φ(y) − f>Φ(x)) = g>Σyy|xg.

Proof. From the co-linearity of Cov(·, ·), V(g>Φ(y) −
f>Φ(x)) = Cov(g>Φ(y) − f>Φ(x),g>Φ(y) − f>Φ(x)) =
g>Σyyg− 2f>Σxyg+ f>Σxxf . As the latter is quadratic (con-
vex) in f , by taking the gradient to 0, namely, ∂f = −2Σxyg +
2Σxxf = 0, its infimum is found at f∗ = Σ−1

xxΣxyg. Plugging
f∗ back yields g>Σyy|xg.

From Lemma 3 and the well-known E-V-V-E identity,
we have g>Σyy|xg = inff∈Hx V(g(y) − f(x)) =

inff∈Hx

n
E[V(g(y) − f(x)|x)] + V(E[g(y) − f(x)|x])

o
=

E[V(g(y)|x)] + inff∈Hx V(E[g(y)|x] − f(x)). Note that the
second term is non-negative. From the assumption, as there al-
ways exists f ∈ Hx that makes the second term 0, g>Σyy|xg =
E[V(g(y)|x)] = g>E[V(Φ(y)|x)]g for any g ∈ Hy. This com-
pletes the proof.


