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Abstract

Learning a discriminant becomes substantially more dif-

ficult when the datasets are high-dimensional and the avail-

able samples are few. This is often the case in computer

vision and medical diagnosis applications. A novel Conic

Section classifier (CSC) was recently introduced in the lit-

erature to handle such datasets, wherein each class was

represented by a conic section parameterized by its focus,

directrix and eccentricity. The discriminant boundary was

the locus of all points that are equi-eccentric relative to

each class-representative conic section. Simpler bound-

aries were preferred for the sake of generalizability.

In this paper, we improve the performance of the two-

class classifier via a large margin pursuit. When formulated

as a non-linear optimization problem, the margin computa-

tion is demonstrated to be hard, especially due to the high

dimensionality of the data. Instead, we present a geometric

algorithm to compute the distance of a point to the non-

linear discriminant boundary generated by the CSC in the

input space. We then introduce a large margin pursuit in

the learning phase so as to enhance the generalization ca-

pacity of the classifier. We validate the algorithm on real

datasets and show favorable classification rates in compar-

ison to many existing state-of-the-art binary classifiers as

well as the CSC without margin pursuit.

1. Introduction

The task of supervised learning becomes remarkably dif-

ficult when the number of training samples available is

far fewer than the number of features used to represent

each sample. We encounter such high dimensional sparse

datasets in several computer vision and learning applica-

tions, such as in the diagnosis of Epilepsy based on brain

MRI scans [7], the diagnosis of various types of Can-

cer from micro-array gene expression data [1], and speech

recognition. Stated formally, the supervised learning prob-
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lem is severely under constrained when one is given N la-

beled data points that lie in R
M where N ≪M .

A novel Conic Section classifier (CSC) was recently in-

troduced [3] in the literature, to cater to such learning prob-

lem instances. The classifier represents each class by a

conic section in the input space, parameterized by its focus,

directrix and eccentricity. For data from two-classes lying

in R
M , the highly non-linear discriminant boundary gen-

erated by the CSC was shown to be fully specifiable using

merely 4(M + 1) parameters. In contrast, the kernel based

SVM [11] and the Kernel Fisher Discriminant (KFD) [8]

have O(NM) parameters. The classifier assigns labels to

input data points based on their distances in the space of ec-

centricities (ecc-Space), to their respective class eccentric

descriptors. The performance of the classifier was demon-

strated to be comparable to most state-of-the-art classifiers.

1.1. Motivation

The Conic Section classifier pursued simpler discrimi-

nants in the learning phase to improve upon its generaliza-

tion capacity. It was found that as the discriminant boundary

became non-linear, the empirical error did reduce. How-

ever, this came at the expense of generalizability unless

a large margin was achieved. In order to improve upon

the generalizability of the CSC, in this paper we pursue a

large margin [11] between data points and the discrimi-

nant boundary, in the input space. We describe a geometric

method to compute the distance of a point (and, as a result,

the margin) to the non-linear discriminant boundary gener-

ated by the CSC in the input space. The learning algorithm

for the CSC is then modified to pursue a large margin.

As is well known, the expected (testing) error of a clas-

sifier is bounded from above by the sum of the expected

empirical (training) error and a generalization term that de-

pends on its VC dimension [11]. The discriminant bound-

aries generated by the CSC belong to the family of polyno-

mials and thus have finite VC dimension [11]. Upon intro-

ducing the margin constraints, it can be shown that the VC

dimension of the CSC becomes quasi-independent of the di-

mensionality of the input space, as in the case of SVMs [11].
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The remainder of the paper is structured as follows. The

Conic Section concept class is reviewed in Section 2. The

learning algorithm involving incremental updates to these

conic section descriptors for each class so as to better clas-

sify the data, is briefly discussed in Section 2.1 (we refer

the reader to [3] for a more in-depth description). A novel

algorithm to compute margin to the resultant discriminant

boundary is presented in Section 3. This method is used to

pursue a large margin discriminant in the input space. Vali-

dation results for margin computation are discussed in Sec-

tion 4. Classification accuracy comparisons from several

classifiers are reported for various datasets in Section 5.

2. The Conic Section Classifier

A conic section is defined as the locus of points for which

the ratio of the distance to a fixed point (the focus) to that

to a fixed hyperplane (the directrix), is a constant e (the ec-

centricity). When e is set to a value < 1, = 1 and > 1, we

obtain an ellipse, a parabola and a hyperbola, respectively.

The concept class for a two-class problem in R
M is defined

as follows. Each member class k for k = 1, 2 is associ-

ated with a conic section specified by the set of descriptors,

Ck = {Fk, {bk, Qk}, ek}, where Fk is the focus, {bk, Qk}
specifies the directrix hyperplane of co-dimension 1 (Qk is

its unit normal and bk is its offset from the origin), and ek

is the class eccentricity. The focus and directrix descriptors

of each class attribute an eccentricity value to each point X

in the input space, as

εk(X) =
‖X − Fk‖

bk + QT
k X

; where, ‖Qk‖ = 1 (1)

‖.‖ denotes the Euclidean L2 norm. The class descriptors

map X into the eccentricity space (ecc-Space) as ξ(X) =
〈ε1(X), ε2(X)〉 ∈ R

2. The distance of X from conic sec-

tion Ck is defined as dist(X, Ck) = |εk(X) − ek|. The

classifier assigns X to the class whose conic section is clos-

est to X . The resultant discriminant boundary, G, is the

locus of points such that {g(X) = 0}, where

g(X) = |ε1(X)− e1| − |ε2(X)− e2| (2)

With merely 4(M + 1) parameters, the classifier can repre-

sent a pair of polynomial surfaces whose degree is at most

eight. Example boundaries in R
3 are illustrated in Fig. 1.

2.1. The Learning Algorithm

In this section, we briefly describe the incremental Conic

Section learning algorithm presented in [3], for the two-

class classification problem. Given a set of N labeled sam-

ples Z = {〈X1, y1〉, . . . , 〈XN , yN 〉}, where Xi ∈ R
M and

labels yi ∈ {−1, +1}, the objective is to learn the conic

section descriptors, C1, C2, that simultaneously minimize

the misclassification error and seek a simpler discriminant

boundary. The data is assumed to be sparse in a very high

dimensional input space, i.e., N ≪M .

The process of learning the noted descriptors has two

principal stages, played out in the input space R
M and the

ecc-Space, respectively. The relationship between these

two spaces is given by the map ξ, which depends on the

conic section descriptors for each class. In the first stage,

given C1 and C2, each Xi is mapped into ecc-Space as

〈ε1(Xi), ε2(Xi)〉. These values are sufficient to compute

a pair of class eccentricities 〈e1, e2〉 that improves the em-

pirical learning accuracy. For each misclassified sample,

one can then find a desired pair of attributed eccentricities,

denoted as 〈ε′
1i, ε

′

2i〉, that would correctly classify it.

In the second stage, the focus and the directrix descrip-

tors are alternately modified via a geometric algorithm to

learn the map ξ. The map ξ is constrained to achieve the

desired attributed eccentricities for the misclassified sam-

ples, without affecting the eccentricities of those samples

that are already classified correctly. The process is repeated

until the descriptors converge or there can be no further im-

provement in classification. To exercise a tight control on

learning, the descriptors are updated to learn only one mis-

classified point at a time. Each misclassified point results in

a descriptor update. It is here, that we can improve the gen-

eralization capacity of the classifier by picking the update

that gives the largest margin.

The learning rate is non-decreasing since the algorithm

does not misclassify a previously correctly classified point.

A notable feature of the technique is its ability to track the

entire feasible set for a descriptor, labeled as Null Space,

that would map the data points to fixed attributed eccentric-

ities, using simple geometric constructs.

3. The Margin Computation

The generalizability of a classifier can be improved by

pursuing larger margins, as discussed in Section 1.1. We

define the margin as the minimum over the distances of

all the correctly classified data points, to the discriminant

boundary. In order to compute the margin, we first have to

find the shortest distance of a point, say P ∈ R
M , to the

discriminant boundary G (Eqn.2). When formulated as an

optimization problem (Eqn.3) with the non-linear constraint

(Eqn.2), the distance computation is NP-hard in general.

dist(P,G) = min ‖P −X‖2, subject to g(X) = 0 (3)

Although the objective function is quadratic in X , the

equality constraint is highly non-linear. The numerical so-

lution to Eqn.3 therefore works out to be very expensive.

Note that we have to compute the shortest distance from the

boundary to all the data points to determine the margin. For

each competing descriptor update, we compute its margin



so as to pick an update that yields the largest margin. This

task becomes especially difficult due to two reasons. First,

the discriminant boundary is a pair of polynomial surfaces

of degree at most eight. Second, the data lie in very high

dimensional space. We now introduce a novel geometric

approach to compute the margin.

3.1. Overview

The margin computation problem can be posed as find-

ing the smallest hypersphere S(P, r), centered at P with

radius r, that intersects with the discriminant boundary G.

Assuming we can evaluate the existence/lack of G∩S(P, r),
the smallest radius is computed by performing a binary

search on r ∈ (0, rp). The initial radius rp is obtained

by finding a point Z0 lying on the discriminant boundary

G. Following is a method to find such a point. From the

given labeled data set, pick a pair of data points, one from

each side of the boundary, (see Eqn.2). Existence of such a

point pair is guaranteed by our initial discriminant bound-

ary. A binary search on the line joining this pair of data

points gives us a point Z0 ∈ G and hence an upper bound,

say rp, on the shortest distance of a given point P to G.

Consider now sections of the boundary G for which the

distances to either both the directrix planes or both the focal

points are held fixed. As a consequence of certain geometric

observations, we shall demonstrate that the existence/lack

of intersection of the hypersphere S with any such section

of the discriminant boundary can be determined analyti-

cally. The shortest distance of a point to these sections of the

discriminant boundary can be computed in O(NM) time.

We propose an iterative algorithm that alternately updates

the shortest distances to these sections so as to find a point

on the discriminant boundary, nearest to P . An overview of

the technique is presented in Algorithm-1. Next, we present

algorithms to evaluate G ∩ S(P, r).

3.2. Spanning the Discriminant Boundary G

The discriminant boundary (Eqn.2) can also be written

as the implicit function:

((r1 − e1h1)h2) ± ((r2 − e2h2)h1) = 0, (4)

rk(X) = ‖X − Fk‖, ∀k ∈ 1, 2 (5)

hk(X) = XT Qk + bk, ∀k ∈ 1, 2 (6)

where rk, and hk are distances to the focus and directrix de-

scriptors respectively. In order to evaluate the intersection,

G ∩ S(P, r), we need to ascertain if g(X) changes sign on

the hypersphere, S. The distances rk , and hk are bounded

now, since X ∈ S(P, r). As a first pass, we can search for

such a change in the sign of g(X) by evaluating g(X) at

discretized distances in a bounded interval, for each valid

combination of {h1, h2, r1, r2}.

For any point X ∈ S, the distance hk(X) is bounded to

be within [hk(P )−rp, hk(P )+rp] due to Eqn.6. Similarly,

rk (Eqn.5) is bounded to be within [|rk(P )− rp|, rk(P ) +
rp]. If we discretize each parameter at O(N) locations,

the cost of evaluating an intersection is O(N4M), which

is expensive. In subsequent sections, we introduce a faster

O(M) algorithm to compute the intersection of the hyper-

sphere S with particular sections of the boundary G.

3.3. Finding Nearest Point for fixed {h1(X), h2(X)}

Here, we first determine if the hypersphere S intersects

with the section of the boundary for which the distances to

the directrices are fixed. Consider a subspace H in which

all the points are at some fixed distances (h1, h2) from the

two directrices {bk, Qk} for k=1,2. Such a space H turns

out to be a linear subspace of co-dimension 2 in R
M , i.e.

the intersection of two hyperplanes. With these constraints,

the boundary G (Eqn.2) inH can also be written as:

‖X − F2‖ = m‖X − F1‖+ c (7)

where, m = ±
h2

h1

, c = h2(e2 ∓ e1),

Since H ≡ R
M−2, let us track the section of the discrimi-

nant boundary,G∩H. Let X ∈ H and the distance between

a focus point Fk and its orthogonal projection F ′

k in H, be

sk = ‖Fk−F ′

k‖. Given (h1, h2), the section of the discrim-

inant boundary, G ∩ H then becomes

√

‖X − F ′

2
‖2 + s2

2
= m

√

‖X − F ′

1
‖2 + s2

1
+ c (8)

Fig. 1(c) illustrates the points {X, F ′

1
, F ′

2
} ∈ H, related to

Eqn.8 for G ∩ H. Any point P ∈ R
M can be orthogonally

projected intoH with the equations below. The coefficients

(u, v) in Eqn.9 are obtained by solving the constraints for

H given in Eqn.10.

P ′ = P − (uQ1 + vQ2), P ′ ∈ H (9)

with, QT
k P ′ + bk = hk, ∀k ∈ 1, 2 (10)

Thus, G∩H is fully specified by elements lying inH. We

are now interested in finding out if the hypersphere S(P, r)
intersects with G ∩H. Further, S ∩H can be represented as

a hypersphere S′ ∈ F centered at the projected data point

P ′ ∈ H with radius r′, derived from Eqn. 9. Owing to sym-

metry, the intersection between the section of the boundary,

G ∩ H, and the hypersphere S′ needs to be checked only in

the plane comprising {P ′, F ′

1
, F ′

2
}.

We can deduce from Eqn. 8 that the discriminant bound-

ary in H is radially symmetric about the line joining F ′

1

and F ′

2. Let α be the length of the component of X along

(F ′

2
−F ′

1
) and β be the length of its orthogonal component in

the plane defined by {P ′, F ′

1
, F ′

2
}, as illustrated in Fig. 1(d).
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Figure 1. (a,b) Different examples of discriminant boundaries in R
3. (c) {X, F ′

1, F
′

2} ∈ H, the linear subspace in which distances to

directrices are constant (see Eqn.8). (d) The discriminant boundary in H becomes a quartic in (α, β) (see Eqn.11).

Let f = ‖F ′

2
− F ′

1
‖. After translating the projected origin,

O′ ∈ H to F ′

1
, the boundary becomes a quartic polynomial

in the two variables (α, β), as in Eqn.11. Also, the equation

of the hypersphere S′(P ′, r′) reduces to the circle, Eqn.12.

Here, (αp, βp) are the components of P ′ along and across

the line joining F ′

2 and F ′

1.

√

(α− f)2 + β2 + s2
2

= m

√

α2 + β2 + s2
1

+ c (11)

(α − αp)
2 + (β − βp)

2 = (r′)2 (12)

Upon intersecting the two geometric objects due to

Eqns. 11, 12, we obtain a quartic equation in α after elim-

inating β. For any quartic polynomial in one variable, we

can check for the existence of real roots [4] and compute

them explicitly [10], if necessary. Thus, we determine the

intersection, S ∩ (G ∩ H), in O(M) time.

Assume that we begin with a hypersphere S having an

initial radius ro that is guaranteed to intersect with the sec-

tion of the discriminant boundary in H, i.e G ∩ H. All that

remains to be done is to conduct a binary search on the ra-

dius of S in the interval (0, ro] to find the shortest distance

between P and the discriminant surface in H. Moreover,

we can explicitly determine the nearest point on the section

G ∩ H, say Z , from the polynomial roots (α, β), and the

points {P ′, F ′

1, F
′

2}.

3.4. Finding Nearest Point for fixed {r1(X), r2(X)}

In this section, we determine if the hypersphere S(P, r)
intersects with the part of the discriminant boundary in

which distances to the foci are constant (Eqn.4). The locus

of all the points that are at fixed distances {r1, r2, r} from

the points {F1, F2, P} respectively, can be constructed by

computing the intersection:

S(P, r) ∩ S(F1, r1) ∩ S(F2, r2) ≡ S
′(C, r′) ∈ F (13)

where S′ is a hypersphere in the linear subspace F of co-

dimension 2 in R
M . This can be understood from an ana-

logue in R
3: The intersection of two spheres in R

3 is a circle

lying within the plane of intersection. An O(K2M) algo-

rithm was presented in [3] to compute the intersection of K

hyperspheres. We compute the intersection of three spheres

here, hence K = 3. The problem is now reduced to deter-

mining the intersection G ∩ S′. After translating the origin

to C ∈ F , any point X in R
Mcan be projected into F as:

X ′ = X − (XT U1)U1 − (XT U2)U2 (14)

where, {U1, U2} are two orthonormal vectors perpendicular

to F . The section of the discriminant boundary G in F for

a given pair of fixed focal distances (r1, r2), now becomes:

(
r1

h1(X ′)
− e1)± (

r2

h2(X ′)
− e2) = 0 (15)

which upon re-arrangement of terms results in a quadratic

implicit surface equation in X ′. Eqn.15 represents G ∩
F lying in F . The intersection of the directrix hyper-

plane, X ′T Qk + bk = 0, with F can be equivalently rep-

resented as XT Q′

k + bk = 0. Here, X ∈ F and Q′

k is the

component of unit normal Qk in F , obtained from Eqn.14.

Now G ∩ F is fully specified by elements lying in F .

We make a crucial geometric observation here. Within

F , the discriminant function (Eqn.15) is invariant to trans-

lations normal to the plane spanned by {Q′

1, Q
′

2}. We now

exploit the fact that G ∩ F is a function only of the dis-

tances to the directrix planes in the linear subspaceF . Since

S′(C, r′) is a hypersphere, it is sufficient to investigate the

intersection of interest, i.e. S′ ∩ (G ∩ F), in the plane

spanned by {Q′

1
, Q′

2
} and passing through C, the center

of the hypersphere S′. Any point X in such a plane can be

expressed as :

X = C + αQ′

1
+ βQ′

2
(16)

The section of the boundary G ∩ F (Eqn.15), in this plane,

reduces to a quadratic curve in parameters (α, β). The hy-

persphere S′(C, r′) in this plane becomes a (quadratic) cir-

cle, ‖X(α, β) − C‖ = r′, in parameters (α, β). Again,

the intersection of these two geometric objects, obtained by

eliminating β, yields a quartic polynomial in α. We can an-

alytically find if real roots exist for a given quartic [4] and

compute them exactly [10].

We described an O(M) algorithm to find if the intersec-

tion, S ∩ (G ∩ F), exists. The shortest distance of a point

P to the section of the boundary G, in which the focal dis-

tances are constant, is computed via a binary search on the



radius of the initial hypersphere S(P, r) within the interval

(0, r0]. At the end of the binary search, we also compute

the nearest point on the section, say Z ′(α, β), from Eqn.16.

3.5. Large Margin Pursuit

As summarized in Algorithm-1, we alternately find the

shortest distance to sections of the discriminant boundary,

G, with distances to either the foci or directrices fixed. To

begin, the fixed distances, (h1, h2), to the directrices are

obtained from the initial point Z0 on G. We then compute

the point Z , that is nearest to P in the section G ∩ H. The

fixed distances, (r1, r2), to the foci are determined by Z for

finding the nearest point, Z ′ in that section of the boundary.

In this fashion, the nearest point in each section is used to

define the next section.

Data: Data points set Z , Conic Descriptors C1, C2

Result: Margin between point set Z and boundary G
Find a point Z0 on G
for each Point P ∈ Z do

Initial Distance mi = ‖P − Z0‖, Z ′ = Z0

repeat
Find closest Z ∈ G for fixed {h1(Z

′), h2(Z
′)}

Find closest Z ′ ∈ G for fixed {r1(Z), r2(Z)}
until Z converges

Point Distance mi = ‖P − Z‖
end

margin←min{mi}

Algorithm 1: Margin computation

The alternating process is repeated until either the dis-

tance to the boundary converges or an O(N) iteration limit

is reached. The number of steps in all the binary searches is

limited to O(N). The complexity of computing the short-

est distance of a point to the boundary G in this manner,

is O(N2M). The margin for a set of at most N points

and a given conic configuration {C1, C2} is computed in

O(N3M) time. Similar to the numerical optimization tech-

nique (Eqn.3), the margin computation could be prone to

local minima. However, we observed that the computation

times are several orders of magnitude smaller than those

for techniques involving either the numerical optimization

(Eqn.3) or the discretization approach (Section-3.2). In the

learning phase, among a set of competing updates for a

conic section descriptor, we pick the one resulting in the

largest margin. We also avoid an update if it reduces the

current margin without improving the learning accuracy.

4. Evaluating Margin Computation

The margin computation is employed in the learning al-

gorithm to choose a CSC descriptor update that yields larger

margin. In this section, we evaluate the accuracy of such a

CSC Boundary Selection Margin Error

Types Accuracy % µ σ

Linear only 100.0 -.00087 .001413

Linear + non-linear 96.40 .000011 .004877

Non-linear 78.39 .01706 .022756

Highly non-linear 73.96 .03889 .034711

Table 1. Given a pair of CSC descriptor sets, the accuracy of pick-

ing the one with larger margin is compared for varying boundary

types. The last two columns list errors in margin computation.

selection and compare margins obtained using our method

with the true ones. We considered Colon Tumor data [1]

that has 62 samples with 2000 features each, and projected

it into R
5 using a whitening transform so that its covariance

matrix is identity. To compute the true margins (Section-

3.2), we performed brute-force search for change in sign of

g(X) on S(P, r) so as to determine an intersection.

We considered discriminant boundaries of successively

higher complexity. In the initial configuration for the re-

sults in Table-1, the directrices are coincident, the line join-

ing foci is parallel to the directrix normal, say Q, and the

class eccentricities are both zeros. This ensures that the dis-

criminant boundary is always linear [3]. Upon making the

eccentricities unequal, the boundary turns into a pair of lin-

ear and non-linear surfaces. Once the line joining the foci

is not parallel to Q, the boundaries become non-linear. In

the last case, the directrices are not coincident, resulting in

highly non-linear boundaries.

For each boundary type, 20 CSC descriptors were ran-

domly generated and the errors in margin computation are

listed in Table-1. It can be seen that our approximations are

reliable for simpler boundaries. Given each possible pair

of competing descriptors, we verify if our method picked

the configuration with larger margins. We observed that for

near-linear and simpler boundaries, we selected the desired

update in more than 95% of the instances. Since the dis-

criminant turns out to be a collection of non-linear surfaces

in general, our method is prone to local minima.

5. Classification Results

We compared the classification accuracies of CSC with

the large margin pursuit (CSC-M) to CSC [3], as well as

other state-of-the-art classifiers such as linear and kernel

SVMs [11], and Fisher [5],[8] discriminants. We used poly-

nomial kernels for the kernel based classifiers. The degree

of the polynomial was empirically determined. Unless oth-

erwise noted, all the classification experiments were per-

formed using a leave-one-out cross validation protocol. The

discriminant for CSC-M was initialized with that generated

by either the linear SVM [11] or LFD [5]. In the learn-

ing phase, the competing conic-section descriptor updates

were allowed to increase the margin without losing training



Dataset Samples Features CSC-M CSC LFD Lin-SVM KFD PLY SVM PLY

Epilepsy 44 216 93.18 88.64 77.27 56.18 86.36 (1) 86.36 (6)

Isolet-BC 100 617 92.00 84.00 81.00 91.00 91.00 (2) 91.00 (1)

CNS 60 7129 70.00 73.33 51.67 68.33 65.00 (3) 68.33 (1)

Colon Tumor 62 2000 87.10 87.10 85.48 80.56 75.81 (1) 82.26 (2)

Leukemia 72 7129 97.22 98.61 97.22 97.22 98.61 (1) 97.22 (1)

HWdigits35 400 649 96.00 96.25 85.25 95.75 97.75 (3) 95.75 (1)

Table 2. Classification accuracies for the Conic Section Classifier with margin pursuit (CSC-M), CSC, (Linear & Kernel) Fisher Discrimi-

nants and SVMs with polynomial (PLY) kernels. The degree of polynomial kernel is in parentheses.

classification accuracy. The CSC introduced in [3], pursued

simpler boundaries in the learning phase to enhance gen-

eralizability. The classification results for six high dimen-

sional sparse datasets pertaining to applications in computer

vision and medical diagnosis, are listed in Table-2.

The Epilepsy dataset [7] consists of 3D Histograms of

displacement vector fields representing the non-rigid regis-

tration between the left and right hippocampi in 3D. The

task is to distinguish between Left and Right Anterior Tem-

poral Lobe (RATL) epileptics. The dataset includes features

for 19 LATL and 25 RATL epileptic subjects. The feature

vector length, which depended on the number of 3D bins

used, was empirically determined. All the classifiers per-

formed well with a 6×6×6 binning of the displacement

field, except KFD for which we used a 16×16×16 bin-

ning. As listed in Table-2, CSC with margin pursuit (CSC-

M) achieved an impressive 93% testing accuracy, clearly

outperforming all the other classifiers.

The Isolet-BC dataset is a part of the Isolet Spoken Let-

ter Recognition Database [2]. We considered 50 speech

samples each, for alphabets B and C. CSC-M classifier out-

performed all the other classifiers, with a large improvement

over CSC without margin pursuit. The HWdigits35 data is

a part of the Hand-written Digits dataset [2]. It has 200 sam-

ples of each digit, and around 649 features for each sample.

We classified the digits three and five, as they turned out to

be a difficult pair. We report 10-fold cross-validation ex-

periments for these two datasets. The next three datasets

involve gene-expression features. The CNS dataset [9] con-

tains treatment outcomes for central nervous system embry-

onal tumor on 60 patients, which includes 21 survivors and

39 failures. The Colon Tumor data [1] consists of 22 nor-

mal and 40 tumor colon tissue features. In the Leukemia

cancer class discovery [6], the task is to discriminate be-

tween 25 acute myeloid leukemia (AML) and 47 acute lym-

phoblastic leukemia (ALL) samples.

Overall, the performance of CSC-M improved signifi-

cantly over that without the margin pursuit, for the Epilepsy

and Isolet-BC datasets. CSC-M almost matched CSC in the

remaining four experiments in Table-2, as both the meth-

ods are susceptible to achieving local optima w.r.t. learning

the optimal descriptors. The performance of linear-SVM is

comparable to that of CSC-M for Isolet-BC, HWdigits35

and Leukemia datasets, since the large margin discriminant

can turn out to be near-linear.

6. Summary

In this paper, we proposed a novel geometric algorithm

to compute margin to discriminant boundaries resulting

from the Conic Section classifier. This technique was then

used to maximize margin while learning conic section de-

scriptors for each class, so as to improve upon the general-

izability of the classifier. The classification performance of

the classifier did improve on real datasets, due to enhance-

ment of the learning method with a large margin pursuit.
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