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Abstract

Learning a robust projection with a small number of

training samples is still a challenging problem in face

recognition, especially when the unseen faces have ex-

treme variation in pose, illumination, and facial expression.

To address this problem, we propose a framework formu-

lated under statistical learning theory that facilitates robust

learning of a discriminative projection. Dimensionality re-

duction using the projection matrix is combined with a lin-

ear classifier in the regularized framework of lasso regres-

sion. The projection matrix in conjunction with the clas-

sifier parameters are then found by solving an optimiza-

tion problem over the Stiefel manifold. The experimental

results on standard face databases suggest that the pro-

posed method outperforms some recent regularized tech-

niques when the number of training samples is small.

1. Introduction

Face recognition is an active area of research in pattern

recognition. Although the dimensionality of the problem

is high, the useful information for classification resides in

a much lower dimensional manifold. In the face recogni-

tion context, techniques for dimensionality reduction, either

unsupervised like principal component analysis (PCA) [27]

or supervised like linear discriminant analysis (LDA) [2],

have been developed. The traditional approach is based on

the power of linear algebra to find a linear subspace for di-

mensionality reduction and the majority of techniques find

a set of eigenvectors derived from a certain formulation. For

example, it is the maximum variance under PCA or maxi-

mum discrimination ratio of the between-class and within-

class variances in the reduced subspace under LDA [2]. Re-

cent approaches to dimensionality reduction use a nonlinear

manifold [9, 25]. Despite its simplicity in formulation, lin-

ear subspace techniques perform very well in practice over

a wide range of face databases, with the advantage of rela-

tively low computational cost. This implies that in the com-

monly used face databases, the assumption of a linear face

manifold is still a reasonable one.

With dimensionality reduction, typically the system is

divided into two stages wherein dimensionality reduction

takes place first and the actual classification follows. Un-

der unsupervised approaches such as PCA, the two stages

are completely independent and the projection is only op-

timal in a sense of, for example, preserving the data vari-

ance (i.e., keeping the most interesting directions). In con-

trast, supervised techniques like LDA find a projection that

is more suitable for the classification stage. By projecting

the original data into a much smaller dimensional space,

one implicit advantage is that the effective noise in the orig-

inal data can be reduced. The formulation in the second

stage leads to a different supervised linear projection. For

example, a family of linear projection techniques such as lo-

cality preserving projection (LPP) [13], orthogonal Lapla-

cianfaces (OLPP) [4] and Fisherfaces [2, 5] when viewed

under a generalized graph embedding framework [29] resort

to different choices of the graph configurations. The choices

imply either the local structure is preserved when projected

or the ratio of between-class and within-class variances is

maximized.

However, it is noted that the majority of linear projec-

tion techniques are based on an implicit assumption of near-

est neighbor classification. This assumption leads to the

need to preserve local structure in the low dimensional sub-

space. The nearest neighbor approach is a simple, yet effec-

tive multiclass classifier. However, it might not be the opti-

mal choice when training images do not have clear nearest

neighbor characteristics.

In this work, we propose to make the classification stage

explicit in the formulation to find the linear projection un-

der a statistical learning theory framework [28]. To do so,

we select a family of linear classifiers as the hypothesis

space of learning functions and select ℓ1-norm for regular-

ization, which turns into a multivariate, lasso-based classi-

fier. The objective function is then the ℓ1-regularized em-
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pirical risk. As the classifier is designed for the projected

subspace, the projection matrix to be learned automatically

enters the above regularized formulation. We then apply

optimization theory to derive an algorithm that finds this

projection matrix and its matching linear classifier over the

Stiefel manifold. Doing so gives us two advantages. Firstly,

the formulation solves the problem in a rigorous statistical

framework. Secondly, the projection matrix found is ro-

bust to small numbers of training samples as it inherits good

generalization ability when paired with the classifier found

under this framework.

When viewed under the information-theoretic perspec-

tive, our proposed framework can be regarded as joint

source and channel coding [8]. We note that the recent work

of [16] also employs this concept and the projection matrix

is found by maximizing the effective information over the

Grassman manifold. However, we believe that the effec-

tive information, just as in the case of pure empirical risk,

can face the problem of overfitting with small training size,

as no regularization is involved. Recently published work

[5] clearly indicates that regularization is the key to success

when dealing with small training size.

The paper is organized as follows. To facilitate readabil-

ity, the background in embedded in relevant sections and

not separated out. In Section II, we describe our proposed

general framework for robust learning of the linear projec-

tion. In Section III, we apply the multivariate lasso method

and derive an algorithm for learning this linear projection

over the Stiefel manifold. Section IV contains experimental

results on standard face databases that show the advantages

of our proposed method over some recently proposed tech-

niques. Finally, Section V contains concluding remarks.

2. Proposed Learning Framework

Original Projection Reduced Classifier
Decision

Dimensionality Reduction Classification

x zP C

Figure 1. Supervised learning of projection matrix.

Consider the original input data, presented in vector for-

mat x ∈ R
n. A linear projection P ∈ R

n×k projects the

original input data x to z = PT x. This projection not only

reduces the dimension to k ≪ n but also suppresses ef-

fective noise in the original data before passing z to the

classifier C (see Fig. 1). In an unsupervised manner, the

projection P can be chosen independently of the classifier

C. In a supervised manner, the projection P is chosen so as

to ensure, for example, in the case of nearest neighbor clas-

sification, local or global similarity in the original domain

x is preserved in the reduced space z. This requirement of-

ten intuitively translates to generalized eigenvalue problems

and the projection matrix P can be solved in a regularized

or unregularized manner [4].

However, nearest neighbor is not the only choice for the

structure of the classifier C. Following statistical learning

theory, in principle we can associate the structure of the

classifier with a family of learning functions f(z) in the hy-

pothesis space H. Under the empirical risk minimization

principle, one seeks to find the suitable learning function by

minimizing the empirical risk:

arg min
f∈H

Remp[f ]. (1)

When the number of training samples is small, one may

wish to avoid overfitting and improve generalization ability

by using a regularized version:

arg min
f∈H

Remp[f ] + Rreg[f ]. (2)

Such regularization would favor certain smoothing charac-

teristics of the learning functions in the given hypothesis

space [21]. Some form of regularization would have direct

meaning, such as maximizing the margin in the case of sup-

port vector machines (SVM).

Recall that the reduced space z is obtained as the projec-

tion from x. Hence, in order to find a discriminative projec-

tion for the specified structure of the classifier, we propose

to solve the following regularized empirical risk problem

arg min
P,f∈H

Remp[f(PT x)] + Rreg[f(PT x)] (3)

subject to the condition PT P = I and rank(P) = k. The

set of such orthogonal projection matrices P is either the

Grassmann or Stiefel manifold depending on the objective

function [10].

The difficulty of the optimization problem (3) depends

on the hypothesis space and the regularization form. Even

if the class of functions is easy enough, the global solution

might not be available, as it may not be convex in both P

and f . We therefore resort to a sub-optimal solution using

a sequential minimization technique, that seeks to alternate

between P and f , and solve for each one at a time, so that

at least a local solution can be found. In the next section,

we describe our special choice of the loss function and the

linear classifier structure.

3. Multivariate Lasso Regression

3.1. Multivariate embedding

In order to cater for multi-category classification using a

regression technique, the simplest way is to do is to build a

binary classifier for each category against the rest. The other
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Figure 2. Illustration of the embedding symmetric simplex for the

case k = 4. The linear function will enforce the mapping of

each datapoint from each class to its target point in this embed-

ded space.

approach is to generalize to multivariate regression [24]. Ef-

fectively, the class labels are embedded in this multivariate

regression space, where each vertex yi = [y1
i , . . . , yk−1

i ]T

is the central or target point of a class. An embedded point

closest to yi will be classified as belonging to class i (see

Fig. 2 for an example with k = 4). Suppose the linear re-

gression model is used. If the input data is centralized and

the intercept is set to zero, then it is relevant to consider the

symmetric simplex as described in [1, 15]. It is also straight-

forward to see subsequently, the performance is invariant to

any permutation of class assignment to the vertices and any

rotation of the simplex.

3.2. Lasso

The lasso regression technique was introduced by Tib-

shirani [26] as a robust alternative to many existing meth-

ods such as subset selection and ridge regression. Consider

a linear regression model

yi = wT zi + β0, i = 1, . . . , L (4)

the lasso finds the regression parameters w via

arg min
w

L∑

i=1

(yi − wT zi − β0)
2,

subject to ‖ w ‖1≤ s. (5)

It can be shown that this problem is equivalent to

arg min
w

L∑

i=1

(yi − wT zi − β0)
2 + λ ‖ w ‖1, (6)

for a suitable value of λ, which is often found by cross-

validation. As can be seen, the difference to ridge regres-

sion is in the choice of ℓ1 norm regularization instead of

ℓ2. This is known to generate sparse coefficients. For re-

lated discussion, please see [12, 26]. We just note the im-

portant point that the lasso is considerably favorable over

other choices such as subset selection, ridge regression, and

Breiman’s garrote, for a number of statistical problems with

small number of observations [26]. As we specifically ad-

dress the issue of small training size, the choice of lasso is

justified.

When extending the lasso to the multivariate case with

y ∈ R
k−1, one considers the linear regression model

yi = WT zi + b, i = 1, . . . , L, (7)

where W = [w1, . . . ,wk−1]. When the embedding of yi

is symmetric and the input is centralized, we can set the

intercept b = 0. The optimization (6) can be written in

matrix form as follows

arg min
w

‖ Y − WT Z ‖2
F +λ ‖ W ‖1, (8)

where Y = [y1, . . . ,yL] and Z = [z1, . . . , zL]. When

both Z and Y are known, the lasso regression problem

can be solved numerically though an explicit solution is

not available. This is also known as ℓ1-norm regularized

least-squares problem. Techniques for solving ℓ1-norm reg-

ularized least-squares such as basis pursuit [17], matching

pursuit [7] etc. are readily available. We found that the lat-

est l1 ls package from Stanford [14] performs well and is

scalable to large problems with millions of variables. Other

ℓ1 solvers include [6, 7, 17, 23].

4. Optimization on the Stiefel Manifold

When the loss function is quadratic and the ℓ1-norm is

used for regularization, our proposed method is essentially

the lasso. We are motivated from the desired statistical

properties of the lasso as a regularized least squares method,

particularly suitable for small training sizes. In the view that

Z = PT X we propose to jointly find the linear projection

P and select the suitable linear classifier from the following

optimization problem

arg min
P∈Sn,k,W∈Rk×m

‖ Y − WT PT X
︸ ︷︷ ︸

Z

‖2
F +λ ‖ W ‖1 . (9)

where the set

Sn,k = {P ∈ R
n×k : PT P = I} (10)

is the real-valued Stiefel manifold. The optimization is

solved over the Stiefel manifold Sn,k for P because the ob-

jective function is not invariant to a right orthogonal trans-

formation on the rank-k projection matrix P. Finding the



suitable f ∈ H is equivalent to finding W. As mentioned

earlier, a suboptimal solution is to alternate between solving

for P and for W. The objective function in (9) is convex

with respect to either W or P, but not for both. A viable

suboptimal solution is then to alternate between solving for

each variable until convergence is found. When P is held

fixed, the numerical solution for W can be readily obtained

using a ℓ1-solver of the following problem:

arg min
W∈Rk×m

‖ Y − WT Z ‖2
F +λ ‖ W ‖1 . (11)

When W is kept fixed, we need to solve the following con-

vex optimization problem

arg min
P∈Sn,k

g(P) =‖ Y − WT PT X ‖2
F . (12)

Techniques for solving this type of optimization problem

often endow the manifold with a Riemannian structure and

extend classical optimization techniques. The well-known

work of Edelman, Arias and Smith [10] chooses to move

along the geodesics. However, this often results in higher

computational cost to compute the path of a geodesic. In

[18], a simpler strategy is proposed which leads to a moder-

ate reduction in computational cost. This strategy can be

used for both steepest descent and Newton methods. In

what follows, we show how to apply this strategy to solve

our optimization problem. In particular, we choose the

steepest descent method for simplicity. For notational clar-

ity, we start with the preliminary result in [18].

Proposition 1 (Projection on the Stiefel manifold.) Let

X ∈ R
n×k be a rank-k matrix. Define the projection oper-

ator π : R
n×k 7→ Sn,k as

π(X) = arg min
Q∈Sn,k

‖ X − Q ‖2
F . (13)

If the singular value decomposition of X is X = UΣVT

then

π(X) = UIn,kV
T (14)

where In,k is the first k columns of the identity matrix I ∈
R

n×n.

Using this notation, the application of the steepest de-

scent method is detailed as follows.

• Initialization: Initialize P = P0 (from PCA, for ex-

ample).

• Iteration i.

F =
∂g(P)

∂P
= 2(XXT PWWT − XYT WT )

– Step 1: Set G = F − PFT P, H = −G.

– Step 2: Compute

〈H,H〉 = tr[HT (I − (1/2)PPT )H]

– Step 3: Check if 〈H,H〉 ≤ ε then stop

– Step 4: If g(P) − g(π(P + 2γH)) ≥ γ〈H,H〉
set γ ⇒ 2γ then repeat Step 4

– Step 5: If g(P) − g(π(P + γH)) ≤
(1/2)γ〈H,H〉 set γ ⇒ (1/2)γ, then repeat Step

5.

– Step 6: Set P ⇒ π(P+γH), where π is the pro-

jection onto the Stiefel manifold. If the objective

function in (12) has not converged, go back to

Step 1.
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Figure 3. Typical convergence of the steepest descent algorithm on

the Stiefel manifold

It is noted that though it is possible to use modified Newton

method on the Stiefel manifold, we found in practice that

the steepest descent is sufficient for a moderate accuracy,

with the advantage of being simple and fast. A typical con-

vergence of the quadratic objective function is shown in Fig.

3. When being used with the lasso to solve the optimization

(9), we found that the solution is found with a reasonable

accuracy within a few iterations (see Fig. 4).

5. Experimental Results

In this section, we compare the performance of our pro-

posed method to other robust counterparts, including the

regularized and smooth linear discriminant analysis (LDA)

and local preserving projection (LPP). These methods have

been demonstrated to significantly outperform other tech-

niques when the number of training samples is small [5].

We also include the performance of the baseline PCA

method and the orthogonal Laplacianfaces [4]. We note
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Figure 4. Convergence of the alternating optimization algorithm

that all these methods use nearest neighbor for classifica-

tion. To facilitate a fair comparison and to illustrate the

advantage of the joint dimensionality reduction and clas-

sification framework, we also include the method that use

PCA as dimensionality reduction and lasso as classifica-

tion, but in a disjoint manner. We shall denote this method

as PCA+LASSO. Our proposed method will be denoted as

MLASSO. We are only interested in the classification prob-

lem in this experiment.

The datasets used in this experiment are well-known

datasets in the face recognition community. The original

PIE database from Carnegie Mellon University [22] con-

sists of 68 individuals with 41,368 images. This experiment

only uses a near-frontal subset of the PIE database that we

downloaded from [3] 1. In this subset, there are approxi-

mately 170 images per individual over about five different

poses. We also select the Yale B face database [11] with 38

individuals, each having a total of 64 near-frontal images,

which is downloaded from [3]. They are known to be dif-

ficult datasets in face recognition. With these two datasets,

we generate 20 random splits. In each split, the images are

randomly selected from each class for training, and the rest

is used for testing. Then, we report the average and standard

deviation of the measured error rate.

In all cases, the pre-processing step involves cropping

and resizing the faces to 32 × 32 gray-scale images, then

centralizing about the mean, and finally normalizing each

vector to unit norm2. As we are only interested in small

1It appears that there are different ways of pre-processing the images

from the original databases. As a consequence, the absolute accuracy rate

might be reported higher if different pre-processing is used. We however

found that the pre-processing of [3] is very challenging for recognition

techniques and use in this experiment.
2We note that some performance on some datasets might be slightly

improved with different pre-processing techniques but the relative perfor-

mance between different methods should stay approximately the same.

training sizes, we select 2, 3, and 4 images for training. The

parameters for the regularized S-LDA and S-LPP are the

suggested values from the authors (in particular the choice

of weighting matrix and the regularization α = 0.1). To

make it comparable to S-LDA, we set the projection onto

a subspace with the dimension being the number of classes

minus one. The reported PCA method is also based on the

assumption of the same dimension.

The results on these two databases are reported in Tables

1 and 2. Among the compared methods, we note that S-

LDA performs well and especially when the training sizes

get larger. For example, on the PIE database its performance

gap with OLPP increases from 1% to 3% when the train-

ing size increases from 2 to 4. They also outperform the

baseline PCA method in both cases. Our proposed method

(MLASSO) outperforms the best method by 7%. This in-

crease in performance gain illustrates the clear advantage

in terms of robustness. Finally, when we compare our pro-

posed method MLASSO to PCA+LASSO, significant per-

formance gain is observed. For example, MLASSO has

4% to 9% lower error rates compared with PCA+LASSO

when the training samples increase from 2 to 4 on the PIE

database, whilst that figure is 7% to 13% on the extended

Yale B database. This is as expected because separating

PCA and LASSO implies discriminative information be-

ing lost during projection. The observation that the perfor-

mance gap with PCA+LASSO increases with the number

of training samples suggests that the angle between the op-

timal subspace of PCA and the discriminative subspace gets

larger, hence separating dimensionality reduction from clas-

sification just makes the classification worse. We note that

whilst linear techniques like PCA and S-LDA are generally

very fast, our proposed method takes longer time to run as it

needs to solve the optimization problem on the Stiefel man-

ifold and lasso regression. However, the increase in perfor-

mance justifies the choice.

Table 1. Error rate on PIE database

Train 2 3 4

PCA 0.86±0.01 0.83±0.01 0.80±0.01

S-LDA 0.60±0.02 0.48±0.02 0.40±0.02

S-LPP 0.66±0.01 0.59±0.01 0.52±0.02

OLPP 0.61±0.03 0.50±0.03 0.43±0.02

PCA+LASSO 0.58±0.01 0.49±0.01 0.43±0.01

MLASSO 0.54±0.01 0.43±0.01 0.34±0.01

The results above are measured over random splits of the

images for small-size datasets. We now show that when ex-

tended to a much larger set and standard benchmarks for

performance measure, our method still has a competitive

advantage over compared methods. We select the Feret



Table 2. Error rate on Yale B database

Train 2 3 4

PCA 0.84±0.02 0.80±0.01 0.77±0.01

S-LDA 0.60±0.03 0.48±0.02 0.40±0.02

S-LPP 0.64±0.03 0.56±0.03 0.50±0.03

OLPP 0.57±0.03 0.45±0.02 0.39±0.03

PCA+LASSO 0.58±0.02 0.54±0.02 0.50±0.02

MLASSO 0.51±0.03 0.40±0.02 0.33±0.02

database [20, 19] for this purpose3. The original Feret

database has a total of 1,199 individuals, taken at different

times and wide range of variations [19]. The galleries fa, fb

consist of near-frontal images of more than 200 individuals

and they are used for training. The database also contains

standard testing sets for evaluation purpose namely dup1

and dup2 (duplicate probes) which were typically taken on

different days. These sets can be used for classification and

verification. We select the majority of dup1 for this clas-

sification. This results in a set of 250 individuals with 499

images for training and 736 images for testing. The pre-

processing is the same as the previous experiment. The re-

sult is reported in Table 3. Once again, it can be seen that

over this standard test set, our proposed method clearly out-

performs the best of the compared methods, which in this

case is S-LDA, by a margin of as much as 7%4. When

compared with the disjoint framework PCA+LASSO, our

method also yields a better error rate by 2%. This clearly

demonstrates that our method retains a strong advantage

when there is a large number of classes.

Table 3. Error rate on Feret database

Train 2

PCA 0.58

S-LDA 0.50

S-LPP 0.51

OLPP 0.65

PCA+LASSO 0.45

MLASSO 0.43

6. Discussion

In this work, we have chosen the quadratic loss over the

class of linear learning functions and with ℓ1-norm regu-

larization in a statistical learning framework, which results

in a lasso-based classifier. This loss function puts a high

penalty for embedded points far from the embedded ver-

3The Feret database is publicly available free of charge and is the stan-

dard of commercial face recognition testing platform.
4Please note that with this standard testing set, there is no random split

hence the standard deviation is 0

tices of the classes. This is particularly satisfactory for a

regression problem. But if classification is the ultimate re-

sult, improvement could be made by making the risk more

closely related to the classification error. In other words,

it is possible to use our framework with other type of loss

functions and regularization, rather than the lasso. For ex-

ample, one can incorporate the idea of learning the projec-

tion matrix in the context of SVM formulation so that the

risk is directly related to the empirical risk. Of course, the

choice should be sensible so that such an optimization on

the Stiefel or Grassman manifold is tractable. The classifi-

cation performance gain of our particular choice of the lasso

over other robust alternatives suggests that further improve-

ment is feasible.

In terms of implementation, our method requires several

specifications. The initialization for the projection matrix P

can be obtained from PCA or LDA and takes the better of

the two in terms of the final objective function. For the reg-

ularization parameter λ, it is possible to use cross-validation

to optimize it within the range between 0.01 and 0.2. Within

this range, the variation of performance is only few percent

which implies that model selection is not a critical problem

with our method.

7. Conclusion

We have presented a new approach for learning the linear
projection onto the face manifold. The idea of this approach
is to form an optimization problem in a regularized learning
framework that involves both dimensionality reduction and
classification. For the choice of multivariate lasso regres-
sion, the projection matrix is found over the Stiefel mani-
fold jointly with the linear classifier’s parameters. We also
derive an algorithm to achieve a local solution of the for-
mulated optimization problem. This results in a method
that is robust to few training samples and this has been
demonstrated through experiments on several well-known
and publicly available face datasets. The marked perfor-
mance gain over recently published methods clearly sup-
ports the approach outlined in this work. ∼
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