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Abstract

The computational complexity of current visual catego-
rization algorithms scales linearly at best with the num-
ber of categories. The goal of classifying simultaneously
Ncat = 104 − 105 visual categories requires sub-linear
classification costs. We explore algorithms for automati-
cally building classification trees which have, in principle,
log Ncat complexity. We find that a greedy algorithm that
recursively splits the set of categories into the two minimally
confused subsets achieves 5-20 fold speedups at a small cost
in classification performance. Our approach is independent
of the specific classification algorithm used. A welcome by-
product of our algorithm is a very reasonable taxonomy of
the Caltech-256 dataset.

1. Introduction

Much progress has been made during the past 10 years
in approaching the problem of visual recognition. The
literature shows a quick growth in the scope of auto-
matic classification experiments: from learning and rec-
ognizing one category at a time until year 2000 [4, 24]
to a handful around year 2003 [26, 8, 14] to ∼ 100 in
2006 [11, 10, 5, 21, 22, 28, 11]. While some algorithms are
remarkably fast [9, 24, 10] the cost of classification is still at
best linear in the number of categories; in most cases it is in
fact quadratic since one-vs-one discriminative classification
is used in most approaches. There is one exception: cost is
logarithmic in the number of models for Lowe [18]. How-
ever Lowe’s algorithm was developed to recognize specific
objects rather than categories. Its speed hinges on the obser-
vation that local features are highly distinctive, so that one
may index image features directly into a database of models
which is organized like a tree [2]. In the more general case
of visual category recognition, local features are not very
distinctive, hence one cannot take advantage of this insight.
Humans can recognize between 104 and 105 object cat-
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Figure 1. A typical one-vs-all multi-class classifier (top) exhaus-
tively tests each image against every possible visual category re-
quiring Ncat decisions per image. This method does not scale
well to hundreds or thousands of categories. Our hierarchical ap-
proach uses the training data to construct a taxonomy of categories
which corresponds to a tree of classifiers (bottom). In principle
each image can now be classified with as few as log2 Ncat de-
cisions. The above example illustrates this for an unlabeled test
image and Ncat = 8. The tree we actually employ has slightly
more flexibility as shown in Fig. 4

egories [3] and this is a worthwhile and practical goal for
machines as well. It is therefore important to understand
how to scale classification costs sub-linearly with respect
to the number of categories to be recognized. It is quite
intuitive that this is possible: when we see a dog we are
not for a moment considering the possibility that it might
be classified as either a jet-liner or an ice cream cone. It
is reasonable to assume that, once an appropriate hierarchi-
cal taxonomy is developed for the categories in our visual
world, we may be able to recognize objects by descending
the branches of this taxonomy and avoid considering irrel-
evant possibilities. Thus, tree-like algorithms appear to be
a possibility worth considering, although formulations need
to be found that are more ‘holistic’ than Beis and Lowe’s

1

978-1-4244-2243-2/08/$25.00 ©2008 IEEE



5 10 15 20 25 30
0

10

20

30

40

50

60

70

Ntrain

Pe
rfo

rm
an

ce
 (%

)

 

 

Caltech 101
Caltech 101 (Lazebnik et. al)
Caltech−256

Figure 2. Performance comparison between Caltech-101 and
Caltech-256 datasets using the Spatial Pyramid Matching algo-
rithm of Lazebnik et. al [13]. The performance of our implementa-
tion is almost identical to that reported by the original authors; any
performance difference may be attributed to a denser grid used to
sample SIFT features. This illustrates a standard non-hierarchical
approach where authors mainly present the number of training ex-
amples and the classification performance, without also plotting
classification speed.

feature-based indexing [2].
Here we explore one such formulation. We start by con-

sidering the confusion matrix that arises in one-vs-all dis-
criminative classification of object categories. We postu-
late that the structure of this matrix may reveal which cate-
gories are more strongly related. In Sec. 3 we flesh out this
heuristic and to produce taxonomies. In Sec. 4 we propose
a mechanism for automatically splitting large sets of cat-
egories into cleanly separated subsets, an operation which
may be repeated obtaining a tree-like hierarchy of classi-
fiers. We explore experimentally the implications of this
strategy, both in terms of classification quality and in terms
of computational cost. We conclude with a discussion in
Sec. 5.

2. Experimental Setup
The goal of our experiment is to compare classifica-

tion performance and computational costs when a given
classification algorithm is used in the conventional one-vs-
many configuration vs our proposed hierarchical cascade
(see Fig. 1).
The choice of the image classifier is somewhat arbitrary

for the purposes of this study. We decided to use the pop-
ular Spatial Pyramid Matching technique of Lazebnik et
al. [13] because of its high performance and ease of imple-
mentation. We summarize our implementation in Sec.2.2.
Our implementation performs as reported by the original
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Figure 3. In general the Caltech-256 [12] images are more difficult
to classify than the Caltech-101 images. Here we fix Ntrain = 30
and plot performance of the two datasets over a random mix of
Ncat categories chosen from each dataset. The solid region rep-
resents a range of performance values for 10 randomized sub-
sets. Even when the number of categories remains the same, the
Caltech-256 performance is lower. For example at Ncat = 100
the performance is ∼ 60% lower (dashed red line).

authors on Caltech-101. As expected, typical performance
on Caltech-256 [12] is lower than on Caltech-101 [15] (see
Fig. 2). This is due to two factors: the larger number of
categories and the more challenging nature of the pictures
themselves. For example some of the Caltech-101 pictures
are left-right aligned whereas the Caltech-256 pictures are
not. On average a random subset of Ncat categories from
the Caltech-256 is harder to classify than a random subset
of the same number of categories from the Caltech-101 (see
Fig. 3).
Other authors have achieved higher performance on the

Caltech-256 than we report here, for example, by using a
linear combination of multiple kernels [23]. Our goal here
is not to achieve the best possible performance but to il-
lustrate how a typical algorithm can be accelerated using a
hierarchical set of classifiers.

2.1. Training and Testing Data
The Caltech-256 image set is used for testing and train-

ing. We remove the clutter category from Caltech-256 leav-
ing a total of Ncat = 256 categories.

2.2. Spatial Pyramid Matching
First each image is desaturated, removing all color in-

formation. For each of these black-and-white images, SIFT
features [18] are extracted along a uniform 72x72 grid using
software that is publicly available [20]. An M-word feature
vocabulary is formed by fitting a Gaussian mixture model
to 10,000 features chosen at random from the training set.
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    Figure 4. A simple hierarchical cascade of classifiers (limited to
two levels and four categories for simplicity of illustration). We
call A, B, C and D four sets of categories as illustrated in Fig 5.
Each white square represents a binary branch classifier. Test im-
ages are fed into the top node of the tree where a classifier assigns
them to either the set A ∪ B or the set C ∪ D (white square at the
center-top). Depending on the classification, the image is further
classified into either A or B, or C or D. Test images ultimately ter-
minate in one of the 7 red octagonal nodes where a conventional
multi-class node classifier makes the final decision. For a two-
level � = 2 tree, images terminate in one of the 4 lower octagonal
nodes. If � = 0 then all images terminate in the top octagonal
node, which is equivalent to conventional non-hierarchical classi-
fication. The tree is not necessarily perfectly balanced: A, B, C
and D may have different cardinality. Each branch or node clas-
sifier is trained exclusively on images extracted from the sets that
the classifier is discriminating. See Sec. 4 for details.

This model maps each 128-dimensional SIFT feature vec-
tor to a scalar integer m = 1..M where M = 200 is the
total number of Gaussians. The choice of clustering algo-
rithm does not seem to affect the results significantly, but
the choice of M does. The original authors [13] find that
200 visual words are adequate.
At this stage every image has been reduced to a 72x72

matrix of visual words. This representation is reduced still
further by histogramming over a coarse 4x4 spatial grid.
The resulting 4x4xM histogram counts the number of times
each word 1..M appears in each of the 16 spatial bins. Un-
like a bag-of-words approach [11], coarse-grained position
information is retained as the features are counted.
The matching kernel proposed by Lazebnik et al. finds

the intersection between each pair of 4x4xM histograms by
counting the number of common elements in any two bins.
Matches in nearby bins are weighed more strongly than
matches in far-away bins, resulting in a single match score
for each word. The scores for each word are then summed
to get the final overall score. We follow this same procedure
resulting in a kernel K that satisfies Mercer’s condition [11]

Figure 5. Top-down grouping as described in Sec. 3. Our underly-
ing assumption is that categories that are easily confused should be
grouped together in order to build the branch classifiers in Fig 4.
First we estimate a confusion matrix using the training set and a
leave-one-out procedure. Shown here is the confusion matrix for
Ntrain = 10, with diagonal elements removed to make the off-
diagonal terms easier to see.

and is suitable for training an SVM.

2.3. Measuring Performance
Classification performance is measured as a function of

the number of training examples. First we select a random
but disjoint set of Ntrain and Ntest training and testing im-
ages from each class. All categories are sampled equally,
ie. Ntrain and Ntest do not vary from class to class.
Like Lazebnik et al. [13] we use a standard multi-class

method consisting of a Support Vector Machine (SVM)
trained on the Spatial Pyramid Matching kernel in a one-
vs-all classification scheme. The training kernel has di-
mensionsNcat · Ntrain along each side. Once the classifier
has been trained, each test image is assigned to exactly one
visual category by selecting the one-vs-all classifier which
maximizes the margin.
The confusion matrix Cij counts the fraction of test ex-

amples from class i which were classified as belonging to
class j. Correct classifications lie along the diagonal Cii so
that the cumulative performance is the mean of the diago-
nal elements. To reduce uncertaintly we average the matrix
obtained over 10 experiments using different randomized
training and testing sets. By inspecting the off-diagonal
elements of the confusion matrix it is clear that some cat-
egories are more difficult to discriminate than other cate-
gories. Upon this observation we build a heuristic that cre-
ates an efficient hierarchy of classifiers.
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Figure 6. Taxonomy discovered automatically by the computer, using only a limited subset of Caltech-256 training images and their labels.
Aside from these labels there is no other human supervision; branch membership is not hand-tuned in any way. The taxonomy is created
by first generating a confusion matrix for Ntrain = 10 and recursively dividing it by spectral clustering. Branches and their categories are
determined solely on the basis of the confusion between categories, which in turn is based on the feature-matching procedure of Spatial
Pyramid Matching. To compare this with some recognizably human categories we color code all the insects (red), birds (yellow), land
mammals (green) and aquatic mammals (blue). Notice that the computer’s hierarchy usually begins with a split that puts all the plant and
animal categories together in one branch. This split is found automatically with such consistency that in a third of all randomized training
sets not a single category of living thing ends up on the opposite branch.
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Figure 7. The taxonomy from Fig.6 is reproduced here to illus-
trate how classification performance can be traded for classifi-
cation speed. Node A represents an ordinary non-hierarchical
one-vs-all classifier implemented using an SVM. This is accu-
rate but slow because of the large combined set of support vec-
tors in Ncats = 256 individual binary classifiers. A the other
extreme, each test image passes through a series of inexpensive
binary branch classifiers until it reaches 1 of the 256 leaves, col-
lectively labeled C above. A compromise solution B invokes a fi-
nite set of branch classifiers prior to final multi-class classification
in one of 7 terminal nodes.

2.4. Hierarchical Approach
Our hierarchical classification architecture is shown in

Fig. 4. The principle behind the architecture is simple:
rather than a single one-vs-all classifier, we achieve clas-
sification by recursively splitting the set of possible labels
into two roughly equal subsets. This divide-and-conqueor
strategy is familiar to anyone who has played the game of
20 questions.
This method is faster because the binary branch classi-

fiers are less complex than the one-vs-all node classifiers.
For example the 1-vs-N node classifier at the top of Fig. 1
actually consists of N=8 separate binary classifiers, each
with its own set Si of support vectors. During classifica-
tion each test image must now be compared with the union
of training images

Snode =
N⋃

i=1

Si

Unless the sets Si happen to be the same (which is highly
unlikely) the size of Snode will increase with N.
Our procedureworks as follows. In the first stage of clas-

sification, each test image reaches its terminal node via a
series of � inexpensive branch comparisons. By the time
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Figure 8. Comparison of three different methods for generating
taxonomies. For each taxonomy we vary the number of branch
comparisons prior to final classification, as illustrated in Fig. 4.
This results in a tradeoff between performance and speed as one
moves between two extremes A and C. Randomly generated hier-
archies result in poor cascade performance. Of the three methods,
taxonomies based on Spectral Clustering yield marginally better
performance. All three curves measure performance vs. speed for
Ncat = 256 and Ntrain = 10.

the test image arrives at its terminal node there are only
∼ Ncat/2� categories left to consider instead of Ncat. The
greater the number of levels � in the hierarchy, the fewer
categories there are to consider at the expensive final stage
- with correspondingly fewer support vectors overall.
The main decision to be taken in building such a hier-

archical classification tree is how to choose the sets into
which each branch divides the remaining categories. The
key intuition which guides our architecture is that decisions
between categories that are more easily confused should be
taken later in the decision tree, i.e. at the lower nodes where
fewer categories are involved. With this in mind we start
the training phase by constructing a confusion matrix C′

ij

from the training set alone using a leave-one-out validation
procedure. This matrix (see Fig. 5) is used to estimate the
affinity between categories. This should be distinguished
from the standard confusion matrix Cij which measures the
confusion between categories during the testing phase.

3. Building Taxonomies
Next, we compare two different methods for generat-

ing taxonomies automatically based on the confusion ma-
trix C′

ij .
The first method splits the confusion matrix into two

groups using Self-Tuning Spectral Clustering [27]. This is a
variant of the Spectral Clustering algorithm which automat-



ically chooses an appropriate scale for analysis. Because
our cascade is a binary tree we always choose two for the
number of clusters. Fig. 4 shows only the first two levels of
splits while Fig. 6 repeats the process until the leaves of the
tree contain individual categories.
The second method builds the tree from the bottom-up.

At each step the two groups of categories with the largest
mutual confusion are joined while their confusion matrix
rows/columns are averaged. This greedy process continues
until there is only a single super-group containing all 256
categories. Finally, we generate a random hierarchy as a
control.

4. Top-Down Classification Algorithm
Once a taxonomy of classes is discovered, we now seek

to exploit this taxonomy for efficient top-down classifica-
tion. The problem of multi-stage classification has been
studied in many different contexts [1, 6, 17, 16]. For ex-
ample, Viola and Jones [25] use an attentional cascade to
quickly exclude areas of their image that are unlikely to
contain a face. Instead of using a tree, however, they use
a linear cascade of classifiers that are progressively more
complex and computationally intensive. Fleuret and Ger-
man [9] demonstrate a hierarchy of increasingly descrimi-
native classifiers which detect faces while also estimating
pose.
Our strategy is illustrated in Fig. 4 and described in its

caption. We represent the taxonomy of categories as a bi-
nary tree, taking the two largest branches at the root of the
tree and calling these classes A∪B and C ∪D. Now take a
random subsample of Ftrain of the training images in each
of the two branches and label them as being in either class 1
or 2. An SVM is trained using the Spatial Pyramid Match-
ing kernel as before except that there are now two classes
instead of Ncat. Empirically we find that Ftrain = 10%
significantly reduces the number of support vectors in each
branch classifier with little or no performance degradation.
If the branch classifier passes a test image down to the

left branch, we assume that it cannot belong to any of the
classes in the right branch. This continues until the test im-
age arrives at a terminal node. Based on the above assump-
tion, for each node at depth �, the final multi-class classifier
can ignore roughly 1−2−� of the training classes. The exact
fraction varies depending on how balanced the tree is.
The overall speed per test image is found by taking a

union of all the support vectors required at each level of
classification. This includes all the branch and node classi-
fiers which the test image encounters prior to final classifi-
cation. Each support vector corresponds to a training image
whosematching score must be computed, at a cost of 0.4 ms
per support vector on a Pentium 3 GHz machine. As already
noted, the multi-class node classifiers require many more
support vectors than the branch classifiers. Thus increasing
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Figure 9. Cascade performance / speed trade-off as a function of
Ntrain. Values of Ntrain = 10 and Ntrain = 50 result in a 5-
fold and 20-fold speed increase (respectively) for a fixed 10% per-
forance drop.

the number of branch classifier levels decreases the overall
number of support vectors and increases the classification
speed, but at a performance cost.

5. Results
As shown in Fig. 8, our top-down and bottom-up meth-

ods give comparable performance at Ntrain = 10. Classi-
fication speed increases 5-fold with a corresponding 10%
decrease in performance. In Fig. 9 we try a range of values
forNtrain. AtNtrain = 50 there is a 20-fold speed increase
for the same drop in performance.

6. Conclusions
Learning hierarchical relationships between categories

of objects is an essential part of how humans understand
and analyze the world around them. Someone playing the
game of “20 Questions” must make use of some precon-
ceived hierarchy in order to guess the unknown object us-
ing the fewest number of queries. Computers face the same
dilemma: without some knowledge of the taxonomy of vi-
sual categories, classifying thousands of categories is re-
duced to blind guessing. This becomes prohibitively inef-
ficient as computation time scales linearly with the number
of categories.
To break this linear bottleneck, we attack two separate

problems. How can computers automatically generate use-
ful taxonomies, and how can these be applied to the task
of classification? The first problem is critical. Taxonomies
built by hand have been applied to the task of visual classifi-
cation [29] for a small number of categories, but this method



does not scale well. It would be tedious - if not impossible -
for a human operator to generate detailed visual taxonomies
for the computer, updating them for each new environment
that the computer might encounter. Another problem for
this approach is consistency: any two operators are likely
to construct entirely different trees. A more consistent ap-
proach is to use an existing taxonomy such as WordNet [7]
and apply it to the task of visual classification [19]. One
caveat is that lexical relationships may not be optimal for
certain visual classification tasks. The word lemon refers to
an unreliable car, but the visual categories lemon and car
are not at all similar.
Our experiments suggest that plausible taxonomies of

object categories can be created automatically using a clas-
sifier (in this case, Spatial Pyramid Matching) coupled to
a learning phase which estimates inter-category confusion.
The only input used for this process is a set of training im-
ages and their labels. The taxonomies such the one shown
in Fig. 6 seem to consistently discover broader categories
which are naturally recognizable to humans, such as the dis-
tinction between animate and inanimate objects.
How should we compare one hierarchy to another? It is

difficult to quantify such a comparison without a specific
goal in mind. To this end we benchmark a cascade of clas-
sifiers based on our hierarchy and demonstrate significant
speed improvements. In particular, top-down and bottom-
up recursive clustering processes both result in better per-
formance than a a randomly generated control tree.
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