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Abstract

In this paper we present a novel theory to analyze defo-
cused images of a volume density by exploiting well-known
results in Fourier analysis and the singular value decompo-
sition. This analysis is fundamental in two respects: First,
it gives a deep insight into the basic mechanisms of image
formation of defocused images, and second, it shows how to
incorporate additional a-priori knowledge about the geom-
etry and photometry of the scene in restoration algorithms.
For instance, we show that the case of a scene made of a
single surface results in a simple constraint in the Fourier
domain. We derive two basic types of algorithms for vol-
umetric reconstruction: One based on a dense set of defo-
cused images, and one based on a sparse set of defocused
images. While the first one excels in simplicity, the second
one is of more practical use. Both algorithms are tested on
real and synthetic data.

1. Introduction

The problem of estimating the volume of a scene from its
defocused images belongs to the class of inverse problems
[2], and as such it can be found in different forms in sev-
eral fields, including microscopy [8, 4, 1], tomography [7],
and, more recently, in the field of Computer Vision [9, 3, 5].
Typically, the model of a defocused image involves a sharp
image and a blur map that regulates the amount of defocus
at each pixel, and that directly relates to the geometry of the
scene. Because of the optical properties of lenses, the model
is linear with respect to the sharp image, but nonlinear with
respect to the geometry of the scene. Most methods cir-
cumvent the nonlinearity either by considering the problem
locally, i.e., via equifocal planes [12], so that geometry is
(locally) a constant, or by designing sophisticated methods
to explicitly cope with the nonlinearities [3, 5, 6].

In this paper however, we present a simple volumet-
ric model that renders the estimation problem linear in the

unknowns and, in particular, an exact convolution with a
known kernel (section 3.1). The main outcome of this for-
mulation is that one can immediately determine the max-
imum accuracy achievable given the camera settings, the
number of pixels of each defocused image, and the number
of input images. These parameters uniquely define both the
Nyquist limit and a kernel that determines at what frequen-
cies information is lost (in the idealized case of geometrical
optics). The analysis of this model also shows that capturing
defocused images by uniformly sampling the image plane
to lens distance, might not yield the best geometry recon-
structions (see [10] for analysis on the case of two images).
Similarly, we will see that the accuracy of the reconstructed
geometry is not uniform along the optical axis. Finally, al-
though sensitive to noise, 3-D deconvolution can be per-
formed using images from ordinary microscopes, making it
an inexpensive alternative to laser confocal microscopy [4].

When few defocused images are available, however, the
method above is no longer suitable. In this case, one needs
to implicitly interpolate the input data, and recovering the
interpolating function is a non-trivial problem on its own.
As an alternative, we suggest a different approach that cap-
tures more precisely the exact subspaces where the solu-
tions live. In section 3.2 we find that given a set of N de-
focused images at each point in the frequency domain there
is an entire subspace of at least L − N solutions (possi-
bly different), where frequencies along the optical axis are
discretized with L values. Clearly, the space of solutions
may become unique whenever we perform reconstruction
at only N frequencies or less; however, this also means
that the reconstruction along the optical axis is limited to
the resolution dictated by N components. Moreover, if one
is made available additional information about the scene,
e.g., that the volume density is concentrated on a single sur-
face, it may be possible to incorporate such constraints in
the frequency domain via simple equations of the form of
eq. (3.16). Intuitively, a high localization in the spatial do-
main is equivalent to a poor localization in the frequency
domain, and, in the limit, the localization in the frequency

1
978-1-4244-2243-2/08/$25.00 ©2008 IEEE



domain becomes a uniform distribution which can be tested
for.

In the next section we introduce our model of a defo-
cused images, how to rectify the model so as to simplify
it (section 2.2), and how this affects defocus (section 2.3).
Then, we show how to express the problem as a full 3-D
deconvolution (section 3.1) and how to cope with few input
images (section 3.2).

2. Finite Aperture Cameras: Modeling

In this section we introduce the image formation model
of a finite aperture camera under the approximation of ge-
ometric optics (section 2.1). Then, we show how to rectify
the coordinates both on the image plane and in 3-D space so
that Fourier analysis can be applied (section 2.2). Finally,
in section 2.3 we give more insight on how the rectification
of the space changes the original image formation model.

2.1. Image Formation Model

We represent the scene as a volume density W : R3 7→
[0,∞) that simultaneously encodes geometry and photome-
try. The photometry is captured by the intensity of W while
the geometry is determined by the location of the intensities
of W . More precisely, given a point X .= [x1 x2 1]Tx3 ∈
R3 (in projective coordinates) the volume density is defined
as a function W (x1, x2, x3) that assigns an energy value
to the point X. Now suppose that we can change the dis-
tance v of the image plane from the lens and that there is
no absorption of light in the volume density, then we can
explicitly write the image formation model of a defocused
image I0 : Ω ⊂ R2 × [0,∞) 7→ [0,∞) as

I0(y, v) =
∫
ψ(πv[X],y, σv(x3))W (X)dX (2.1)

where ψ : R2 × R2 × [0,∞) 7→ [0,∞) is the point spread
function (PSF) of the optical system, πv[X] .= v[x1 x2]T is
the projection operator of a 3-D point in space to the image
plane at distance v from the lens, and σv(x3) is the PSF
blurring radius relative to the depth x3 and the image plane
to lens distance v. In this paper we approximate the PSF ψ
by a Gaussian function with standard deviation σ

ψ(πv[X],y, σ) :=
1

2πσ2
e−

‖vx−y‖2

2σ2 (2.2)

where we have defined x .= [x1 x2]T for simplicity. How-
ever, our derivation can be readily applied to any other PSF
model. The blurring radius (the standard deviation of the
PSF) σv can be written as

σv(x3)
.= γ

Dv

2

∣∣∣∣ 1
F
− 1
v
− 1
x3

∣∣∣∣ , (2.3)

where γ is a calibration parameter (the unit conversion of
millimeters to pixels), D is the lens diameter (or, more pre-
cisely, the effective lens aperture), F is the focal length of
the lens, and we assume that both v and x3 are greater than
F .

2.2. Image Rectification

Model (2.1) can be further simplified if we consider the
following simple rectification of each defocused image

I(z, v) .= v2I0(vz, v)

=
∫
v2ψ(πv[X], vz, σv(x3))W (X)dX

=
∫

1
2πσ̄2

v(x3)
e
− ‖x−z‖2

2σ̄2
v(x3)W (X)dX

(2.4)
where

σ̄v(x3)
.=
σv(x3)
v

= γ
D

2

∣∣∣∣ 1
F
− 1
v
− 1
x3

∣∣∣∣ . (2.5)

Notice that eq. (2.4) can be rewritten as

I(z, v) =
∫ (

φ(·, σ̄v(x3)) ∗W (·, x3)
)
(z)dx3

(2.6)
or, equivalently,

Î(w, v) =
∫
φ̂(f , σ̄v(x3))Ŵ (f , x3)dx3 (2.7)

where φ(z, σ̄) .= 1
2πσ̄2 e

− ‖z‖2

2σ̄2 and its Fourier trans-
form φ̂(f , x3)

.= F [φ(·, σ̄(x3)](f), f ∈ Ω̂ ⊂ R2; we
used the more convenient notation for the volume density
W (x, x3)

.= W (X), and, correspondingly, Ŵ (f , x3)
.=

F [W (·, x3)](f) for its Fourier transform. Eqns. (2.6) and
(2.7) are our image formation models.

Remark 1 In summary, to arrive at eq. (2.6) we have first
parameterized the volume density in projective coordinates,
and then we have scaled and rectified the input images
based on their image plane to lens distance. These two steps
allowed us to rewrite the initial image formation model
eq. (2.1) in a very simple form, that can be expressed as
the integral of a convolution. In the next sections we will
see that this form has several advantages.

2.3. Defocus in the Rectified Model

In this section we briefly analyze the geometry of the blur
cones generated by the camera finite aperture after rectifi-
cation. The PSF blurring radius σv was defined in eq. (2.3)
and identifies the following focal plane in 3-D space

x3,v
.=

Fv

v − F
. (2.8)
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Figure 1. Left: Original blurring radii. Right: Rectified blurring
radii.

The blurring radius σv can then be alternatively written as

σv(x3) = γ
Dv

2


(

1
F − 1

v −
1
x3

)
x3 > x3,v

−
(

1
F − 1

v −
1
x3

)
F < x3 ≤ x3,v

(2.9)
and we have explicitly separated the space into two com-
plementary regions where the depth values x3 have a one-
to-one mapping with the blurring radii. In the case of the
rectified model, the plane in focus does not change and the
above equations become

σ̄v(x3) = γ
D

2


(

1
F − 1

v −
1
x3

)
x3 > x3,v

−
(

1
F − 1

v −
1
x3

)
F < x3 ≤ x3,v.

(2.10)
Notice that the same value of the rectified blurring radius
identifies two planes in space x3,±(σ̄, v)

x3,−(σ̄, v) .=
(

2σ̄
γD

+
1
F
− 1
v

)−1

x3,+(σ̄, v) .=
(
− 2σ̄
γD

+
1
F
− 1
v

)−1

.

(2.11)

Another important observation that distinguishes the origi-
nal blurring radius σv from the rectified one, σ̄v , is that the
first goes to infinity as v → +∞, while the latter converges
to γD

2

∣∣∣ 1
F − 1

x3

∣∣∣, which is a finite value. Similarly, as the
3-D point being imaged goes to infinity (i.e., x3 →∞) then
σv → γDv

2

∣∣ 1
F − 1

v

∣∣, while σ̄v → γD
2

∣∣ 1
F − 1

v

∣∣. These facts
are illustrated in Figure 1.

3. Finite Aperture Cameras: Analysis
In this section we present two approaches to solve the

problem of reconstructing the volume density W given sev-
eral defocused images. The first approach introduces an ad-
ditional change of coordinates that renders the image for-
mation model (2.6) an exact convolution (section 3.1). This
enables the use of deconvolution methods to retrieve the
volume density, provided that enough images are given as
input [11]. The second approach exploits the linearity of

the model to obtain an efficient least-squares solution (sec-
tion 3.2).

3.1. The Space of all Defocused Images and Volu-
metric Deconvolution

Recall the image formation model (2.6)

I(z, v) =
∫ (

φ(·, σ̄v(x3)) ∗W (·, x3)
)
(z)dx3 (3.1)

and notice that if we let µ .= 1
F − 1

v , ν .= 1
x3

, W̃ (x, ν) .=
1
ν2W (x, 1

ν ), and σ̃(µ − ν) .= σ̄ 1
1/F−µ

( 1
ν ) the above model

can be written as

I(z, µ) =
∫
φ(z− x, σ̃(µ− ν))W̃ (x, ν)dxdν. (3.2)

It is immediate to notice that eq. (3.2) is a convolution be-
tween a 3-D point spread function and the transformed vol-
ume density W̃ and, as such, it can be written as a product
in Fourier domain with considerable computational advan-
tages. The variable I(z, µ), seen as a map in a 3-D domain,
is the space of all defocused images, and eq. (3.2) shows
how this space is mapped to the 3-D space outside the cam-
era and vice versa. This model allows for standard Fourier
analysis to determine the maximal resolution and accuracy
of the reconstructed volume density given the input images.
Indeed, notice that if the 3-D point spread function is not
a Dirac delta, some of the content of the volume density
will be irremediably lost no matter how many defocused
images are used. Based on this model it is immediate to
conclude that one way to obtain an invertible 3-D PSF is
to have a very wide lens or very small pixels, so that the
location of a point in focus can be determined very accu-
rately (assuming a very small depth of field). Notice that
the accuracy determined by this model needs to be mapped
back to the un-distorted volume viaW (x, x3) = 1

x2
3
W̃ ( 1

x3
).

Also, standard deconvolution algorithms, such as the Lucy-
Richardson deconvolution algorithm, can be readily applied
[2].

As the reconstruction algorithm based on the above
model relies on a dense set of defocused images, if we are
made available only a finite set of N images, it is necessary
to provide an explicit interpolation model of the form

I(z, µ) .=
N∑

i=1

I(z, µi)h(µ− µi) (3.3)

where h : R 7→ R is an interpolating function. Notice,
however, that finding the correct interpolating function h is
a non trivial task. Therefore, in the next section we look
for a solution that does not rely on a dense set of defocused
images.



3.2. Volumetric Least Squares

Recall the image formation model (2.7) in the frequency
domain

Î(f , v) =
∫
φ̂(f , σ̄v(x3))Ŵ (f , x3)dx3. (3.4)

This model can also be written as a Hermitian inner product,
i.e.,

Î(f , v) = 〈φ̂(f , σ̄v(·)), Ŵ ∗(f , ·)〉. (3.5)

Now, suppose that we are given N defocused images
I(·, v1), . . . , I(·, vN ), obtained with image plane to lens
distance v1, . . . , vN ; then, at each frequency f we can write
the following system of linear equations Î(f , v1) = 〈φ̂(f , σ̄v1(·)), Ŵ ∗(f , ·)〉

. . .

Î(f , vN ) = 〈φ̂(f , σ̄vN
(·)), Ŵ ∗(f , ·)〉.

(3.6)

Thanks to Plancherel’s theorem (i.e., the general form of
Parseval’s theorem), the above system is equivalent to Î(f , v1) = 〈φ̂(f , σ̄v1(·)), Ŵ ∗(f , ·)〉

. . .

Î(f , vN ) = 〈φ̂(f , σ̄vN
(·)), Ŵ ∗(f , ·)〉

(3.7)

where (̂·) denotes the Fourier transform with respect to
all arguments of the function being transformed, so that
φ̂(f , σ̄v1(f3))

.= F [φ̂(f , σ̄v1(·))](f3) and Ŵ (f , f3)
.=(

F [Ŵ ∗(f , ·)](f3)
)∗

= F−1[Ŵ (f , ·)](f3). For notational
simplicity, let us write the PSF as theN -dimensional vector

φ̂(f , f3)
.=

 F [φ̂(f , σ̄v1(·))](f3)
. . .

F [φ̂(f , σ̄vN
(·))](f3)

 (3.8)

and the N -dimensional input image vector

Î(f) .=

 Î(f , v1)
. . .

Î(f , vN )

 (3.9)

so that the above system of linear equations can be written
very compactly as

Î(f) = 〈φ̂(f , ·), Ŵ (f , ·)〉. (3.10)

Then, from linear algebra we now that the solutions (in a
least-square sense) of the above system of linear equations
are given by

Ŵ (f , f3) = φ̂
†
(f , f3)Î(f) + φ̂

0
(f , f3)â(f) (3.11)

where φ̂
†
(f , f3) ∈ CN denotes the pseudo-inverse of

φ̂(f , f3), φ̂
0
(f , f3) ∈ CK denotes the kernel of φ̂(f , f3),

with K the dimension of the kernel, and â(f) ∈ CK a vec-
tor of coefficients at each frequency f . The dimension K
depends on the discretization of f3. If we use L elements to
represent frequencies f3, thenK ≥ L−N as not all images
may add information at all frequencies.

Eq. (3.11) explicitly represents the subspace of all vol-
ume densities that generate the input images. If no ad-
ditional information is given, one can, for example, let
â(f) = 0, ∀f ∈ Ω̂. In section 5 we show that such choice is
sufficient to recover the depth map and an image in focus of
the scene. Notice that, unless additional a priori information
is available, we can only reconstruct as many frequencies
along f3 as the rank of φ̂(f , f3), i.e., N frequencies or less.

3.3. Geometric Priors: Surfaces versus Volumes

In some cases we may know a-priori that the volume
density is made of surfaces, so that it can be written as

W (x, x3) = r(x)δ(x3 − s(x)) (3.12)

where r, s : Ω 7→ [0,∞) are the radiance intensity and
the depth map respectively, while δ denotes the Dirac delta.
This constraint can also be easily formulated in the fre-
quency domain, where we can take advantage of the fact
that a Dirac delta is transformed into a phase change with
constant magnitude 1. If we take the Fourier transform of
W with respect to x3, and use the notation Ŵ (x, f3)

.=
F [W (x, ·)](f3), we have

Ŵ (x, f3) = r(x)e−jf3s(x). (3.13)

Notice that the absolute value of this transform is∣∣∣Ŵ (x, f3)
∣∣∣ = r(x) (3.14)

which is constant in f3. Then, if we take the derivative of
the above equation with respect to f3 we obtain

∂

∂f3

∣∣∣Ŵ (x, f3)
∣∣∣ = 0 ∀x, f3. (3.15)

If we compute the derivative explicitly, we have

∂

∂f3

∣∣∣Ŵ (x, f3)
∣∣∣ =

∂

∂f3

√
Ŵ (x, f3)Ŵ ∗(x, f3)

= Real

∂Ŵ (x, f3)
∂f3

Ŵ ∗(x, f3)∣∣∣Ŵ (x, f3)
∣∣∣


= 0 ∀x, f3.
(3.16)

In our experiments however, we do not find it necessary to
impose the surface constraint in eq. (3.16). The above con-
straint is just one example of how additional a priori knowl-
edge can be incorporated. Similar useful constraints that
can be easily formulated are the non negativity of the vol-
ume density, its sparsity along the depth coordinate and the
smoothness of its surfaces.



3.4. Extracting Surface and Radiance

Once the volume density W has been reconstructed by
solving (3.11), we are left with the problem of extracting
the radiance r and the surface s. A simple way to do so is
to exploit the structure of eq. (3.12) and compute the recon-
structed radiance r̃ as

r̃(x) =
∫
W (x, x3)dx3 (3.17)

and the reconstructed surface s̃ as

s̃(x) =

∫
x3W (x, x3)dx3

r̃(x)
. (3.18)

Although these are very coarse estimators (these are the
zero-th and first moments of the volume density along the
depth coordinate), in section 5 we will see that they are
fairly robust to lack of data or noise.

4. Numerical Implementation

Although the operators φ̂
†

can be formally written as
in eq. (3.11), the evaluation of the functional SVD is not
straighforward. In our implementation we simply dis-
cretize the range values of the depth coordinates, so that

φ̂
†
(f , ·, ·) is a finite real symmetric matrix (e.g., if we con-

sider 128 depth values, then we will have a 128 × 128 ma-

trix φ̂
†
(f , ·, ·)) and the discrete SVD can be computed at

each frequency f . Notice that φ̂
†
(f , ·, ·) depends only on

the magnitude of the frequency f (it is rotationally sym-
metric before and after the Fourier transform) and therefore
one could discretize the magnitude ‖f‖ and use polar coor-
dinates to save computations. Notice that this operation is
done once for all given the PSF and the camera parameters
γ, F , D, {v1, . . . , vN}. At run-time one can reconstruct
the volume density W by using eq. (3.11) and by comput-
ing the inverse Fourier transform of Ŵ . The algorithm is
summarized in Table 1.

5. Experiments
In this section we test the algorithm presented in Table 1

both on synthetic (unaffected by noise or with simulated
noise) and on real (affected by sensor noise) stacks of im-
ages with focus at different planes.

5.1. Synthetic Data

In all the experiments with synthetic generated volumes,
we consider a thin lens with: focal length F = 0.012m, lens
aperture D = 0.02m, and meter-to-pixel conversion factor
γ ranging between 100pixel/m and 300pixel/m. We as-
sume a volume density W contained between .5m and .9m

Figure 2. Case #1. First and second from the left: two synthetically
generated images with γ = 100. Third and fourth from the left:
two synthetically generated images with γ = 300.

from the lens plane(coordinate x3) and test the reconstruc-
tion performances in two cases:

• sparse: When we use less than 5 defocused images;

• dense: When we use more than 100 images.

In both cases each image has a size of 256pixels ×
256pixels. Our results are obtained with volumes concen-
trated around a surface (depth map). Once the volume is
estimated through the algorithm in Table 1, we calculate the
radiance and the surface using (3.17) and (3.18).

Case #1: Dense Set of Defocused Images
We generate a dense set of 128 defocused images of a vol-
ume density concentrated around the surface shown in Fig-
ure 4 (top-right). The images are equally spaced between
the two planes 1/v = 1/F − 1/.5m and 1/v = 1/F −
1/.9m. In Figure 2 we show examples of such images for
two different values of the pixel size ( γ = 100pixel/m
and γ = 300pixel/m). Notice that the pixel size affects
how information stored in the volume density is then en-
coded in the defocused images. An example of this effect
can be seen in Figure 3, where we show 3 plane sections
of the original volume and the relative estimates given by
the algorithm. The one obtained with a “large” γ yields a
better volume estimate than the one relative to a “small” γ.
In Figure 4 we show the original radiance/surface and the
reconstructed one for different values of γ. Finally, in Fig-
ure 5 we show the dependence of the reconstruction error
(norm of the difference of the true and reconstructed vol-
ume densities) on the Gaussian additive noise in the input
images.

Case #2: Sparse Set of Defocused Images We generate
a sparse set of 5 defocused images of a volume density con-
centrated around the surface shown in Figure 8 (top-right).
As in the case #1 the images are equally spaced between the
two planes 1/v = 1/F − 1/.5m and 1/v = 1/F − 1/.9m.
In Figure 6 we can see some images of the stack for two
different values of the pixel size ( γ = 100pixel/m and
γ = 300pixel/m). In Figure 7 we show 3 plane sections
of the original volume and the relative estimates given by
the algorithm. The one obtained with a “large” γ yields a



Step Action
1 Compute (analytically, if possible) the Fourier transforms of the PSF φ. If the PSF is a Gaussian, then we

readily obtain the unnormalized Gaussian φ̂(f , σ̄v) = e−
σ̄2

v
2 ‖f‖2 ;

2 At each frequency f , build the operator φ̂(f , ·, ·) defined in eq. (3.8) for N input images and at Nx3 depth
levels;

3 At each frequency f , compute the pseudo-inverse φ̂
†

of φ̂;

4 Apply each pseudo-inverse φ̂
†

to the N -dimensional input images vector Î, defined in eq. (3.9), and call the
result Ŵ 0(f , f3);

5 If no additional constraints are available, then the volume density W (x, x3) is the inverse Fourier transform
of Ŵ 0(f , f3); if additional constraints are available, then use them to obtain a and compute Ŵ (f , f3) as in
eq. (3.11).

Table 1. Volume density estimation algorithm.

Figure 3. Case #1. Ground truth and reconstructed volume for 128
defocused images. Top row: section x1 − x3 of the ground truth
volume density. Middle row: the same section from the recon-
structed volume density with γ = 100. Bottom row: the same
section from the reconstructed volume density with γ = 300.

better volume estimate than the one relative to a “small” γ.
In Figure 8 we show the original radiance/surface and the
reconstructed one for different values of γ. Finally, in Fig-
ure 9 we show the dependence of the reconstruction error
(norm of the difference of the true and reconstructed vol-
ume densities) on the Gaussian additive noise in the input
images.

5.2. Real Data

We also test the algorithm on the real data shown in Fig-
ure 10. The camera settings for the data sets are available
at [13] and [5]. In Figure 10 on the first and third rows we
show the two input image pairs. On the second and fourth
rows we show the estimated depth map obtained by our al-

Figure 4. Case #1. Top row: Ground truth radiance (left) and rel-
ative depth map (right). Middle row: reconstructed radiance (left)
and depth map (right) for γ = 100. Bottom row: reconstructed
radiance (left) and depth map (right) for γ = 300.

gorithm (left) and the estimated depth map obtained by em-
ploying the least-squares algorithms in [5] (right). Notice
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Figure 5. Case #1. Absolute reconstruction error for a dense stack
of 128 defocused images corrupted by different noise levels. The
graph on the left is relative to a γ = 100 while for the one on the
right γ = 300.

Figure 6. Case #2. First and second from the left: Two input im-
ages with γ = 100. Third and fourth from the left: Two input
images with γ = 300.

Figure 7. Case #2. Ground truth and reconstructed volume for 5
defocused images. Top row: section x1 − x3 of the ground truth
volume density. Middle row: the same section from the recon-
structed volume density with γ = 100. Bottom row: the same
section from the reconstructed volume density with γ = 300.

that the surface estimates in the two cases are qualitatively
similar, although the estimates obtained via the volumetric
method tend to have a lower accuracy. This is due to the
fact that while in the least-squares method the solution is
constrained to be locally a plane, in our solution we simply
use eq. (3.11) and the method summarized in Table 1, with-
out imposing additional constraints on the solution. The
advantage of our method however, is that it can be readily

Figure 8. Case #2. Top row: Ground truth radiance (left) and rel-
ative depth map (right). Middle row: reconstructed radiance (left)
and depth map (right) for γ = 100. Bottom row: reconstructed
radiance (left) and depth map (right) for γ = 300.
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Figure 9. Case #2. Absolute reconstruction error for a stack of 5
defocused images corrupted by different noise levels. The graph
on the left is relative to a γ = 100 while for the one on the right
γ = 300.

applied to data containing multiple surfaces.



Figure 10. Real data set. First row: Two defocused images from
[13]. Second row: Reconstructed depth map by using the pro-
posed method (left) and the least-squares method described in [5]
(right). Third row: Two defocused images from [5]. Fourth row:
Reconstructed depth map by using the proposed method (left) and
the least-squares method described in [5] (right).

6. Conclusions

We have presented novel analysis of the problem of vol-
ume density estimation from a stack of defocused images.
We consider two cases: one where a dense set of images is
available, and one where a sparse set of defocused images
is available. In the first case we reduce the imaging model

to a 3-D convolution, which allows to predict the maximum
accuracy achievable both in space and frequency. In the
second case we propose an efficient solution based on the
singular value decomposition in the frequency domain. We
explicitly characterize the space of all solutions and show
how this can be constrained if prior knowledge about the
scene is available. Experiments on both real and synthetic
data validate the theory.
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