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Abstract

In this paper, we present a novel single-image vignetting
method based on the symmetric distribution of the radial
gradient (RG). The radial gradient is the image gradient
along the radial direction with respect to the image center.
We show that the RG distribution for natural images with-
out vignetting is generally symmetric. However, this dis-
tribution is skewed by vignetting. We develop two variants
of this technique, both of which remove vignetting by min-
imizing asymmetry of the RG distribution. Compared with
prior approaches to single-image vignetting correction, our
method does not require segmentation and the results are
generally better. Experiments show our technique works
for a wide range of images and it achieves a speed-up of
4-5 times compared with a state-of-the-art method.

1. Introduction

Vignetting refers to the intensity fall-off away from the
image center, and is a prevalent artifact in photography. It
is typically a result of the foreshortening of rays at oblique
angles to the optical axis and obstruction of light by the stop
or lens rim. This effect is sometimes deliberately added for
artistic effects. Regardless, it is not desirable in computer
vision applications that rely on reasonably precise intensity
distributions for analysis. Such applications include shape
from shading, image segmentation, and image mosaicing.

Various techniques have been proposed to determine
the vignetting effect in an image. Some require specific
scenes for calibration, which typically must be uniformly
lit [2, 8, 20, 24]. Others use image sequences with over-
lapping views [5, 13] or image sequences captured with a
projector at different exposures and different aperture set-
tings [7]. A more flexible technique was proposed by Zheng
et al. [25]; it requires only a single (almost arbitrary) image.

Single image-based vignetting correction is more conve-
nient in practice, especially when we have access to only
one image and the camera source is unknown (as is typi-
cally the case for images lifted from the web). The chal-

lenge is to differentiate the global intensity variation of vi-
gnetting from those caused by local texture and lighting.
Zheng et al. [25] treat intensity variation caused by texture
as “noise”; as such, they require some form of robust outlier
rejection in fitting the vignetting function. They also require
segmentation and must explicitly account for local shading.
All these are susceptible to errors.

We are also interested in vignetting correction using a
single image. Our proposed approach is fundamentally dif-
ferent from Zheng et al.’s—we rely on the property of sym-
metry of the radial gradient distribution. (By radial gradient,
we mean the gradient along the radial direction with respect
to the image center.) We show that the radial gradient dis-
tribution for a large range of vignetting-free images is sym-
metric, and that vignetting always increases its skewness.
We describe two variants for estimating the vignetting func-
tion based on minimizing the skewness of this distribution.
One variant estimates the amount of vignetting at discrete
radii by casting the problem as a sequence of least-squares
estimations. The other variant fits a vignetting model using
nonlinear optimization.

We believe our new technique is a significant improve-
ment over Zheng et al. [25]. First, our technique implicitly
accounts for textures that have no bearing in vignetting. It
obviates the need for segmentation and, for one variant, re-
quires fewer parameters to estimate. In addition to the bet-
ter performance, our technique runs faster, from 4-5 min-
utes [25] to less than 1 minute for a 450 × 600 image in a
2.39 GHz PC.

2. Natural Image Statistics

Our method assumes that the distributions of radial gra-
dients in natural images are statistically symmetric. In this
section, we first review the distribution properties of image
gradients and confirm the validity of our assumption. We
then show the effect of vignetting on the gradient distribu-
tion.
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2.1. Symmetry of Image Gradients

Recent research in natural image statistics has shown that
images of real-world scenes obey a heavy-tailed distribution
in their gradients: it has most of its mass on small values but
gives significantly more probability to large values than a
Gaussian [4, 26, 11]. If we assume image noise to be negli-
gible, a distribution of radial gradients ψ(I) will have a sim-
ilar shape, as exemplified in Fig. 2 (b). ψ(I) is also highly
symmetric around the distribution peak, especially among
small gradient magnitudes. This characteristic arises from
the relatively small and uniform gradients (e.g., textures)
commonly present throughout natural images. ψ(I) is gen-
erally less symmetric near the tails, which typically repre-
sent abrupt changes across shadow and occlusion bound-
aries and tend to be less statistically balanced. Furthermore,
recent work [15] has shown that it is reasonable to assume
image noise to be symmetric when the radiometric camera
response is linear. This implies that including noise in our
analysis will not affect the symmetry of the gradient distri-
bution.

The symmetric, heavy-tailed shape characteristics of the
gradient distributions have been exploited for image denois-
ing, deblurring, and superresolution [18, 19, 12, 21, 10, 3,
1, 11, 22]. Fergus et al. [3] and Weiss et al. [23] used a
zero-mean mixture-of-Gaussians to model the distributions
of horizontal and vertical gradients for image deblurring.
Huang et al. [6] use a generalized Laplacian function based
on the absolute values of derivatives. Roth et al. [18] apply
the Student’s t-distribution to model this distribution for im-
age denoising. Levin et al. [11] fit the distribution with an
exponential function of the gradient magnitude. Zhu et al.
[26] choose a Gibbs function in which the potential function
is an algebraic expression of the gradient magnitude.

2.2. Radial Gradient

In this paper, we study the distribution of a special type
of gradient, the radial gradient (RG). The radial gradient is
the image gradient along the radial direction with respect to
the image center, as shown in Fig. 1. With the optical center
at (x0, y0), the radial gradient at each pixel (x, y) can be
computed as

ψI
r (x, y) =

{ |∇I(x, y) · �r(x, y)|/|�r(x, y)| |�r(x, y)| > 0
0 |�r(x, y)| = 0

(1)
where

∇I(x, y) =
[

∂I

∂x
,
∂I

∂x

]T

, �r(x, y) = [x − x0, y − y0]T .

As with the horizontal and vertical gradients, the radial
gradient distribution (which we call the RG distribution) in
a vignetting-free image is also near-symmetric and heavy-

Figure 1. Demonstration for the definition of radial gradient.

(a)

(b)

(c)
Figure 2. Gradient histograms for two natural images (a). In
(b) and (c), top to bottom: regular histogram and corresponding
log(1+ |x|) histogram. (b) are plots for horizontal gradients while
(c) are for radial gradients.

tailed, as shown in Fig. 2. On the other hand, the RG distri-
bution of an image with vignetting is asymmetric or skewed,
as shown at the bottom left in Fig. 2(c).

We show both the regular and log(1+|x|) histograms. In
the regular histogram, x is the gradient value while “prob”
denotes its density. The log(1 + |x|) histogram (e.g., in
Fig. 2) is obtained by mapping x to log(1 + |x|). This
mapping enhances any asymmetry that is present near the
peak of the histogram. Note that the curve for negative x is



Figure 3. Comparison of skewness of RG distributions for vary-
ing degrees of vignetting. From left to right: image, histogram of
radial gradients and skewness (asymmetry measure), and log(1 +
|x|) histogram. From top to bottom: increasing degrees of vi-
gnetting.

folded over to the positive side (hence the two curves, with
red representing negative x’s and blue representing positive
x’s). Section 3.1 describes how we measure the skewness
of the gradient histogram distribution.

Since vignetting is radial in nature, it is convenient to
analyze in polar coordinates:

Z(r, θ) = I(r, θ)V (r), (2)

where Z is the image with vignetting, I is the vignetting-
free image, and V is the vignetting function. (The coordi-
nate center corresponds to the image center.) Notice that V
is a function of r only; this is because it can be assumed to
be rotationally symmetric [2, 8, 20, 24, 25].

The radial gradient in polar coordinates is then computed
as

dZ(r, θ)
dr

=
dI(r, θ)

dr
V (r) + I(r, θ)

dV (r)
dr

. (3)

Let us now consider the RHS of equation (3). The first
term simply scales the radial gradients by V . Since V
is radially symmetric, the scaled distribution of the first
term is expected to be mostly symmetric for natural im-
ages. The distribution of the second term, however, is not.
This is because vignetting functions are radially monoton-
ically decreasing, i.e., dV (r)

dr ≤ 0. Since the scene radi-
ance I is always positive, the second term is always nega-
tive. Therefore, the distribution of the second term is asym-
metric. Furthermore, the more severe the vignetting, the
more asymmetric the RG distribution of Z will be, as shown
in Fig. 3. Moreover, with the same vignetting function,
brighter scenes with larger I will exhibit greater asymme-
try in the distribution of the second term. This is consistent
with the common observation that vignetting is more obvi-
ous in a brighter scene, as shown in Fig. 4.

(a) (b)

(c) (d)
Figure 4. Effect of darker images on skewness. (a) Original image,
(b) image with synthetic vignetting, (c) darkened version of (a), (d)
same amount of synthetic vignetting applied to (c). For each of (a)-
(d), from top to bottom: image, histogram, log(1+ |x|) histogram.
Notice that brighter images with vignetting has a greater skewness.

In contrast to radial gradients, the symmetry of horizon-
tal and vertical gradient distributions in an image is rela-
tively unaffected by vignetting. Since vignetting is radially
symmetric from the image center, it can be seen as increas-
ing the magnitudes of horizontal or vertical gradients on one
side of the image, while decreasing the gradient magnitudes
on the other side. The vignetting-free gradient distributions
of each side of the image can be assumed to be symmet-
ric, and increasing or decreasing their magnitudes will in
general leave the distributions symmetric. As a result, hori-
zontal and vertical gradient distributions do not provide the
vignetting information that is available from radial gradi-
ents.



3. Vignetting Estimation with Radial
Gradients

In this section, we describe two variants of our single
image vignetting correction technique based on minimiz-
ing the asymmetry of the RG distribution. One variant es-
timates the amount of vignetting at discrete radii by casting
the problem as a sequence of least-squares optimizations.
The other variant fits an empirical vignetting model by non-
linear optimization.

3.1. Asymmetry Measure

We start by describing our quantitative measure of dis-
tribution function asymmetry. We use the Kullback-Leibler
(K-L) divergence that describes the relative entropy be-
tween the two sides of a distribution. Let H(ψ) be the his-
togram of gradient ψ centered at zero radial gradient. We
compute the positive and negative sides of the RG distribu-
tion as

H+(ψ) =
{

1
A1

H(ψ) ψ ≥ 0
0 ψ < 0

, (4)

H−(ψ) =
{

1
A2

H(−ψ) ψ ≥ 0
0 ψ < 0

, (5)

where A1 and A2 are normalization factors that map the
histograms to probability distribution functions. They are
defined as

A1 =
∑
ψ≥0

H(ψ), A2 =
∑
ψ≤0

H(ψ). (6)

The K-L divergence measures the difference between
probability distributions H+(ψ) and H−(ψ) as

∑
ψ

(
H+(ψ) · log

H+(ψ)
H−(ψ)

)
. (7)

Note that two different histograms may still correspond
to two similar probability distributions after normalization.
We account for this difference by incorporating the normal-
ization factors in our asymmetry measure Γ:

Γ(I) = λh

∑
ψ

(
H+(ψI) · log

H+(ψI)
H−(ψI)

)
+(1−λh)|A1−A2| 14 .

(8)
This asymmetry measure is applied to both horizontal and
radial gradient distributions. In this paper, we use Γr(I)
and Γh(I) to represent the asymmetry measure of the RG
distribution and horizontal gradient distribution of image I ,
respectively.

We have compared Γr with Γh on images in the Berkeley
Segmentation Dataset [14] and found Γr to be considerably
more sensitive to vignetting. For this dataset, Γr is signifi-
cantly higher on average than Γh (0.12 vs. 0.08). In Fig. 5,

Figure 5. Images (from the Berkeley Segmentation Dataset) sorted
by asymmetry. The top row images have the highest asymmetry
while the bottom row images have the lowest.

we display in the top row the four images with the highest
Γr. The bottom row shows the four images with the low-
est Γr. Vignetting is clearly strong in the top four images,
while the bottom four are practically vignetting-free.

We have also compared Γr and Γh before and after vi-
gnetting correction by the method in [25]. With vignetting
correction, significant reductions in Γr were observed, from
an average of 0.12 down to 0.072 over 40 images. In con-
trast, no obvious changes were observed for Γh (0.074 vs.
0.076). Note that vignetting correction brings Γr down to
a level similar to that of Γh (0.072 vs. 0.076). We repeated
these vignetting correction experiments on log intensity im-
ages and found that their RG and horizontal gradient distri-
butions also follow these trends.

Based on this asymmetry measure, we propose two vari-
ants for minimizing skewness: (1) a least-squares solution
with discrete radii, and (2) a nonlinear model-based solu-
tion.

3.2. Least-squares Solution with Discrete Radii

Our goal is to find the optimal vignetting function V that
minimizes asymmetry of the RG distribution. By taking the
log of equation (2), we get

ln Z(r, θ) = ln I(r, θ) + lnV (r). (9)

Let Z = ln Z , I = ln I , and V = ln V . We denote
the radial gradients of Z , I, and V for each pixel (r, θ) by
ψZ

r (r, θ), ψI
r (r, θ), and ψV

r (r, θ), respectively. Then,

ψZ
r (r, θ) = ψI

r (r, θ) + ψV
r (r). (10)

Given an image Z with vignetting, we find a maximum
a posteriori (MAP) solution to V . Using Bayes’ rule, this
amounts to solving the optimization problem

V = arg max
V

P (V|Z) ∝ argmax
V

P (Z|V)P (V). (11)

We consider the vignetting function at discrete, evenly-
sampled radii: (V (rt), rt ∈ Sr), where Sr =
{r0, r1, · · · , rn−1}. We also partition an image into sectors
divided along these discrete radii, such that rm is the inner



radius of sector m. Each pixel (r, θ) is associated with the
sector in which it resides, and we denote sector width by δr.

The vignetting function is in general smooth; therefore,
we impose a smoothness prior over V :

P (V) = e−λs

∑
rt∈Sr

V′′(rt)
2

, (12)

where λs is chosen to compensate for the noise level in the
image, and V ′′(rt) is approximated as

V ′′(rt) =
V(rt−1) − 2V(rt) + V(rt+1)

(δr)2
.

To compute P (Z|V), from equation (10), we have

ψI
r (r, θ) = ψZ

r (r, θ) − ψV
r (r) . (13)

We impose the sparsity prior [11, 9] on the vignetting-free
image I:

P (Z|V) = P
(
ψI

r

)
= e−|ψI

r |α , α < 1. (14)
∣∣ψI

r

∣∣ is used because of symmetry of the RG distribution for
I.

Substituting equation (13) in equation (14), we have

P (Z|V) = e−
∑

(r,θ)|ψZ
r (r,θ)−ψV

r (r)|α , (15)

where ψV
r (r) = (V(rm) − V(rm−1)) /δr, with m denoting

the sector within which the pixel (r, θ) resides. The overall
energy function P (Z|V)P (V) can then be written as

O =
∑
(r,θ)

∣∣ψZ
r (r, θ) − ψV

r (r)
∣∣α + λs

∑
rt∈Sr

V ′′(rt)2. (16)

Our goal is to find the values of V (rt), t = {0, 1, · · · , n−1}
that minimize O.

To effectively apply this energy function, a proper spar-
sity parameter α for the RG distribution of I must be se-
lected. As given in equation (14), α must be less than
1. However, very small values of α allow noise to more
strongly bias the solution [26, 11]. We have empirically
found that values of α between 0.3 and 0.9 yield robust
estimates of the vignetting function for most images. For
0 < α < 1 though, equation (16) does not have a closed-
form solution.

To optimize equation (16), we employ an iteratively re-
weighted least squares (IRLS) technique [9, 16]. IRLS
poses the optimization as a sequence of standard least
squares problems, each using a weight factor based on the
solution of the previous iteration. Specifically, at the kth
iteration, the energy function using the new weight can be
written as

Ok =
∑

(r,θ) wk(r, θ)
(
ψZ

r (r, θ) − ψVk
r (r)

)2

+λs

∑
rt∈Sr

V ′′
k (rt)2.

(17)

Input image Weight

Figure 6. Computed weights (equation (17)) in the least squares
variant after the 3rd iteration of the IRLS algorithm.

The weight wk(r, θ) is computed in terms of the optimal
Vk−1 from the last iteration as

wk(r, θ) = e−S1(1 − e−S2),
S1 =

∣∣∣ψZ
r (r, θ) − ψ

Vk−1
r (r)

∣∣∣,
S2 = α (S1)

α−1
.

(18)

The energy function then becomes a standard least-squares
problem, which allows us to optimize Vk using SVD.

In our experiments, we initialized w0(i, j) = 1 for all
pixels (i, j), and found that it suffices to iterate 3 or 4
times to obtain satisfactory results. We also observed that
the re-computed weights at each iteration k are higher at
pixels whose radial gradients in Z are more similar to the
ones in the estimated Vk−1. Thus, the solution is biased
towards smoother regions whose radial gradients are rel-
atively smaller. In addition, in a departure from [9], the
recomputed weights in our problem are always within the
range [0, 1]. Fig. 6 shows the weights recovered at the final
iteration for an indoor image.

Our IRLS approach for estimating the vignetting func-
tion does not require any prior on the vignetting model.
However, it requires choosing a proper coefficient λs to bal-
ance the smoothness prior on V and the radial gradient prior
on I. Since we choose a relatively small value of α, our vi-
gnetting estimation is biased more towards smooth regions
than sharp edges. In essence, we emphasize the central sym-
metric part of the RG distribution rather than the less sym-
metric heavy tails.

The IRLS variant has the advantage of fast convergence
and a linear solution. However, it requires estimating many
parameters, each corresponding to a discrete radius value.
We now describe the second variant, which is model-based
and requires far fewer number of parameters to estimate.

3.3. Model-based Solution

Many vignetting models exist, including polynomial
functions [2, 20], hyperbolic cosine functions [24], as well
as physical models that account for the optical and geomet-
rical causes of vignetting such as off-axis illumination and
light path obstruction [2, 8]. In this paper, we use the ex-
tended Kang-Weiss model [25] in which brightness ratios
are described in terms of an off-axis illumination factor A,



a geometric factor G (represented by a polynomial), and a
tilt factor. By neglecting the tilt factor, we have

V (r) = A(r)G(r), (r) ∈ Ω (19)

A(r) =
1

(1 + (r/f)2)2
,

G(r) = (1 − α1r − · · · − αpr
p),

where f is the effective focal length of the camera and
a1, · · · , ap are the coefficients of the pth order polynomial
associated with G. In our experiments, p = 5.

We estimate the parameters in this vignetting model, i.e.,
f, a1, · · · , ap, by minimizing

O = λ Γr

(
Z

V

)
+ (1 − λ)

(
Nb

NΩ

)1/4

, (20)

where Γr

(
Z
V

)
is the measure of asymmetry for image Z/V

using equation (8), NΩ is the total number of pixels in the
image, and Nb is the number of pixels whose estimated vi-
gnetting values lie outside the valid range [0, 1] or whose
corrected intensities exist outside of [0, 255]. In essence,
the second term in equation (20) penalizes outlier pixels.

To find the optimal vignetting model, we minimize the
energy function in (20) using the Levenberg-Marquardt (L-
M) algorithm [17]. We first solve for the focal length by
fixing the geometric factor G to be 0. We then the fix focal
length and compute the optimal coefficients a1, · · · , ap of
the geometric factor. Finally, we use the estimated focal
length and geometric coefficients as an initial condition and
re-optimize all parameters using the L-M method.

There are many advantages of using the vignetting model
in equation (19). First, it effectively models the off-axis
illumination effect A(r) using a single parameter f . The
off-axis illumination effect accounts for a prominent part
of the vignetting for natural images. Second, as shown in
Fig. 7, the profile of the energy function (20) with respect
to focal length enables quick convergenceby L-M optimiza-
tion when estimating the focal length. Finally, the poly-
nomial parameters in the extended Kang-Weiss model can
effectively characterize the residual vignetting effect after
removing the off-axis effect. In our experiments, by ini-
tializing these parameters simply to 0, the L-M method can
quickly converge to satisfactory solutions.

4. Results

We applied our algorithms on images captured using a
Canon G3, Canon EOS 20D, and Nikon E775, as well as
on images from the Berkeley Segmentation Dataset [14].
The top row in Fig. 5 show four images from the Berke-
ley Database with the strongest degree of vignetting. We
apply our least-squares and model-fitting methods to these
images, and as seen in Fig. 8, the results are good.

(a) (b)

(c)

Figure 7. Model-based vignetting correction. (a) Input image, (b)
final corrected image, and (c) graph of objective function (20) vs.
focal length. The images above the graph, from left to right, cor-
respond to corrected versions using focal length values indicated
by green squares on the curve. The focal length yielding the mini-
mum value is the final solution.

Least squares

Model-based
Figure 8. Vignetting correction results using our methods on the
four most heavily vignetted images in the Berkeley Segmentation
Dataset (Fig. 5).

We ran our algorithms on 20 indoor images. The vi-
gnetting artifacts in indoor images are generally difficult
to correct due to greater illumination non-uniformity [25].
Since our methods are based on modeling the asymmetry
of the gradient distributions instead of the intensity distri-
butions, they are robust in vignetting estimation for indoor
images. The results shown in the top rows of Fig. 9 demon-
strate that our methods are able to effectively reduce vi-
gnetting despite highly non-uniform illumination.

We have also tested our methods on 15 highly textured
images. While many previous approaches rely on robust
segmentation of textured regions, our methods uniformly
model the more slowly-varying vignetting and the high-
frequency textures in terms of the radial gradient distribu-
tions: the textures correspond to the heavy tails of the dis-



Original Least squares Model-based

(a)

(b)

Figure 9. Results on indoor and textured images. (a) From left to
right: input image, corrected image using least squares, corrected
image using the model-based variant. (b) From left to right: esti-
mated vignetting curves for images in (a). The red curves are ob-
tained by least squares, the blue curves are obtained by the model-
based method, and the black dotted curves are the ground truth.

Zheng et al. Least squares Model-based

Time 285 sec 35 sec 51 sec

Table 1. Comparison of average execution time on 70 images.

tribution and vignetting is reflected in the asymmetry of the
distribution. Therefore, without segmentation, our methods
can still significantly reduce vignetting in the presence of
strong textures, such as leaves on a tree, as shown in the
bottom row of Fig. 9.

We have compared the speed between our methods
and the previous single-image vignetting correction method
[25] on a total of 70 outdoor, indoor, and textured images.
All images have a resolution of 450×600 and all algorithms
were implemented in Matlab (except for the segmentation
component of [25] in C++) and run on a Dell PC with 2.39
GHz Intel Core 2 CPU. Our algorithms achieved on average
a speed-up of 4-5 times compared with Zheng et al.’s algo-
rithm (see Table 1). This is mainly because our methods do
not require iterative segmentation and vignetting correction.

To evaluate accuracy, we obtained ground truth vi-
gnetting functions using an approach similar to that de-
scribed in [25]: we captured multiple images of a dis-
tant white surface under approximately uniform illumina-
tion. Table 2 lists residual errors for our methods as well
as Zheng et al.’s algorithm [25]. For outdoor scenes, our
model-fitting variant performs the best while the method
of Zheng et al. and our least-squares variant are compara-
ble. For indoor and texture scenes, our two methods, in

Zheng et al. Least squares Model-based

Outdoor 1.9/0.5 1.9/1.0 1.4/0.3
Indoor 2.9/1.8 2.4/1.3 2.5/1.2
Texture 5.7/2.1 5.3/2.4 4.0/1.9

Table 2. Comparison of mean/standard-deviation of the Mean
Squared Errors (×10−3) for 70 images.

Original Zheng et al. Least squares Model-based

213 sec (2.1) 35 sec (1.8) 48 sec (1.0)

257 sec (167) 35 sec (1.6) 50 sec (1.2)

295 sec (146) 35 sec (1.8) 52 sec (2.1)

Figure 10. Comparisons of speed and accuracy. The numbers
within parentheses are mean squared errors (×10−3).

Figure 11. Final segmentations on the images in Fig. 10 by the
vignetting correction method of Zheng et al.

particular the model-based method, estimate the vignetting
functions more accurately. This is mainly because our tech-
nique is based on the symmetry of the RG distribution while
the method by Zheng et al. [25] relies on the (less reliable)
measurement of homogeneity in textures and colors. RG
symmetry holds for a wide range of natural images even
though they contain few homogeneous regions (e.g., highly
textured images). It is thus not surprising that our methods
are able to correct vignetting in images with highly complex
textures or non-uniform illumination while the method of
Zheng et al. is less able to, as shown in Fig. 10. Fig. 11 ex-
emplifies the problem of using segmentation for vignetting
removal. Notice that many of the segments in the second
and third images cover regions that are either non-uniformly
textured or are inhomogeneous, resulting in sub-optimal re-
sults.

5. Discussion

Our model-based vignetting variant uses a small number
of parameters, and as such, has a better chance of converg-



ing to an optimal solution. However, since its optimization
is nonlinear, convergence is slower than the least squares
variant. Unfortunately, not all images with vignetting fit
the Kang-Weiss vignetting model. Cameras with specially
designed lenses, for example, may produce vignetting func-
tions that deviate from this model. Here, the more flexible
least squares variant would perform better.

A major limitation of our techniques is the assumption of
the optical center being at the image center. Our techniques
would not work for images cropped off-center. While it is
possible to search for the optical center, issues of conver-
gence would have to be dealt with effectively.

6. Conclusion

We have presented a novel single-image vignetting cor-
rection method based on the symmetric distribution of the
radial gradient (RG). The radial gradient is the image gradi-
ent along the radial direction with respect to the image cen-
ter. We have shown for natural images without vignetting
that the RG distribution is generally symmetric, while it
will be skewed if the image is corrupted by vignetting. To
remove vignetting, we have developed two variants for cor-
recting the asymmetry of the RG distribution. One variant
estimates the amount of vignetting at discrete radii by cast-
ing the problem as a sequence of least-squares estimations.
The other variant fits a vignetting model using nonlinear op-
timization.

Our techniques avoid the segmentation that is required
by previous methods. Instead, we model the symmetry of
the RG distribution over the entire image. Experiments
on a wide range of natural images have shown that our
techniques are overall more robust and accurate, particu-
larly for images with textures and non-uniform illumina-
tions. These images are difficult to handle effectively us-
ing segmentation-based approaches. Our methods are also
faster than the segmentation-based approaches. Both meth-
ods achieve a speed-up of 4-5 times compared with a state-
of-the-art method, and with comparable or better results.
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