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Abstract
This paper proposes a novel framework for labelling

problems which is able to combine multiple segmentations
in a principled manner. Our method is based on higher or-
der conditional random fields and uses potentials defined
on sets of pixels (image segments) generated using unsu-
pervised segmentation algorithms. These potentials enforce
label consistency in image regions and can be seen as a
strict generalization of the commonly used pairwise con-
trast sensitive smoothness potentials. The higher order po-
tential functions used in our framework take the form of the
Robust Pn model. This enables the use of powerful graph
cut based move making algorithms for performing inference
in the framework [14]. We test our method on the prob-
lem of multi-class object segmentation by augmenting the
conventional CRF used for object segmentation with higher
order potentials defined on image regions. Experiments on
challenging data sets show that integration of higher order
potentials quantitatively and qualitatively improves results
leading to much better definition of object boundaries. We
believe that this method can be used to yield similar im-
provements for many other labelling problems.

1. Introduction
In recent years an increasingly popular way to solve

various image labelling problems like object segmentation,
stereo and single view reconstruction is to formulate them
using image segments (so called superpixels) obtained from
unsupervised segmentation algorithms [9, 10, 22]. These
methods are inspired from the observation that pixels con-
stituting a particular segment often have the same label; for
instance, they may belong to the same object or may have
the same surface orientation. This approach has the benefit
that higher order features based on all the pixels constituting
the segment can be computed and used for classification1.
Further, it is also much faster as inference now only needs
to be performed over a small number of superpixels rather
than all the pixels in the image.

Methods based on grouping segments make the assump-
tion that segments are consistent with object boundaries in
the image [9], i.e. segments do not contain multiple objects.
As observed by [11] and [26] this is not always the case and
segments obtained using unsupervised segmentation meth-
ods are often wrong. To overcome these problems [11] and
[26] use multiple segmentations of the image (instead of

1In some sense this causes the problem of scene understanding to be
decoupled from the image resolution given by the hardware; it is conducted
using more natural primitives that are independent of resolution.
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Figure 1. Using higher order potentials for object segmentation.
(a) An image from the MSRC-23 dataset. (b) The object segmenta-
tion obtained by performing inference in the pairwise CRF defined
in section 2.1 which uses unary likelihood potentials from Texton-
boost [29]. (c) Our segmentation result which was obtained by
augmenting the pairwise CRF with higher order potentials defined
on image segments. The segments were generated by changing the
parameters values in the mean-shift segmentation algorithm [6]
(as explained in section 3.4). (d) The rough hand labelled segmen-
tations provided in the MSRC data set. It can be clearly seen that
the use of higher order potentials results in a significant improve-
ment in the segmentation result. For instance, the branches of the
tree are much better segmented.

only one) in the hope that although most segmentations are
bad, some are correct and thus would prove useful for their
task. They merge the multiple superpixels using heuristic
algorithms which lack any optimality guarantees and thus
may produce bad results. In this paper we propose an algo-
rithm that can compute the solution of the labelling problem
(using features based on image segments) in a principled
manner. Our approach couples potential functions defined
on sets of pixels with conventional unary and pairwise cues
using higher order CRFs. We test the performance of this
method on the problem of object segmentation and recogni-
tion. Our experiments show that the results of our approach
are significantly better than the ones obtained using pair-
wise CRF models (see figure 1). †

Object Segmentation and Recognition Combined ob-
ject segmentation and recognition is one of the most chal-
lenging and fundamental problems in computer vision. The

†This work was supported by the EPSRC research grant
GR/T21790/01(P), HMGCC and the IST Programme of European
Community, under the PASCAL Network of Excellence.
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last few years have seen the emergence of object segmen-
tation algorithms which integrate object specific top-down
information with image based low-level features [2, 8, 12,
16, 19]. These methods have produced excellent results on
challenging data sets. However, they typically only deal
with one object at a time in the image independently and do
not provide a framework for understanding the whole im-
age. Further, their models become prohibitively large as the
number of classes increases. This prevents their application
to scenarios where segmentation and recognition of many
object classes is desired.

Shotton et al. [29] recently proposed a method (Texton-
boost) to overcome this problem. In contrast to using ex-
plicit models to encode object shape they used a boosted
combination of texton features which jointly modeled shape
and texture. They combine the result of textons with colour
and location based likelihood terms in a condition random
field (CRF). Although their method produced good segmen-
tation and recognition results, the rough shape and texture
model caused it to fail at object boundaries. The problem
of extracting accurate boundaries of objects is considerably
more challenging. In what follows we show that incorpo-
ration of higher order potentials defined on superpixels dra-
matically improves the object segmentation result. In par-
ticular, it leads to segmentations with much better definition
of object boundaries as shown in figure 1.

Higher Order CRFs Higher order random fields are not
new to computer vision. They have been frequently used
to model image textures [18, 20, 24]. The initial work in
this regard has been quite promising and higher order CRFs
have been shown to improve results for problems such as
image denoising and restoration [24], and texture segmen-
tation [13]. However, the lack of efficient algorithms for
performing inference in these models has limited their ap-
plicability. Traditional inference algorithms such as BP be-
come computationally expensive for higher order CRFs. Re-
cent work has been partly successful in improving their per-
formance for certain classes of potential functions. Lan et
al. [18] proposed approximation methods for BP to make
efficient inference possible in higher order MRFs. This was
followed by the recent work of Potetz [21] in which he
showed how belief propagation can be efficiently performed
in graphical models containing moderately large cliques.
However, as these methods were based on BP, they were
quite slow and took minutes or hours to converge.

Kohli et al. [13] recently introduced a class of higher or-
der potentials called the P n Potts model and showed that
they can be minimized using the graph cuts based move
making algorithms, namely, α-expansion and αβ-swap [4].
The higher order potential functions used in our framework
take the form of the Robust Pn model. This model is more
general than the Pn Potts model and cannot be minimized
using the method of [13]. We have shown that energy func-

tions composed of these robust potentials can be minimized
using α-expansion and αβ-swap algorithms [14]. The com-
plexity of our algorithm increases linearly with the size of
the clique which makes it able to handle cliques composed
of thousands of latent variables.

Overview of the Paper This paper proposes a general
framework for solving labelling problems which has the
ability of utilizing higher order potentials defined on seg-
ments. We test this framework on the problem of object
segmentation and recognition by integrating potentials en-
couraging label consistency in segments with convention-
ally used unary and pairwise potentials. Inference in this
framework is performed using graph cut based move mak-
ing algorithms [14]. To summarize, the novelties of our ap-
proach include:

1. A novel higher order region consistency potential
which is a strict generalization of the commonly used
pairwise contrast sensitive smoothness potential.

2. The application of higher order CRFs for object seg-
mentation and recognition which integrate the above
mentioned higher order potentials with conventional
unary and pairwise potentials based on colour, loca-
tion, texture, and smoothness.

An outline of the paper follows. In section 2 we discuss
the basic theory of conditional random fields. We then show
how pairwise CRFs can be used to model labelling problems
like object segmentation. In section 3 we augment the pair-
wise CRF model by incorporating novel higher order poten-
tials based on super-pixel segmentations. The experimental
results of our method are given in section 4. These include
qualitative and quantitative results on well known and chal-
lenging data sets for object segmentation and recognition.
The conclusions and directions for future work are listed in
section 5.

2. Preliminaries
We start by providing the basic notation used in the pa-

per. Consider a discrete random field X defined over a
lattice V = {1, 2, . . . , N} with a neighbourhood system
N . Each random variable Xi ∈ X is associated with a
lattice point i ∈ V and takes a value from the label set
L = {l1, l2, . . . , lk}. The neighborhood system N of the
random field is defined by the sets Ni, ∀i ∈ V , whereNi de-
notes the set of all neighbours of the variable Xi. A clique
c is a set of random variables Xc which are conditionally
dependent on each other. Any possible assignment of labels
to the random variables will be called a labelling (denoted
by x) which takes values from the set L = LN .

A random field is said to be Markov with respect to a
neighborhood system N = {Nv|v ∈ V} if and only if it sat-
isfies the positivity property: Pr(x) > 0 ∀x ∈ Xn, and the
Markovian property:

Pr(xv|{xu : u ∈ V − {v}}) = Pr(xv|{xu : u ∈ Nv}), (1)



for all v ∈ V . Here we refer to Pr(X = x) by Pr(x) and
Pr(Xi = xi) by Pr(xi). A conditional random field (CRF)
may be viewed as an MRF globally conditioned on the data.

The posterior distribution Pr(x|D) over the labellings
of the conditional random field is a Gibbs distribu-
tion and can be written in the form: Pr(x|D) =
1
Z exp(−∑

c∈C ψc(xc)), where Z is a normalizing con-
stant known as the partition function, and C is the set of
all cliques [17]. The term ψc(xc) is known as the poten-
tial function of the clique c where xc = {xi, i ∈ c}. The
corresponding Gibbs energy is given by

E(x) = − log Pr(x|D) − log Z =
∑
c∈C

ψc(xc). (2)

The most probable or maximum a posterior (MAP)
labelling x∗ of the random field is defined as:
x∗ = argmaxx∈L Pr(x|D) = arg minx∈L E(x).

2.1. Pairwise CRFs for Object Segmentation
The CRF models commonly used for object segmentation

are characterized by energy functions defined on unary and
pairwise cliques as:

E(x) =
∑
i∈V

ψi(xi) +
∑

i∈V,j∈Ni

ψij(xi, xj). (3)

Here V corresponds to the set of all image pixels, N is a
neighbourhood defined on this set which is commonly cho-
sen to be either a 4 or 8 neighbourhood. The labels con-
stituting the label set L represent the different objects. The
random variable xi denotes the labelling of pixel i of the
image. Every possible assignment of the random variables
x (or configuration of the CRF) defines a segmentation.

The unary potential ψi of the CRF is defined as the neg-
ative log of the likelihood of a label being assigned to pixel
i. It can be computed from the colour of the pixel and the
appearance model for each object. However, colour alone is
not a very discriminative feature and fails to produce accu-
rate segmentations. This problem can be overcome by using
sophisticated potential functions based on colour, texture,
location, and shape priors as shown by [1, 5, 16, 25, 29].
The unary potential used by us can be written as:

ψi(xi) = θT ψT (xi) + θcolψcol(xi) + θlψl(xi) (4)

where θT , θcol, and θl are parameters weighting the poten-
tials obtained from TextonBoost(ψT ) [29], colour(ψcol) and
location(ψl) respectively.

The pairwise terms ψij of the CRF take the form of a
contrast sensitive Potts model:

ψ(xi, xj) =
{

0 if xi = xj ,
g(i, j) otherwise,

(5)

where the function g(i, j) is an edge feature based on the
difference in colors of neighboring pixels [3]. It is typically

defined as:

g(i, j) = θp + θv exp(−θβ ||Ii − Ij ||2), (6)

where Ii and Ij are the colour vectors of pixel i and j
respectively. θp, θv , and θβ are model parameters whose
values are learned using training data. We refer the reader
to [3, 25, 29] for more details.

Inferring the most probable segmentation The object
segmentation problem can be solved by finding the least
energy configuration of the CRF defined above. As the pair-
wise potentials of the energy function (3) are of the form of
a Potts model it can be minimized approximately using the
well known α-expansion algorithm [4]. The resulting seg-
mentation can be seen in figure 1. We also tried other energy
minimization algorithms such as sequential tree-reweighted
message passing (TRW-S) [15, 31]. The α-expansion algo-
rithm was preferred because it was faster and gave a solution
with lower energy compared to TRW-S.

Need for higher order CRFs The use of Potts model[4]
potentials in the CRF model makes it favour smooth object
boundaries. Although this improves results in most cases it
also introduces an undesirable side effect. Smoothness po-
tentials make the model incapable of extracting the fine con-
tours of certain object classes such as trees and bushes. As
seen in the results, segmentations obtained using pairwise
CRFs tend to be oversmooth and quite often do not match
the actual object contour. In the next section we show how
these results can be significantly improved by using higher
order potentials derived from multiple segmentations ob-
tained from an unsupervised image segmentation method.

3. Incorporating Higher Order Potentials
Methods based on grouping regions for segmentation

generally make the assumption that all pixels constituting a
particular segment (or region) belong to the same object [9].
This is not always the case, and image segments quite often
contain pixels belonging to multiple object classes. For in-
stance, in the segmentations shown in figure 2 the bottom
image segment contains some ‘building’ pixels in addition
to all the grass pixels.

Unlike other object segmentation algorithms which use
the label consistency in segments as a hard constraint, our
method uses it as a soft constraint. This is done by using
higher order potentials defined on the image segments gen-
erated using unsupervised segmentation algorithms. Specif-
ically, we augment the pairwise CRF model explained in
the previous section by incorporating higher order poten-
tials defined on sets or regions of pixels. The Gibbs energy
of this higher order CRF can now be written as:

E(x) =
∑
i∈V

ψi(xi) +
∑

i∈V,j∈Ni

ψij(xi, xj) +
∑
c∈S

ψc(xc), (7)



Figure 2. Quality sensitive region consistency prior. (a) An image
from the MSRC data set. (b) and (c) Two different segmentations of
the image obtained using different parameter values for the mean-
shift algorithm. (d) A hand labelled object segmentation of the
image. (e) and (f) The value of the variance based quality function
G(c) (see equation 10) computed over the segments of the two seg-
mentations. Segments with high quality values are darker. It can
be clearly seen that segments which contain multiple object classes
have been assigned low quality. For instance, the top segment of
the left tree in segmentation (c) includes a part of the building and
thus is brighter in the image (f) indicating low quality. Potentials
defined on such segments will have a lower labelling inconsistency
cost and will have less influence in the CRF.

where S refers to the set of all regions or segments, and ψc

are higher order potentials defined on them. We will now
describe in detail how these potentials are defined.

3.1. Region based consistency potential
The region consistency potential is similar to the smooth-

ness prior present in pairwise CRFs [3]. It favours all pixels
belonging to a segment taking the same label, and as will
be shown later is particularly useful in obtaining object seg-
mentations with fine boundaries. It takes the form of a Pn

Potts model [13]:

ψp
c (xc) =

{
0 if xi = lk, ∀i ∈ c,

θh
p |c|θα otherwise.

(8)
where |c| is the cardinality of the pixel set c which in our
case is the number of pixels constituting superpixel c. The
expression θh

p |c|θα gives the label inconsistency cost, i.e.
the cost added to the energy of a labelling in which different
labels have been assigned to the pixels constituting the seg-
ment. The parameters θh

p and θα are learned from the train-
ing data by cross validation as described in section 4. The
reader should note that this potential cannot be expressed in
a pairwise CRF model.

3.2. Quality sensitive consistency potential
Not all segments obtained using unsupervised segmen-

tation are equally good, for instance, some segments may
contain multiple object classes. A region consistency poten-
tial defined over such a segment will encourage an incorrect
labelling of the image. This is because the potential (8) does
not take the quality or goodness of the segment. It assigns

Figure 3. Behaviour of the rigid P n Potts potential and the Ro-
bust P n model potential. The figure shows how the cost en-
forced by the two higher order potentials changes with the num-
ber of variables in the clique not taking the dominant label i.e.
Ni(xc) = mink(|c| − nk(xc)).

the same penalty for breaking ‘good’ segment as it assigns
to ‘bad’ ones. This problem of the consistency potential
can be overcome by defining a quality sensitive higher or-
der potential (see figure 2). This new potential works by
modulating the label inconsistency cost with a function of
the quality of the segment (which is denoted by G(c)). Any
method for estimating the segment quality can be used in
our framework. A good example would be the method of
[23] which uses inter and intra region similarity to measure
the quality or goodness of a segment. Formally, the poten-
tial function is written as:

ψv
c (xc) =

{
0 if xi = lk, ∀i ∈ c,

|c|θα(θh
p + θh

v G(c)) otherwise.
(9)

For our experiments, we use the variance of the response
of a unary feature evaluated on all constituent pixels of a
segment to measure the quality of a segment, i.e.

G(c) = exp
(
−θh

β

‖∑
i∈c(f(i) − μ)2‖

|c|
)

, (10)

where μ =
∑

i∈c f(i)

|c| and f() is a function evaluated on
all constituent pixels of the superpixel c. If we restrict our
attention to only pairwise cliques i.e. |c| = 2, the variance
sensitive potential becomes ψv

c (xi, xj) ={
0 if xi = xj ,

|c|θα (θh
p + θh

v exp(−θh
β

‖f(i)−f(j)‖2

4
)) otherwise.

(11)

This is the same as the pairwise potential (5) commonly
used in pairwise CRFs for different image labelling prob-
lems [3, 25]. Thus, the variance sensitive potential can be
seen as a higher order generalization of the contrast pre-
serving potential. The variance function response over two
segmentations of an image is shown in figure 2.

3.3. Making the potentials robust
The Pn Potts model enforces label consistency very

rigidly and thus might not be able to deal with inaccurate su-
perpixels or resolve conflicts between overlapping regions
of pixels. This phenomenon is illustrated in figure 4 wherein
a part of the bird is merged with the ‘sky’ superpixel and



Figure 4. Object segmentation and recognition using the Robust
P n higher order potentials (12). (a) Original Image. (b) La-
belling from unary likelihood potentials from Textonboost [29]. (c)
and (d) Segmentations obtained by varying the parameters of the
Mean shift algorithm for unsupervised image segmentation [6].
(e) Result obtained using pairwise potential functions as described
in [29]. (f) Result obtained using P n Potts model potentials de-
fined on the segments (or superpixels) shown in (c) and (d). These
higher order potentials encourage all pixels in a superpixel to take
the same label. The P n Potts model enforces label consistency in
regions very rigidly thus causing certain pixels belonging to the
‘bird’ to erroneously take the label ‘sky’ as they were included in
the ‘sky’ superpixel. This problem can be overcome by using the
Robust P n model potentials defined in (12) which are robust and
allow some variables in the clique to take different labels. (g) and
(h) show results obtained by using the robust potentials with trun-
cation parameter Q equal to 0.1|c| and 0.2|c| respectively. Here
|c| is equal to the size of the superpixel over which the Robust P n

model potential is defined. (i) Hand labelled segmentation from
the MSRC dataset.

results in an inaccurate segmentation. Intuitively, this prob-
lem can be resolved using the Robust higher order potentials
defined as:

ψv
c (xc) =

{
Ni(xc) 1

Qγmax if Ni(xc) ≤ Q,

γmax otherwise,
(12)

where Ni(xc) denotes the number of variables in the clique
c not taking the dominant label, i.e. Ni(xc) = mink(|c| −
nk(xc)), γmax = |c|θα(θh

p + θh
v G(c)), and Q is the trun-

cation parameter which controls the rigidity of the higher
order clique potential. This potential takes the form of
the Robust Pn model introduced by us in [14], where we
showed how energy functions composed of such potentials
can be minimized using move making algorithms such as
α-expansion and αβ-swap.

Unlike the Pn Potts model, this potential function gives
rise to a cost that is a linear truncated function of the num-

Figure 5. Generating multiple segmentations. The figure shows the
segmentations obtained by using different parameters in the mean-
shift algorithm. The parameters used for generating the segmen-
tation are written below it in the format (hs, hr), where hs and hr

are the bandwidth parameters for the spatial and range (colour)
domains.

ber of inconsistent variables (see figure 3). This enables
the robust potential to allow some variables in the clique to
take different labels. In the image shown in figure 4, the
Robust Pn model potential allows some pixels of the ‘sky’
segment to take the label ‘bird’ thus producing a much bet-
ter segmentation. Experiment results are shown for multiple
values of the truncation parameter Q. More qualitative re-
sults can be seen in figure 7.

3.4. Generating multiple segmentations
We now explain how the set S of segments used for

defining the higher order energy function (7) was generated.
Our framework is quite flexible and can handle multiple
overlapping or non-overlapping segments. The computer
vision literature contains algorithms for sampling the likely
segmentations of an image [30] or for generating multi-
scale segmentations [27]. However, following in the foot-
steps of [26] we choose to generate multiple segmentations
by varying the parameters of the mean shift segmentation
algorithm [6]. This method belongs to the class of unsu-
pervised segmentation algorithms which work by clustering
pixels on the basis of low level image features [28, 6, 7].
They have been shown to give decent results which have
proved to be useful for many applications [10, 11, 32].

The kernel used in the mean shift algorithm is defined
as the product of spatial and range kernels. The spatial do-
main contains the (x, y) coordinates, while the range do-
main contains pixel colour information in LUV space. An
assumption of Euclidian metric in both of them allows the
use of a single bandwidth parameter for each domain, hs

for spatial and hr for range. The segmentation results ob-
tained using 2 different spatial {7, 18} and 3 different range
parameter values {6.5, 9.5, 15} are shown in figure 5. It
can be seen that the results do not change dramatically on
small images by modifying hs. The only difference occurs
on very noisy parts of the image like trees and bushes. By
increasing the range parameter hr we can get a range of
segmentations which vary from over-segmented to under-
segmented. We decided to use three segmentations with pa-
rameters (hs, hr) = {(7, 6.5), (7, 9.5), (7, 15)}.



Figure 6. Qualitative object segmentation and recognition results.
The first column shows the original image from the Sowerby-7
dataset. Column 2 shows the result of performing inference in
the pairwise CRF model described in section 2.1. The result ob-
tained using the P n Potts potential (9) is shown in column 3. The
results of using the Robust P n potential (12) is shown in column
4. The hand labelled segmentation used as ground truth is shown
in column 5.

Figure 7. Some qualitative results. Please view in colour. First
Row: Original Image. Second Row: Unary likelihood labelling
from Textonboost [29]. Third Row: Result obtained using a pair-
wise contrast preserving smoothness potential as described in
[29]. Fourth Row: Result obtained using the P n Potts model po-
tential [13]. Fifth Row: Results using the Robust P n model poten-
tial (12) with truncation parameter Q = 0.1|c|, where |c| is equal
to the size of the superpixel over which the Robust P n higher or-
der potential is defined. Sixth Row: Hand labelled segmentations.
Observe that the results obtained using the Robust P n model are
significantly better than those obtained using other methods. For
instance, the leg of the sheep and bird have been accurately la-
belled which was missing in other results. Same can be said about
the tail and leg of the dog, and the wings of the aeroplane.

4. Experiments
This section describes our experiments. For comparative

evaluation of our method we implemented the state of the
art TextonBoost [29] algorithm which uses a pairwise CRF.
We then augmented the CRF by adding higher order poten-
tials defined on segments obtained from mean-shift [6].

Datasets We tested both the pairwise CRF and higher or-
der CRF models on the MSRC-23 [29] and Sowerby-7 [9]

Figure 8. Accurate hand labelled segmentations which were used
as ground truth. The figure shows some images from the MSRC

data set (column 1), the hand labelled segmentations that came
with the data set (column 2), and the new segmentations hand la-
belled by us which were used as ground truth (column 3).

datasets. The MSRC dataset contains 23 object classes and
comprises of 591 colour images of 320×213 resolution.
The Sowerby dataset contains 7 object classes and com-
prises of 104 colour images of 96×64 resolution. In our
experiments, 50% of the images in the dataset were used
for training and the remaining were used for testing.

4.1. Setting CRF parameters
The optimal values for different parameters of the higher

order CRF were found in a manner similar to the one used
for the pairwise CRF in [29]. The model parameters were
learned by minimizing the overall pixelwise classification
error rate on a set of validation images - a subset of training
images which were not used for training unary potentials.

A simple method for selecting parameter values is to
perform cross-validation for every combination of unary,
pairwise and higher order parameters within a certain dis-
cretized range. Unfortunately, the space of possible pa-
rameter values is high dimensional and doing an exhaustive
search is infeasible even with very few discretization lev-
els for each parameter. We used a heuristic to overcome
this problem. First we learned the weighting between unary
potentials from colour, location and Textonboost. Then we
kept these weights constant and learned the optimal param-
eters for pairwise potentials. Pairwise and higher order po-
tentials have similar functionality in the framework, thus
learning of higher order parameters from the model with op-
timal unary and pairwise parameters would lead to very low
weights of higher order potentials. Instead we learned op-
timal higher order parameters in CRF with only unary and
higher order potentials and in the last step the ratio between
pairwise and higher order potentials. The final trained coef-
ficients for the MSRC dataset were θT = 0.52, θcol = 0.21,
θl = 0.27, θp = 1.0, θv = 4.5, θβ = 16.0, θα = 0.8,
θh

p = 0.2, θh
v = 0.5, θh

β = 12.0. Parameter learning for
higher order CRFs is an ongoing topic of research.

4.2. Quantitative Segmentation Results
The results of our experiments show that integration of

higher order Pn Potts model potentials quantitatively and



Figure 9. Qualitative results of our method. (a) Original Im-
ages. (b) Segmentation result obtained using the pairwise CRF
(explained in section 2.1). (c) Results obtained by incorporating
the Robust P n higher order potential (12) defined on segments.
(d) Hand labelled result used as ground truth.

Figure 10. The relationship between qualitative and quantitative
results. (a) Original Image. (b) Segmentation result obtained us-
ing the pairwise CRF (explained in section 2.1). Overall pixelwise
accuracy for the result is 95.8%. (c) Results obtained by incorpo-
rating the Robust P n higher order potential (12) defined on seg-
ments. Overall pixelwise accuracy for this result is 98.7%. (d)
Hand labelled result used as ground truth. It can be seen that even
a small difference in the pixelwise accuracy can produce a massive
difference in the quality of the segmentation.

qualitatively improves segmentation results. The use of
the robust potentials lead to further improvements (see fig-
ure 4,6, 7 and 9). Inference on both the pairwise and higher
order CRF model was performed using the graph cut based
expansion move algorithm [4, 14]. The optimal expansion
moves for the energy functions containing the Robust Pn

potential (12) were computed using the method of [14].

Ground Truth The hand labelled ‘ground truth’ images
that come with the MSRC-23 data set are quite rough. In
fact qualitatively they always looked worse than the results
obtained from our method. The hand labelled images suffer
from another drawback. A significant numbers of pixels in
these images have not been assigned any label. These un-
labelled pixels generally occur at object boundaries and are
critical in evaluating the accuracy of a segmentation algo-
rithm. It should be noted that obtaining an accurate and fine
segmentation of the object is important for many tasks in
computer vision.

In order to get a good estimate of our algorithm’s accu-
racy, we generated accurate segmentations which preserved
the fine object boundaries present in the image. Generat-

Figure 11. Boundary accuracy evaluation using trimap segmen-
tations. The first column shows some images from the MSRC
dataset [29]. The ground truth segmentations of these image are
shown in column 2. Column 3 shows the trimaps used for measur-
ing the pixel labelling accuracy. The evaluation region is coloured
gray and was generated by taking an 8 pixel band surrounding
the boundaries of the objects. The corresponding trimaps for an
evaluation band width of 16 pixels is shown in column 4.

ing these segmentations is quite time consuming. It takes
between 15-60 minutes to hand label one image. We hand
labelled 27 images from the MSRC data set. Figure 8 shows
the original hand labelled images of the MSRC data set and
the new segmentations manually labelled by us which were
used as ground truth.

Evaluating Accuracy Typically the performance of a
segmentation algorithm is measured by counting the total
number of mislabelled pixels in the image. We believe this
measure is not appropriate for measuring the segmentation
accuracy if the user is interested in obtaining accurate seg-
mentations as alpha mattes with fine object boundaries. As
only a small fraction of image pixels lie on the boundary
of an object, a large qualitative improvement in the qual-
ity of the segmentation will result in only a small increase
in the percentage pixel-wise accuracy. This phenomenon is
illustrated in figure 10.

With this fact in mind, we evaluate the quality of a seg-
mentation by counting the number of pixels misclassified in
the region surrounding the actual object boundary and not
over the entire image. The error was computed for different
widths of the evaluation region. The evaluation regions for
some images from the MSRC dataset are shown in figure 11.
The accuracy of different segmentation methods is plotted
in the graph shown in figure 12.

5. Summary
In this paper we proposed a novel framework for la-

belling problems which is capable of utilizing features
based on sets of pixels in a principled manner. We tested
this approach on the problem of multi-class object segmen-
tation and recognition. Our experiments showed that in-
corporation of Pn Potts and Robust Pn model type poten-
tial functions (defined on segments) in the conditional ran-
dom field model for object segmentation dramatically im-
proved results around object boundaries. We believe this
method is generic and can be used to solve many other
labelling problems. In the future we would like to in-
vestigate the use of more sophisticated higher order po-



Figure 12. Pixelwise classification error in our results. The graph
shows how the overall pixelwise classification error varies as we
increase the width of the evaluation region.

tentials based on the shape and appearance of image seg-
ments. We believe that such potentials would be more
discriminative and will result in even better performance.
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