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Abstract

Bottom-up segmentation tends to rely on local features.
Yet, many natural and man-made objects contain repeating
elements. Such structural and more spread-out features are
important cues for segmentation but are more difficult to
exploit. The difficulty also comes from the fact that repeti-
tion need not be perfect, and will actually rather be partial,
approximate, or both in most cases. This paper presents a
multi-label image segmentation algorithm that processes a
single input image and efficiently discovers and exploits re-
peating elements without any prior knowledge about their
shape, color or structure. The algorithm spells out the in-
terplay between segmentation and repetition detection.

The key of our approach is a novel, point-wise concept of
repetition. This is defined by point-wise mutual information
and locally compares certain neighborhoods to accumulate
evidence. This point-wise repetition measure naturally han-
dles imperfect repetitions, and the parts with inconsistent
appearances are recognized and assigned with low scores.
An energy functional is proposed to include the point-wise
repetition into the image segmentation process, which takes
the form of a graph-cut minimization. Real scene images
demonstrate the ability of our algorithm to handle partial
and approximate repetition.

1. Introduction
Multi-label image segmentation is an important task in

computer vision, which provides crucial information for
high level applications, such as object recognition, video
tracking, scene reconstruction, image compression and so
on. Two typical difficulties are: 1) the selection of image
features and 2) feature clustering for label assignment.

Color and texture are popular features, with several out-
standing examples in the literature [28, 8]. Humans defi-
nitely take a more holistic approach to segmentation though,
as is already known from the Gestalt school. High level
regularities in the pattern seem to jump into the eye. If we
look around, we cannot help but to notice repetitive pat-
terns. Many natural and man-made objects exhibit repeti-
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Figure 1. Overview of the four stages of the proposed algorithm.

tion of some kind. Fruits and animals have regularities in
their skins, buildings have repeating windows, clothes often
have periodic patterns, etc. Such repetitions bind together
groups of pixels that might be widely spread out over the
image and may even be disjoint. Therefore, observed repe-
titions are a crucial asset for segmentation, especially at the
stage of the feature clustering.

However, from a computational point of view, repetition
detection is not an easy task. This is all the more the case
since repetition often is partial, approximate or both. With-
out a clear premonition about the repeating element’s shape
and size, there are many degrees of freedom. Moreover,
element appearance may differ somewhat from element to
element, e.g. because of different illumination, viewpoint,
natural variation, etc. These difficulties have hampered the
widespread use of repetition detection in segmentation.

1.1. Overview

We propose a multi-label image segmentation algorithm
that processes a single input image and efficiently discovers
and exploits repeating elements without any prior knowl-
edge about their shape, intensity or structure. A new for-
mulation is proposed to describe the interplay between seg-
mentation and repetition detection. The former produces
labels for the latter, while the latter in turn provides corre-
sponding points for the former. An overview of the four
stages of the proposed algorithm is shown in Fig. 1.
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At the first stage, we use the k-means method to pro-
duce initial color clusters and the corresponding initial over-
segmentation of the image. Through their colors, pixels are
regarded as 3D points in the CIE L∗u∗v∗ color space. Com-
pared with the RGB, CMYK and HSV color spaces, CIE
L∗u∗v∗ is designed to approximate human vision, where a
good metric for assessing perceptual differences among col-
ors is given by the simple Euclidean distances [13]. Voronoi
cells in this color space yield the labels of this segmentation,
i.e. the clusters of object colors. Please note that the initial
over-segmentation does not have to be accurate, and the la-
bels can later be split and merged by optimizing our energy
functional. The k-means method is initialized to have 64
clusters in our experiments. The implementation details of
this first stage can be found in Sec. 4.1.

At the second stage, with the initial over-segmentation
at hand, we compute the Shannon entropy for the segmen-
tation labels in the local neighborhood of each pixel. Low
values indicate pixels in color-homogeneous areas. Their
detection will bring appreciable time savings in the sequel
of our pipeline. This second stage is described in Sec. 3.1.

The third stage is the key step of our algorithm. Un-
like the previous approaches where repetition detection is
based on the comparison among entire regions in at least
part of the pipeline, we propose a point-wise repetition de-
tection scheme. The repeating regions are then collected
as the maximal areas inside which point-wise repetition is
prominent. The scheme can cope with imperfect repetitions,
where deviations are assigned low scores. The formulation
and discussion of this third stage are found in Sec. 3.2.

At the last stage, based on the above formulation of the
interplay between segmentation and repetition detection, an
energy functional is designed to describe the multi-label im-
age segmentation problem. It encodes not only the point-
wise repetition scores but also the color homogeneity and
the expectations embodied by smoothness priors. A global
solution is found through a graph-cut minimization pro-
cess. The labels of the initial over-segmentation are split
and merged, and their boundaries are refined. The func-
tional and implementation of the last stage are the subjects
of Sec. 3.3.

1.2. Related Work
Image Segmentation In the context of multi-label im-
age segmentation from a single image, there are two main
streams of research in the literature: feature-space based
and image-domain based methods. The idea behind feature
space based methods is that color (or possibly texture) is
a constant feature of objects’ surfaces so that in a certain
feature space it forms a distinguishable cluster. Among the
most common algorithms of cluster analysis is the k-means
algorithm and its variations [21, 17]. Histogram threshold-
ing methods [9, 20] have mainly been designed for gray-
level images.

Image-domain based methods take the spatial compact-
ness into consideration. The class of regions these algo-
rithms return is expected to be homogeneous with respect
to the feature space and compact in the image domain.
Strategies include split&merge [26], region-growing [25]
and graph-theoretical methods [27, 24]. The proposed al-
gorithm belongs to the image-domain methods, where we
employ k-means for initialization but a graph-cut process
for optimization.

Texture Regularity Detection Our work is inspired by
previous research on texture regularity, which has applica-
tions such as shape-from-texture [10, 6] and texture seg-
mentation [22, 19]. Finding the basic texture units (tex-
els) in real images has proven a difficult task, sometimes
circumvented through user interaction [16]. An automatic
texel detection method has been proposed by Hays et
al. [11]. It is based on the discovery of the lattices of near-
regular textures. The lattice identifies the texels as well as
their spatial organisation. Compared with this work, our
repetition detection does not assume a lattice layout, and
handles repeated elements even if they are disjoint in the
image domain.

Energy Minimization Another important class of related
works is based on energy formulations which are minimized
via discrete optimization techniques. The pioneering graph
cuts technique [2] addresses the foreground/background in-
teractive segmentation in still images via max-flow/min-cut
energy minimization. These graph based methods were
made popular first through the Normalized Cut formula-
tion of [24] and more recently by the energy minimization
method of [3].

There has also been some previous work which adds
high-level information to the benefit of more general low-
level segmentation methods [15, 5, 7, 23]. In contrast, the
algorithm proposed here employs more generic repetition
(regularity) criteria instead of specific shape priors.

2. Segmentation-repetition Formulations
Given an input color image I(x), the goal is to segment

it into different labels L(x), which represent different types
of elements. The value of L(x) is an integer, representing
the label of the current pixel, and thus all corresponding
pixels of the same type of elements can ideally be detected
as Labeli = {x|L(x) = i}.

This is improbable to happen automatically when seg-
menting a scene purely on the basis of color or texture.
The core of our approach to multi-label segmentation lies
in adding a role for repetition. Suppose we have detected
a pair of repeating regions (Rl, Rr) (found starting at the
pixel level though, as will be explained). The system then



assumes that pairs of corresponding points (xl,xr) between
Rl and Rr should get the same label, i.e. L(xl) ≡ L(xr).
This is the basic constraint provided by repetition.

In the following sections we first assume the prior avail-
ability of either repetition or segmentation, to investigate
how that would help the other component. In the remainder
of the paper, the two processes will then be made integral
parts of one and the same scheme though.

2.1. Known Repetition

Suppose repeating regions {(Rl, Rr)} have been pro-
vided. Based on the basic constraint proposed in the previ-
ous paragraphs, an energy functional for segmentation can
be defined as follows:

ER = Edata + αEErepR + βEEprior

Edata =
∫
x

|I(x)− IL(x)|2dx

ErepR =
∑

(Rl,Rr)

∫
xl∈Rl

δ̄(L(xl)− L(xr))dxl (1)

Eprior =
∫
x

∑
xN∈Nx

δ̄(L(x)− L(xN ))g(|I(x)− I(xN )|)dx

with δ̄(x) =
{

0 if x = 0;
1 otherwise.

Here IL(x) is chosen from the set of initial colors {Ii} se-
lected by the color-based over-segmentation. As with me-
dian filtering, we will stick to this initial set. Some colors
may disappear through further optimizations, but no new
colors are added to this initial color set. Nx denotes the
4-neighborhood for x. g(|I(x) − I(xN )|) is a decreasing
function with the local color variation. Its role is to accept
label changes, but only near the boundaries of color discon-
tinuities.

This cost functional penalises the variations in color for
each label through the first term Edata, and differences
in labels for any pair of corresponding pixels between re-
peating regions through the second term ErepR, and also
changes in labels throughout the image except at color
boundaries through the third term Eprior.

The problem with the above energy functional is that it
takes an all-or-nothing approach to repetition. Either pix-
els are in “repeating regions” or not. In reality, repetition
is more gradual in nature, with some parts being repeated
more faithfully than others. Pixels where the exactitude of
repetition is less perfect, should be made to weigh less in
terms of cost, although the entire regions they’re in may still
look similar. This served as a motivation to propose point-
wise repetition detection, and together with it a repetition
measure s(xl,xr) (see Sec. 3.2).

Once we have this point-wise repetition measure
s(xl,xr), the above energy functional can be improved as

follows:

E = Edata + αEErep + βEEprior

Erep =
∑

(xl,xr)

δ̄(L(xl)− L(xr))s(xl,xr)dxl. (2)

2.2. Known Segmentation Label

Before dealing with the integrated handling of segmen-
tation and repetition detection, we first also look at the op-
posite case: repetition detection with a label function L(x)
already available from segmentation.

Given L(x), let p(X) and p(Y ) denote the probability
distributions of the labels X and Y within regions Rl and
Rr respectively. p(X = i) and p(Y = j) and their joint
probability distribution function p(X = i, Y = j) are thus
defined as follows:

p(X = i) =

∫
xl∈Rl,L(xl)=i

dxl∫
xl∈Rl

dxl

p(Y = j) =

∫
xr∈Rr,L(xr)=j

dxr∫
xr∈Rr

dxr
(3)

p(X = i, Y = j) =

∫
xl∈Rl,L(xl)=i,L(xr)=j

dxl∫
xl∈Rl

dxl
,

where (xl,xr) denote corresponding positions.
With the assumption that L(x) has been properly deter-

mined in the image, if Rl and Rr are repeating regions,
we should have L(xl) ≡ L(xr). The repetition measure
SR(Rl, Rr) can be defined as

SR(Rl, Rr) =
∑
i

p(X = i, Y = i) ∈ [0, 1]. (4)

When repetition is partial or approximate, some parts in
two repeating regions may have inconsistent appearances
i.e. L(xl) 6= L(xr). Thus, repetition detection can rather
be based on searching all pairs of regions (Rl, Rr) with
SR(Rl, Rr) > τ ≈ 1, where τ is a threshold to control the
tolerance regarding inconsistent appearances. As a further
remark on this issue, once we have the point-wise repeti-
tion measure s(xl,xr) (see Sec. 3.2), point-wise repetition
detection can be performed in a similar manner.

3. Segmentation via Point-wise Repetition
In general, when there is no prior information about rep-

etition or segmentation labels, it is less obvious how the
system may bootstrap itself out of that situation. Typical
solutions will start from a reasonable, initial guess and then
try to iteratively converge to a solution. Here we propose a
single-step procedure. Our initial guess for the labels still
corresponds to the initial color-based over-segmentation, as
introduced in Sec. 1.1.



As we can no longer assume that corresponding pixels
will have the same label, a more robust repetition measure
is due, that can still drive the process ahead under such con-
ditions. Mutual Information (MI) [4] is such a measure, as
it is very tolerant to the kind of mapping that exists between
random variables, as long as such mapping is relatively sys-
tematic [18]. MI of two random variables X and Y is ex-
tracted from their Shannon entropiesH(X) and H(Y ), and
their joint entropy H(X,Y ).

H(X) = −
∑
i

p(X = i) log p(X = i)

H(Y ) = −
∑
j

p(Y = j) log p(Y = j) (5)

H(X,Y ) = −
∑
i,j

p(X = i, Y = j) log p(X = i, Y = j)

MI(X,Y ) =
∑
i,j

p(X = i, Y = j) log
p(X = i, Y = j)
p(X = i)p(Y = j)

= H(X) +H(Y )−H(X,Y ).

While the Shannon entropy measures the uncertainty asso-
ciated with a random variable, MI measures how much in-
formation one variable contains about the other, i.e. the mu-
tual dependence between the two variables.

With two repeating regions, labels in either region almost
are a deterministic function of those in the other region, and
mutual information has a high score. We thus can define
the repetition measure S(Rl, Rr) between two repeating re-
gions based on the mutual information as follows:

S(Rl, Rr) = MI(X,Y ). (6)

3.1. Region of Interest

However one looks at segmentation, i.e. either as find-
ing region boundaries or as delineating homogeneous areas,
regions with and without variation in the basic underlying
feature(s) need to be treated differently. We bring the en-
tropy of the initial label image to bear (i.e. for the over-
segmented initialization) and only calculate point-wise MI
(and include graph cut links) for pairs of pixels that both lie
in high entropy regions. The reason is that MI is bounded
from above by the lowest of the two entropies. Large en-
tropies are found around the boundaries of color disconti-
nuities. Fig. 4(b) shows two examples of the difference in
entropy between homogeneous and boundary areas. Thus,
edge regions yield the strongest indications about repetition.
Restricting MI scores for such pixel pairs also reduces com-
putation times.

3.2. Point-wise Repetition

The previously defined repetition measures SR(Rl, Rr)
and S(Rl, Rr) in Eqns. (4)&(6) are both region based.

(a) (b)

=?==?=

(c)
Figure 2. Point-wise repetition detection: (a) Input image; (b) Ini-
tial over-segmentation by k-means; (c) Different labels are con-
nected through several pairs of point-wise repetition.

However, in practice real objects often exhibit partial or ap-
proximate repetition (see Fig. 2(a)). The region-based mea-
sures would either fail to recognize repetition or gloss over
the subregions where such deviations occur. This motivates
us to go after point-wise repetition detection and define a
related repetition measure s(xl, xr).

What we ideally want is a more local version of MI. This
is delivered by the so-called point-wise MI:

s(xl,xr) = log
p(X = L(xl), Y = L(xr))
p(X = L(xl))p(Y = L(xr))

. (7)

It is based on the probabilities p(X = L(xl), Y = L(xr)),
p(X = L(xl)) and p(Y = L(xr)) instead of the whole dis-
tribution functions p(X,Y ), p(X) and p(Y ). The fractions
of (foreground) labels that contain the current pair of pix-
els are compared, while the other (background) labels are
not considered. In order to estimate these probabilities, we
sample from a square neighborhood around xl and xr. The
diameter of the squares is given by a pre-defined parameter.

This point-wise repetition measure is consistent with the
previously defined S(Rl, Rr) (see Eqn. (6)): when sum-
ming all point-wise MI values of pixels in a region, one
arrives back at this original value S(Rl, Rr) (after division
by the region’s area), i.e.

S(Rl, Rr)

=
∑
i,j

p(X = i, Y = j) log
p(X = i, Y = j)
p(X = i)p(Y = j)

(8)

=
∑
i,j

∫
xl∈Rl,L(xl)=i,L(xr)=j

dxl∫
xl∈Rl

dxl
log

p(X = i, Y = j)
p(X = i)p(Y = j)

=

∫
xl∈Rl

s(xl,xr)dxl∫
xl∈Rl

dxl
.



This allows a region-growing process, which starts from a
pair of corresponding points with a high point-wise repeti-
tion score and propagates in their neighborhood to form a
pair of maximal repeating regions.

Especially when given an over-segmentation, the same
type of objects may belong to different labels (see Fig. 2(b)),
due to different illumination, viewpoint, natural variation,
etc. On the other hand, these differences in turn yield high
penalty scores of Erep in Eqn. (2). Minimizing the total en-
ergy E trades off initial over-segmentation (through Edata)
vs detected repetition (through Erep) and smoothness. The
changes between the initial and final labels indicates the
label split and merge operations. The final labels without
support (no longer used for any pixel) are detected and re-
moved, and thus the number of clusters provided by the ini-
tial over-segmentation is reduced.

3.3. Energy Minimization

With the point-wise repetition measure s(xl,xr) de-
fined in Eqn. (7) plugged into the energy functional E in
Eqn. (2), we have arrived at the functional that we try to
minimize. For this minimization, we embed our problem
into a graph, and use the classic max-flow/min-cut algo-
rithm. Kolmogorov and Zabih [14] give a characterization
of which energy functions can be minimized using graph-
cuts, and they also provide a graph-construction method.
Readers are referred to their paper for more detailed infor-
mation.

In the following paragraphs, we follow their approach
and focus on the proof that validates our energy mini-
mization problem, i.e. we convert the energy functional in
Eqn. (2) into a binary form which is graph-representable.
The conversion is done by the α−expansion operation: Any
configuration Lα(x) within a single α−expansion of the
initial configuration L(x) can be encoded by a binary func-
tion

4L(x) =
{

0, if Lα(x) = L(x);
1, if Lα(x) = α.

(9)

The algorithm runs through all values for α in turn, with
the graph-cut only being allowed to change labels to that α
value at the time. Let L4(x) denote a configuration defined
by 4L(x). Then, we have the energy of binary variables,
4E(4L) = E(L4) − E(L). It can be proven that this
binary form is graph-representable. Intuitive proofs are that
δ̄(L(xl)− L(xr)) = 0 when4L(xl) = 4L(xr) = 1 (i.e.
L(xl) = L(xr) = α), and that δ̄(L(x)−L(xN )) = 0 when
4L(x) = 4L(xN ) = 1 (i.e. L(x) = L(xN ) = α). Due to
space limitation, the proof and implementation details are
omitted, but they will be provided in a technical report.

(a) (b) (c) (d)

Figure 3. Segmentation results: (a) Input image; (b) A group of
corresponding points by point-wise repetition detection (shown in
white squares); (c) Segmentation without repetition detection; (d)
The proposed segmentation via point-wise repetition.

4. Implementation and Experimental Results

4.1. Implementation Details

In all our experiments, the k-means method is initial-
ized with 64 clusters. For computing s(xl,xr) we use
64 × 64 windows to estimate the probabilities p(X =
L(xl)), p(Y = L(xr)) and p(X = L(xl), Y = L(xr)).
A larger size introduced a higher computational cost, while
a smaller size provided insufficient samples. The weights
of the energy functional in Eqn. (2) are fixed to αE = 1 and
βE = 0.25.

Finally, in order to accelerate the whole process, we limit
the point-wise repetition detection within the region of in-
terest, where the entropy score is high, i.e. H(X) ≥ 0.5.
We also rescale all input images such that the number of
pixels equals that of a video frame, i.e. 640 × 480. O(n2)
point-wise matching and repetition detection in the third
stage would yield low efficiencies for larger images. A
multi-resolution approach is envisaged, but has not been im-
plemented yet.

4.2. Results and Discussion

We show experimental results for several challenging,
real-world images. We compare segmentations without and
with the use of repetition (i.e. without and with the Erep
term in Eqn. (2)).

Fig. 3(a) shows repetitive animal skins. As can be seen,
the repetitions are far from perfect. Without regularity in-
formation, the graph-cut minimization [3] either ignores
some thin boundaries or assigns multiple labels to the same
patterns in Fig. 3(c). With point-wise repetition detection
integrated (a group of corresponding points is shown as
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Figure 4. Segmentation results: (a) Input image; (b) Shannon en-
tropy with high values near edges; (c) Segmentation without rep-
etition detection; (d) The proposed segmentation via point-wise
repetition.

white squares in Fig. 3(b)), the segmentations are far cleaner
in Fig. 3(d). The running time without and with repetition
detection for these two examples are about 150 and 300 sec-
onds respectively on a Pentium4 3.2GHz machine.

Fig. 4(a) shows a second experiment. Local Shannon
entropies are displayed in gray color in Fig. 4(b), with
high values near edges and low values in color homoge-
neous areas. As mentioned, in order to gain efficiency we
limit the point-wise repetition detection to regions of inter-
est, where H(X) ≥ 0.5. The pineapple exhibits regulari-
ties both in the arrangement of its leaves and on its shell.
Compared to the color-only segmentation, the repetition-
enabled segmentation manages to detect these two parts (see
Figs. 4(b)&(c)). Similarly, in the strawberry + kiwis case,
the segmentation based on repetition is far more consistent
throughout the different instances (e.g. kiwi hearts are sys-
tematically placed into the same segment class). Though the
granularity of the segmentations can be influenced through
the algorithm’s parameters, it is crucial that the repetition-
enabled segmentation yields much more consistent results.
The running times are about 100 and 250 seconds for these
two examples.

Fig. 5(a) shows some interesting outdoor scenes. Fences
are an interesting case, as the repeated parts are interleaved
with unrelated portions of the background. Yet, one would
like to see the fence come out as one segment. The need
for repetition detection is illustrated from the results in
Fig. 5(b)&(c), where the fence is split up into different seg-
ments, as the color-based segmentation gets confused by
similar ground colors. Fig. 5(d) shows the repetition-based
segmentation. As this and the other examples in the fig-
ure show, the algorithm constantly segments the fences out,

with clear boundaries even if the gaps are rather thin and
backgrounds show quite some variation. The running time
for these examples are about 250− 300 seconds.

As a last example, also most buildings contain repeat-
ing substructures. This said, the repetition can be partial
(not the entire pattern is repeated, or copies are not entirely
visible), approximate (the copies deviate in their appear-
ance), or both. As a common example, some windows are
closed, while others are open or partially open. Window
blinds, shadows, reflections, and curtains all result in differ-
ent appearances. Typical examples are shown in Fig. 6(a).
Such variations easily lead color-based segmentation astray
(see Fig.6(b)). Via point-wise repetition, the walls, roofs
and roads are all segmented much more systematically into
single clusters (see Fig.6(c)). Even some detailed window
structures come out of our algorithm. The running time of
the whole process for these facades is about 300− 400 sec-
onds.

The main computation time goes to point-wise repetition
detection, for which times go up with the square of the num-
ber of pixels. We have limited the search to regions with
high entropies, thereby containing the problem. In future
work, we plan to exploit the regular distribution of repeti-
tion to further accelerate the algorithm. A top-down hier-
archical data structure will be employed to first search at a
global level and to then add details at each lower level.

5. Conclusion

We have proposed an automatic multi-label segmen-
tation algorithm, which uses a single input image and
exploits the interplay between segmentation and repeti-
tion detection to solve the ambiguities. It is based on a
point-wise repetition detection to split and merge an ini-
tial over-segmentation and an energy minimization formu-
lation that combines this repetition detection with a prefer-
ence for color homogeneity and the expectations embodied
by smoothness priors. The corresponding problem is op-
timized via a graph-cut minimization process. Real scene
images demonstrate the ability of our algorithm to handle
partial and approximate repetition. Compared with previ-
ous methods, ours does not rely on any user interaction and
yet can produce accurate segmentations at pixel level.
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Figure 5. Segmentation results: (a) Input image; (b) Initial over-segmentation by k-means; (c) Segmentation without repetition detection;
(d) The proposed segmentation with point-wise repetition.
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