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Abstract

We propose a novel algorithm for clustering data sampled
from multiple submanifolds of a Riemannian manifold. First,
we learn a representation of the data using generalizations of
local nonlinear dimensionality reduction algorithms from Eu-
clidean to Riemannian spaces. Such generalizations exploit
geometric properties of the Riemannian space, particularly
its Riemannian metric. Then, assuming that the data points
from different groups are separated, we show that the null
space of a matrix built from the local representation gives
the segmentation of the data. Our method is computationally
simple and performs automatic segmentation without requir-
ing user initialization. We present results on 2-D motion
segmentation and diffusion tensor imaging segmentation.

1. Introduction
Segmentation is one of the most important problems in

computer vision, thus it has been extensively studied. Its
goal is to group the image data into clusters based upon
image properties such as intensity, color, texture or motion.

Most existing segmentation algorithms proceed by as-
sociating a feature vector to each pixel in the image and
then segmenting the data by clustering these feature vec-
tors. When the structure of these features is simple enough,
central clustering methods such as K-means or Expectation
Maximization for a mixture of Gaussians [6] can be applied.
More often, the features within each group are distributed in
a subspace of the ambient space, hence subspace clustering
techniques such as Generalized Principal Component Analy-
sis (GPCA) [19] or EM for a mixture of probabilistic PCAs
[18] need to be used. More generally, the features within
each group can be distributed along a nonlinear submanifold
of the ambient space. Here, one can use variations of the
Euclidean distance to build a similarity matrix between pairs
of features and then apply spectral clustering. Alternatively,
one can extend nonlinear dimensionality reduction (NLDR)
methods (often designed for one submanifold) to deal with
multiple submanifolds. For instance, [15] combines Isomap
[17] with EM, and [12, 8] combine LLE [14] with K-means.

Unfortunately, all these manifold clustering algorithms
assume that the feature vectors are embedded in a Euclidean

space and use (at least locally) the Euclidean metric or a
variation of it to perform clustering. While this may be ap-
propriate in some cases, there are several computer vision
problems where it is more natural to consider features that
live in a non-Euclidean space. For example, Grassmann man-
ifolds and Lie groups are used for motion segmentation and
multibody factorization [16], and symmetric positive semi-
definite matrices are common in diffusion tensor imaging
[1, 7, 11, 20] and structure tensor analysis [13].

The main contribution of this paper is the development
of a novel framework for clustering data lying in different
submanifolds of a Riemannian space. In particular, we con-
sider three NLDR techniques, namely Laplacian Eigenmaps
(LE) [2], Locally Linear Embedding (LLE) [14], and Hes-
sian LLE (HLLE) [5], and show that they can be extended
to deal with multiple submanifolds of a Riemannian space.
At first sight one may think that this extension is straightfor-
ward, as it involves replacing the Euclidean metric by the
Riemannian metric. This is indeed the case for LE, which
relies only on the computation of the (geodesic) distances
to the nearest neighbors of each data point. However, there
are important challenges for other NLDR techniques. For
example, LLE involves writing each data point as a linear
combination of its neighbors. In the Euclidean case, this
is simply a least-squares problem. In the Riemannian case,
one needs to solve an interpolation problem on the mani-
fold. How should the data points be interpolated? What
cost function should be minimized? For HLLE, it involves
computing the mean and a set of principal components from
the neighborhood of each point. In the Euclidean case this
can be done using PCA. In the Riemannian case one needs
to find the mean and principal components on the manifold
using e.g., Principal Geodesic Analysis (PGA) [7].

In addition, recall that our task is not only to apply NLDR
to data on a manifold, but also to cluster data lying in mul-
tiple submanifolds. In this paper we show that when the
different submanifolds are separated, LE, LLE and HLLE
map all the points in one connected submanifold to a single
point in the low-dimensional space. Hence, for separate
submanifolds, LE, LLE and HLLE effectively reduce the
manifold clustering problem to a standard central clustering
problem. More specifically, we show that the segmentation
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of the data can be obtained from the null space of a matrix
built from the local representation.

While we develop our manifold clustering framework
for a generic Riemannian manifold, in applications the spe-
cific calculations vary depending on the explicit expressions
for the Riemannian distance, geodesics, exponential and
logarithm maps of the manifold. In this paper, we present ap-
plications to 2-D motion segmentation and diffusion tensor
imaging segmentation that involve clustering on the space of
symmetric semi-positive definite matrices. Our experiments
show encouraging results on these challenging problems.

2. Preliminaries

Our algorithm for clustering submanifolds of a Rieman-
nian space relies on basic concepts from Riemannian geom-
etry and NLDR. For this purpose, in §2.1 we present a brief
summary of the theory of Riemannian manifolds. We refer
the reader to [4] for more details. In §2.2 we review three
local NLDR algorithms, namely LLE, LE, and HLLE. While
these may not be the best or the most recent NLDR algo-
rithms, we have chosen them because they can be extended
to Riemannian spaces, as we will show in §3.

2.1. Review of Riemannian Manifolds

A differentiable manifoldM of dimension n is a topo-
logical space that is homeomorphic to the Euclidean space
Rn. The tangent space TxM at x is the vector space that
contains the tangent vectors to all 1-D curves onM passing
through x. Fig. 1 shows an example of a two-dimensional
manifold, a smooth surface living in R3. A Riemannian
metric on a manifoldM is a bilinear form which associates
to each point x ∈M, a differentiable varying inner product
〈·, ·〉x on the tangent space TxM at x. The norm of a vector
v ∈ TxM is denoted by ‖v‖2x = 〈v,v〉x. The Riemannian
distance between two points xi and xj that lie on the man-
ifold, dist(xi,xj), is defined as the minimum length over
all possible smooth curves on the manifold between xi and
xj . The smooth curve with minimum length is known as the
geodesic curve γ.

Given a tangent vector v ∈ TxM, locally there exists a
unique geodesic γv(t) starting at x with initial velocity v,
and this geodesic has constant speed equal to ‖v‖x. The
exponential map, expx : TxM→M maps a tangent vector
v to the point on the manifold that is reached at time 1 by
the geodesic γv(t). The inverse of expx is known as the
logarithm map and is denoted by logx :M→ TxM. Now,
if we have two points xi and xj on the manifoldM, the tan-
gent vector to the geodesic curve from xi to xj is defined as
v = −−→xixj = logxi(xj), and the exponential map takes v to
the point xj = expxi(logxi(xj)). In addition, γv(0) = xi
and γv(1) = xj . The Riemannian distance between xi
and xj is defined as dist(xi,xj) = ‖ logxi(xj)‖xi . Linear

geodesic interpolation makes use of the exponential and log-
arithm maps and is given by x̂ = expxi(w

−−→xixj), w ∈ [0, 1].
Finally, the Riemannian metric, the exponential map and the
logarithm map depend on the point x under consideration,
hence the subscripts reflecting this dependency.

We will briefly summarize how to calculate the
mean and principal components of data points lying
on a manifold [7]. The Karcher or intrinsic mean x
is defined as x .= arg minx∈M

∑n
i=1 dist(x,xi)2 =

arg minx∈M
∑n
i=1 ‖ logx(xi)‖2x. Since x is the solution to

a minimization problem, there is no guarantee that x exists
or is unique. However, by assuming that the data lie in a
small enough neighborhood of x, we can show the existence
and uniqueness of x. Algorithm 1 shows the computation of
x. Calculating principal geodesic components on a Rieman-
nian manifold involves projecting a point onto a geodesic
curve, which is also defined as a minimization problem for
which existence and uniqueness are not ensured [7]. Again,
by making the assumptions that the data lie in a small neigh-
borhood about the mean x, the projection can be shown to
be unique. [7] also shows that finding principal geodesic
components boils down to doing PCA in the tangent vectors
logx(xi) ∈ TxM about the mean x and proposes Principal
Geodesic Analysis (PGA) summarized in Algorithm 2.

Figure 1. A two-dimensional manifold. The tangent plane at xi,
together with the exp and log maps relating xi and xj , are shown.

Algorithm 1 (Intrinsic Mean)
Given data points x1, . . . ,xn ∈M, a predefined threshold
ε, the maximum number of iterations T ,

1. Initialize t = 1, x1 = xi for a random i.
2. While t ≤ T or ‖v‖x ≥ ε,

(a) Compute tangent vector v = 1
n

∑n
i=1 logxt(xi).

(b) Set xt+1 = expxt(v)

2.2. Review of Local Nonlinear Dimensionality Re-
duction Methods in Euclidean Spaces

LetX = {xi ∈ RD}ni=1 be a set of n data points sampled
from a d-dimensional manifold embedded in RD, d � D.
We assume that the n points are k-connected, i.e. for any
two points xi,xj ∈ X there is an ordered sequence of
points in X having xi and xj as endpoints, such that any
two consecutive points in the sequence have at least one



Algorithm 2 (Principal Geodesic Analysis)
Given data points x1, . . . ,xn ∈M,

1. Compute intrinsic mean x as in Algorithm 1.
2. Calculate the tangent vectors vi = logx(xi) about x.
3. Construct the covariance matrix cov(x) = 1

n

∑n
i=1 viv

>
i .

4. Perform eigenanalysis of the matrix cov(x) to obtain
the eigenvectors {ui}di=1 giving the principal directions.
{ui}di=1 forms an orthonormal basis for TxM.

k-nearest neighbor in common. The goal of dimensionality
reduction is to find a set of vectors {yi ∈ Rd}ni=1, such that
nearby points remain close and distant points remain far.

Locally Linear Embedding (LLE) [14] assumes that
the local neighborhood of a point on the manifold can be
well approximated by the affine subspace spanned by the
k-nearest neighbors of the point and finds a low-dimensional
embedding of the data based on these affine approximations.
Laplacian Eigenmaps (LE) [2] are based on computing the
low dimensional representation that best preserves locality
instead of local linearity in LLE. Hessian LLE (HLLE)
[5] bears substantial resemblance to LE, with the main dif-
ference being that the Laplacian matrix is replaced by the
Hessian matrix. The three algorithms are summarized as
follows. Notice that steps 1 and 4 are common.

Locally Linear Embedding (LLE) [14]
1. Nearest neighbor search: Find the k-nearest neighbors

(kNN) of each xi according to the Euclidean distance.
2. Weight matrix: Find a matrix of weights W ∈ Rn×n

whose entries Wij minimize the reconstruction error

ε(W ) =

n∑
i=1

‖
n∑

j=1

Wijxj − xi‖2 =

n∑
i=1

dist2(x̂i, xi) (1)

subject to the constraints (i) Wij = 0 if xj is not a k-
nearest neighbor of xi and (ii)

∑n
j=1Wij = 1. In (1),

x̂i = xi +
∑n
j=1Wij

−−→xixj is the linear interpolation of
xi and its kNN. Also, for each data point xi the nonzero
entries corresponding to the i-th row of W are given by

Wi =
1>C−1

i

1>C−1
i 1

, (2)

where Ci ∈ Rk×k is the local Gram matrix at xi, i.e.
Ci(j, l) = (xj − xi) · (xl − xi), and 1 ∈ Rk is the
vector of all ones.

3. Objective function: Find vectors {yi ∈ Rd}ni=1 that min-
imize the error

φ(Y ) =
n∑
i=1

‖yi −
n∑
j=1

Wijyj‖2 = trace(Y >MY ), (3)

where M = (I −W )>(I −W ), Y = [y1, . . . ,yn]> ∈
Rn×d, subject to the constraints (i)

∑n
i=1 yi = 0 and (ii)

1
n

∑n
i=1 yiy>i = I .

Laplacian Eigenmaps (LE) [2]
2. Weight matrix: Construct a matrix of weightsW ∈ Rn×n

Wij = exp(−‖xi − xj‖2/σ2) (4)

subject to the constraint Wij = 0 if xj is not a k-nearest
neighbor of xi. The entries of W , Wij , measure the
proximity between two points xi and xj .

3. Objective function: Find vectors {yi ∈ Rd}ni=1 that min-
imize the following objective function

φ(Y ) =
∑
i,j

‖yi − yj‖2Wij√
DiiDjj

= trace(Y >LY ) (5)

where Y = [y1, . . . ,yn]> ∈ Rn×d, D is diagonal with
Dii =

∑
jWij , and L = I −D− 1

2WD−
1
2 .

Hessian LLE (HLLE) [5]
2. Tangent coordinates: For each data point xi, let
{xi,j}kj=1 be its kNN. Form the D by D covariance ma-
trix cov(xi) = 1

k

∑k
j=1(xi,j − x̄i)(xi,j − x̄i)>, where

x̄i is the mean of the kNN. Perform an eigenanaly-
sis of the matrix cov(xi) to obtain the d eigenvectors
{uq ∈ RD}dq=1. The tangent coordinates of the kNN
are given by the d columns of the k × d matrix V given
below, where p = 1, . . . , k and q = 1, . . . , d

Vpq = (xi,p − x̄i)>uq = 〈xi,p − x̄i,uq〉. (6)

3. Objective function: The embedding vectors are obtained
as the null vectors of a matrixH that indicates the Hessian
quadratic cost. While we refer the reader to [5] for details
on the estimation of H , the basic principle is as follows.
We first locally estimates a Hessian operator hi at each
point xi in the manifold in a least squares sense. In
particular, consider a smooth function f :M→ R. We
evaluate the function at all kNN of a point xi on the
manifold and stack these entries into a vector fi. It can be
shown that hifi approximates the entries of the Hessian,
whose (p, q)-th entry is given by ∂2f

∂VpδVq
. These local

estimates are then used to obtain an empirical estimate of
the (i, j)-th entry of H as

Hi,j =
∑
l

∑
r

((hl)r,i(hl)r,j). (7)

4. Sparse eigenvalue problem: Let M̃ be M in LLE, L in
LE, and H in HLLE. Perform an eigenanalysis of M̃
and obtain the (d+ 1) eigenvectors associated with the
smallest (d+ 1) eigenvalues. The vector of all ones, 1 ∈
Rn, is an eigenvector of M̃ associated with the eigenvalue
0. The d eigenvectors of the matrix M̃ associated with
its second to (d+ 1)-th smallest eigenvalues correspond
to eigenvectors spanning a d-dimensional space which
contains the embedding coordinates, i.e. the columns of
Y . Since M̃ is symmetric, one can choose the embedding
vectors to be orthogonal to the vector 1.



3. Clustering on Riemannian Manifolds
We now have the necessary tools to develop the theory

and present our algorithm for clustering data on Riemannian
manifolds. We first proceed by extending existing NLDR
algorithms to Riemannian manifolds. We then show that by
making use of the mappings NLDR generate, the problem of
manifold clustering reduces to a central clustering problem.

3.1. Extending NLDR to Riemannian Manifolds

The NLDR techniques presented in §2.2 are applicable
only in the presence of one manifold with unknown struc-
ture. Furthermore, as the metric is unknown, every operation
is approximated by the corresponding Euclidean operation.
However, in computer vision problems, it is common that the
spaces under consideration have well-studied geometries and
closed-form formulae for Riemannian operations are avail-
able. The task at hand is to develop NLDR techniques for
Riemannian manifolds in a way that takes into consideration
the appropriate Riemannian structure.

Since the information about the local geometry of the
manifold is essential only in the first two steps of each al-
gorithm, modifications are made only to these two stages.
The key issues are how to select the kNN and how to com-
pute the matrix M̃ representing the local geometry. The
former is easy to deal with, while the latter is where our
contribution lies. Given M̃ , calculating the low-dimensional
representation remains the same as in the Euclidean case.

In what follows, we let X = {xi ∈ RD}ni=1 be a set of
n data points sampled from a known Riemannian manifold.

3.1.1 Selection of the Riemannian kNN
The first step of any NLDR algorithm is the computation
of the kNN associated with each data point. Instead of
using the Euclidean distance, we define the kNN of xi by
incorporating the Riemannian distance. That is, the kNN of
xi are the k data points xj that minimize ‖ logxi(xj)‖xi .

3.1.2 Riemannian Calculation of M̃ for LLE
The second step of LLE is to compute the matrix of weights
W ∈ Rn×n. The two main questions are: what is the
reconstruction cost? and how does one express a point as a
linear combination of its neighbors? First of all, instead of
minimizing the Euclidean error, we rewrite (1) to minimize
the Riemannian reconstruction error,

εRiem(W ) =
n∑
i=1

∥∥ logxi(x̂Riem,i)
∥∥2

xi
(8)

subject toWij = 0 if xj is not a kNN of xi and
∑
jWij = 1.

x̂Riem,i, is the geodesic linear interpolation of xi by its kNN

x̂Riem,i = expxi(
n∑
j=1

Wij logxi(xj)). (9)

Since exp and log are inverse mappings, (8) becomes

εRiem(W ) =
n∑
i=1

∥∥ n∑
j=1

Wij logxi(xj)
∥∥2

xi
. (10)

Using similar manipulation as in the Euclidean case, the
optimal weights are obtained as in (2), with the local Gram
matrix Ci ∈ Rk×k defined as

Ci(j, l) = 〈logxi(xj), logxi(xl)〉xi . (11)

M̃ is then (I −W )>(I −W ).

3.1.3 Riemannian Calculation of M̃ for LE
Here, instead of attempting to write each data point as a
linear combination of its kNN, we find a matrix of weights
W ∈ Rn×n whose entries Wij measure the proximity be-
tween two points xi and xj as in (4). Therefore, modi-
fying Laplacian eigenmaps for Riemannian manifolds is
less involved than in the case of LLE. Instead of using
exp(−‖xi − xj‖2/σ2) as in (4), we construct the weight
matrix W using the Riemannian distance as

Wij = exp−
distRiem(xi,xj)

2

σ2 = exp−
‖ logxi

(xj)‖
2
xi

σ2 (12)

subject to the constraint Wij = 0 if xj is not a k-nearest
neighbor of xi. Now M̃ = L = I −D− 1

2WD−
1
2 and D is

a diagonal matrix, where Dii =
∑
jWij , as before.

3.1.4 Riemannian Calculation of M̃ for HLLE
The second step of HLLE is to compute the tangent coordi-
nates for each xi by applying Euclidean PCA to its neighbors.
This makes the implicit approximation that these local points
lie on a subspace. This assumption is no longer valid if xi
and its kNN lie on a Riemannian manifold. From §2.1, we
know that in this case, calculating the principal geodesic
components and the projection coordinates is not as simple
as doing Euclidean PCA. There is a need to incorporate the
correct Riemannian metric, mean and covariance matrix.

Again, let {xi,j}kj=1 denote the set of k-nearest neigh-
bors of xi. First we calculate the intrinsic mean x̄i of
the kNN (Algorithm 1). Next, we find the tangent vec-
tors vj = logx̄i(xi,j) about x̄i and the geodesic princi-
pal directions {uq}dq=1 using PGA (Algorithm 2). Since
{uq ∈ RD}dq=1 is an orthonormal basis for Tx̄iM, we will
rewrite the projection operator in (6) using the Riemannian
metric. Thus the tangent coordinates of the kNN are given
by the k × d matrix V , where

Vpq = 〈logx̄i(xi,p),uq〉x̄i , p = 1, .., k, q = 1, .., d. (13)

Once the tangent coordinates are found, the estimation of the
Hessian matrix M̃ is the same as in the Euclidean case (7).



3.1.5 Calculation of the Embedding Coordinates
The last step of NLDR is to find a Euclidean low-dimensional
representation of the data points. As this step is independent
of the Riemannian structure, one can find the embedding
coordinates as described in §2.2. That is, the embedding co-
ordinates are the d eigenvectors of the matrix M̃ associated
with its second to (d+ 1)-th smallest eigenvalues and these
correspond to eigenvectors spanning a d-dimensional space
that the low-dimensional representation lies on.

Finally, we see that the modifications needed in order to
account for the Riemannian structure of the data do not re-
quire significant additional computational complexity. With
the exception of the calculation of the intrinsic mean, closed-
form formulae are available for the remaining operations.

3.2. Local Riemannian Manifold Clustering
In this section, we extend NLDR algorithms for the pur-

pose of clustering data lying in m submanifolds of a Rie-
mannian space. We assume that the data is distributed in
a k-disconnected union of m k-connected submanifolds of
M. We show that under this assumption, each of the m
submanifolds will be mapped to a different point in Rm.

With real data, the assumption of a k-disconnected union
will be violated. Nevertheless it is reasonable to expect that
instead of mapping data points on a manifold to a single
point, the mapping will generate a collection of n points
distributed around m cluster centers. While a similar result
for Euclidean LLE has been proposed in [12, 8], we show
a generalized result that is applicable to Riemannian LLE,
Riemannian LE and Riemannian HLLE. Proposition 1 shows
that in the case of a disconnected union of m k-connected
submanifolds, the matrix M̃ has at least m zero eigenvalues,
whose eigenvectors give the clustering of the data.
Proposition 1 Let {xi}ni=1 be a set of points drawn from
a disconnected union of m k-connected d-dimensional sub-
manifolds of a Riemannian manifold. Then, there exist m
vectors {uj}mj=1 in the null space of M̃ such that uj corre-
sponds to the j-th group of points, i.e. uij = 1 if the i-th
data point is in the j-th group, and uij = 0 otherwise.
Proof. The proof for all three algorithms is similar. Since
the data can be partitioned into m k-connected groups, the
matrix M̃ is block-diagonal with m blocks, because if xi
and xj belong to different groups, then they cannot be kNN
of each other, hence M̃ij = 0. We can then write M̃ =
diag(M̃j), where M̃j ∈ Rnj×nj is the matrix for the j-th
group, which contains nj points. From the properties of the
algorithms, we know that each one of the m blocks of M̃ ,
has the vector 1 ∈ Rnj in its null space. Therefore, there are
m vectors {uj} in ker(M̃), with each uj taking the values
1 and 0, indicating the group membership.

We see that there exists a mapping g : M → Rm that
gives the membership of each point to the m submanifolds.

This mapping is given by the rows of any basis for ker(M̃).
However, notice that we do not necessarily obtain the set
of membership vectors {uj} when computing a basis for
ker(M̃), but rather linear combinations of them, including
the vector 1. In general, linear combinations of segmenta-
tion eigenvectors still contain the segmentation of the data.
Hence, we can cluster the data into m groups by applying
k-means to the columns of a matrix whose rows are the m
eigenvectors in the null space of M̃ . Algorithm 3 summa-
rizes our dimensionality reduction and clustering algorithm
for m submanifolds of a Riemannian space.

Algorithm 3 (Unsupervised Clustering and Dimensional-
ity Reduction on Riemannian Manifolds)
Given data points x1, . . . ,xn ∈M,

1. Nearest neighbors: Find the kNN of each data point xi
according to the Riemannian distance as in §3.1.1.

2. Construction of M̃ : For each NLDR algorithm, construct
the appropriate M̃ as described in §3.1.2-§3.1.4.

3. Clustering: Compute the m eigenvectors {uj}mj=1 of M̃
associated with its m smallest eigenvalues and apply k-
means to the rows of [u1, · · · ,um] to cluster the data into
m different groups.

4. Low-dimensional embedding: Apply NLDR to each
group to obtain a low-dimensional embedding for each
submanifold.

4. Application and Experiments on SPSD(3)

In this section, we will present an application of the
theory developed in §3 to the space of 3 by 3 symmetric
positive semi-definite matrices SPSD(3). It is well-known
[1, 7, 11, 20] that the traditional Euclidean distance is not
the most appropriate metric for SPSD matrices as they lie on
a Riemannian symmetric space. An example of such data is
the well-known structure tensor found in direct 2-D motion
segmentation from the image intensities without extracting
features such as optical flow or point correspondences. Un-
der the assumption that all surfaces are Lambertian, the
optical flow (u, v) between two images of a sequence is re-
lated to the image partial derivatives ∇I = (Ix, Iy, It) by
Ixu + Iyv + It = 0 ⇒ ∇I>(u, v, 1) = 0, where (x, y)
denotes pixel location and t denotes time. Premultiplying by
∇I gives an equation of the form (∇I∇I>)(u, v, 1) = 0,
This system of linear equations involves the spatial-temporal
structure tensor (∇I∇I>). SPSD matrices also play an im-
portant role in Diffusion Tensor Imaging (DTI). DTI is a
3-D imaging technique that measures the diffusion of water
molecules in living tissues. Water diffusion is represented
mathematically with a symmetric positive semi-definite ten-
sor field T : R3 → SPSD(3) ⊂ R3×3 that measures the
diffusion in a direction d ∈ R3 as d>Td.

Our goal is to automatically segment a set of SPSD ma-



trices {Tj ∈ SPSD(r)}nj=1 into different clusters, where
different groups correspond to different 2-D motions in a
video or to different fiber bundles in DTI. There are many
possible metrics in SPSD(r) [1, 7, 9, 11, 20]. Each metric is
derived from different geometrical, statistical or information-
theoretic considerations. The question of which one is the
best metric remains an active research area. In this pa-
per, we will use the Riemannian metric proposed in [11]
distRiem(Ti,Tj) = ‖ log(T−

1
2

i TjT
− 1

2
i )‖F , where ‖ · ‖F

is the Frobenius norm and log(·) is the matrix logarithm.
For this metric, the exponential map is defined as

expTi(V) = T
1
2
i exp(T−

1
2

i VT−
1
2

i )T
1
2
i , where exp(·) is the

matrix exponential and V ∈ TTiSPSD(r). The logarithm

map is
−−−→
TiTj = logTi(Tj) = T

1
2
i log(T−

1
2

i TjT
− 1

2
i )T

1
2
i .

The Gram matrix is Ci(j, l) = 〈logTi(Tj), logTi(Tl)〉xi =

trace(log(T−
1
2

i TjT
− 1

2
i ) log(T−

1
2

i TlT
− 1

2
i )). The geodesic

linear interpolation T̂Riem,i of {Tj ∈ SPSD(r)}nj=1

about Ti with weights Wi1, . . . ,Win is given by
T

1
2
i exp

(∑n
j=1Wij log(T−

1
2

i TjT
− 1

2
i )

)
T

1
2
i .

4.1. 2-D Motion Segmentation
We test our algorithm on 2-D motion segmentation from

two consecutive frames of video sequences. The spatial-
temporal structure tensor is T = K ∗ (∇I∇I>), where ∗
is the convolution operator, K is a smoothing kernel (the
Gaussian kernel is commonly used), and ∇I = (Ix, Iy, It)
is the spatial-temporal image gradient. We use the same data
set as in [3]. Fig. 2 shows two examples of moving patches
of homogeneously textured wallpaper in which the different
regions cannot be distinguished on the sole basis of appear-
ance. This is because the input frames contain regions with
the same intensity and texture with no clear edges or corners.
Thus, all results are obtained exclusively from the motion
information. Fig. 2(a) contains two regions, the text region
with the word “UCLA” and the background. In Fig. 2(c),
there are three overlapping circles, each with its own motion,
and the background. As shown in Fig. 2(b) and 2(d), LLE
yields the best results among all the algebraic methods, dis-
tinguishing the text “UCLA” and the three circles. As none
of the NLDR methods incorporates a smoothness constraint
(as done in level set methods), it is of no surprise that the
level set method produces a cleaner segmentation. Neverthe-
less, it is immediate that our method provides a very good
initialization for iterative techniques such as level sets.

The next set of experiments is done on real video se-
quences. The first video involves a camera tracking a car
going along a road, as shown in Fig. 3(a). There are three
different motion groups found in the two consecutive frames.
The first group contains mostly the pixels of the car, the
second group contains the background pixels where the cam-
era movement is apparent (e.g., edges and corners), and the
last group contains the background pixels with the aperture

(a) Input frames (b) Results using level sets [3], LLE, LE, HLLE

(c) Input frames (d) Results using level sets [3], LLE, LE, HLLE

Figure 2. 2-D motion segmentation using the structure tensor.

(a) Input frames (b) Segmentation results: LLE, LE, HLLE

(c) Input frames (d) Segmentation results: LLE, LE, HLLE

(e) Input frames (f) Segmentation results: LLE, LE, HLLE

Figure 3. 2-D motion segmentation on real video sequences.

problem (e.g., middle of the road). The second video of a
car is taken with a stationary camera, as shown in Fig. 3(c).
There are two different motion groups in this case, the first
group being the car and the second group being the back-
ground. The last video, shown in Fig. 3(e), is taken from
the Hamburg Taxi sequence. In this dataset, the moving taxi
forms the first group and the stationary background forms
the second group. From Figs. 3(b), 3(d) and 3(f), it is clear
that LLE is able to segment the different groups, LE gives a
reasonable segmentation but suffers from artifacts, whereas
the performance of HLLE performance is poor.

4.2. Diffusion Tensor Imaging Segmentation
We also test our proposed algorithm in the segmentation

of the corpus callosum and the cingulum from real DTI
data. The size of the entire DTI volume of the brain is
128 × 128 × 58 voxels and the voxel size is 2 × 2 × 2
mm. From the visualization of the tensor data, we know the
approximate location of each cingulum bundle in the left and
right hemispheres. Hence, we reduce the input volume to the
algorithm by focusing in this location. In addition, we also
mask out voxels with fractional anisotropy below a threshold
of 0.2 in order to separate white matter from the rest of the
brain. Also, tensors at adjacent voxels within a fiber bundle
are similar (similar eigenvectors and eigenvalues), while
tensors at distant voxels could be very different, even if they



lie in the same bundle. In order to account for this fact we
choose the kNN {D(xj)}kj=1 of a tensor D(xi) at xi subject
to ‖xj − xi‖ ≤ R. We set the value of the spatial radius to
R = 10 and the number of nearest neighbors to k = 30.

Fig. 4 shows the results of the left hemisphere. Fig. 4(a)
shows the sagittal slices used and the ellipsoid visualization
of the tensors. The corpus callosum is the bundle with the red
tensors pointing out of the plane and resembles the letter ‘C’.
The cingulum, which is significantly smaller, is the bundle
left to the corpus callosum with the green tensors oriented
vertically. We see that the corpus callosum and the cingulum
are clustered around different centers. Fig. 4(b) shows the
results of LLE. The corpus callosum forms a distinct cluster
(in red). Fig. 4(c) shows the results of LE. Even though it
appears that the cingulum forms a distinct group, the corpus
callosum is merged into the same group as the tensors in
the background. HLLE (not shown) failed to produce any
reasonable segmentation of the fiber bundles.

As our algorithm does not incorporate any smoothness
constraint, our segmentation is noisier compared to energy
minimization methods such as in [10]. However, for the
segmentation of the cingulum bundle in [10], a significant
effort was required to manually remove voxels in the corpus
callosum before running their respective algorithms. Our
algorithm, on the other hand, is automatic. Hence, an imme-
diate use for our method is that the output could be used as
an automatic initialization for such algorithms.

5. Conclusion
We have proposed a novel algorithm for clustering data

sampled from multiple submanifolds of a Riemannian man-
ifold with known structure. In motion segmentation and
DTI segmentation, HLLE performs badly and this is due to
the poor estimation of the Hessian matrix. HLLE depends
critically on the prior knowledge of the intrinsic dimension
of the submanifolds, which is unknown beforehand. Re-
sults on the space of symmetric positive definite matrices are
encouraging. In motion segmentation, our algorithm deals
directly with the image intensities and provides a very good
initialization for iterative methods. Results on DTI show that
it is possible to segment the data into different fiber bundles.
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