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Abstract

Accurate and automatic colonic polyp segmentation and
measurement in Computed Tomography (CT) has significant
importance for 3D polyp detection, classification, and more
generally computer aided diagnosis of colon cancers. In
this paper, we propose a three-staged probabilistic binary
classification approach for automatically segmenting polyp
voxels from their surrounding tissues in CT. Our system in-
tegrates low-, and mid-level information for discriminative
learning under local polar coordinates which align on the
3D colon surface around detected polyp. More importantly,
our supervised learning system has flexible modeling capac-
ity, which offers a principled means of encoding semantic,
clinical expert annotations of colonic polyp tissue identifi-
cation and segmentation. The learning generality to unseen
data is bounded by boosting [12, 11] and stacked generality
[14]. Extensive experimental results on polyp segmentation
performance evaluation and robustness testing with distur-
bances (using both training data and unseen data) are pro-
vided to validate our presented approach. The reliability of
polyp segmentation and measurement has been largely in-
creased to 98.2% (ie. errors ≤ 3mm), compared with other
state of art work [4, 15] of about 75% ∼ 80%.

1 Introduction
Colon cancer is the number two cause of cancer death

for both men and women combined, but it is one of the
most preventable of cancers because doctors can identify and
remove the pre-cancerous growth known as a polyp. Vir-
tual colonoscopy (3D Computed Tomography Colongraphy,
CTC) is emerging as a powerful screening tool because of
its non-invasiveness, low cost and high sensitivity. “Flying
through” the colon in 3D CTC is intuitive, but the physician
needs to manually adjust the navigation speed and change
the angle in order to see a polyp clearly. For example, a
polyp may be hidden behind a colonic fold and thus could
be missed during the physician’s visual inspection. There-
fore research in computer aided detection (CAD) of polyps
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in CTC has been very active and several such CAD systems
[10, 4, 9, 16] have been proposed. Once detected either man-
ually or automatically, the polyp must be measured and clas-
sified. This analysis is required as part of physician’s report.
Studies show that there is a large variability in physicians’
measurements. Therefore an accurate, consistent and auto-
mated polyp measurement tool is highly demanded.

Polyp segmentation is defined as extracting and isolating
a polyp from the colon wall at a given location. In addition
to its significant value for polyp measurement in clinic prac-
tice, a polyp segmentation tool is also of great importance in
computer aided detection of polyps. After a polyp candidate
is extracted and segmented (or enhanced by our trained class-
conditional probabilities), a number of features including in-
tensity, texture and shape can be more precisely computed by
incorporating trainable semantic knowledge and effectively
used in the automated polyp detection, classification and di-
agnosis process [10, 4, 9, 16] to improve robustness. Further-
more, polyp segmentation is also essential in creating ground
truth database for training, improving, testing and validat-
ing CAD systems. To address all of these needs, this paper
presents a novel approach for accurate polyp segmentation
using multi-staged probabilistic binary learning and compo-
sitional model.

Polyp segmentation is a very challenging task because
polyps are abnormal growths from the colon wall and the
“expected” segmentations are often a semantic, percep-
tual boundary with low imaging contrast support. Fur-
thermore, polyps contain multiple shape categories (ses-
sile, pedunculated, flat, etc.) with tremendously large 3D
shape/appearance variation (refer to figure 1). All the exist-
ing methods for polyp segmentation in the literature can be
regarded as unsupervised segmentation or clustering in 3D
data volumes. The methods include fuzzy clustering [15],
deformable model [15] or snakes [5], variational level-set
method [7], or heuristic surface curvature constraints [4, 15].
As reported, these unsupervised approaches work well for up
to 70% polyps due to the unclear polyp/nonpolyp boundary,
large within-class polyp appearance/shape variations, or their
limited heuristic shape assumptions [4, 15].
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To overcome the aforementioned limitations, we leverage
robust statistical learning of encoded expert knowledge an-
notated in a colon polyp database and a novel compositional
representation by sampling and modeling a polyp surface us-
ing a collection of ordered 1D radial axes (namely polar co-
ordinates). We will demonstrate that our polyp segmenta-
tion system can successfully measure various types (sessile,
pedunculated, flat) of polyps (size ranging from 1.8mm to
30mm), with 20% ∼ 25% higher reliability and accuracy
compared with previous work [4, 15]. This superior perfor-
mance is attributed to our two novel contributions:

• Our multistaged probabilistic learning framework,
which decomposes a complex learning task as a se-
quence of better trainable sub-tasks. A local-to-global
scaled 3D data evidences are gradually integrated with
this learning process to achieve robustness.

• Our compositional model, which makes statistical
learning practically feasible when applying to a highly
complex 3D computer vision problem, by “dimension
reduction1” to avoid the well-known “curse of dimen-
sionality” (i.e., the number of training samples verse the
high dimensionality of 3D polyp surfaces).

The rest of the paper is organized as follows. After an
overview in section 2, we detail our hierarchical multistaged
binary learning representation and compositional framework
for polyp segmentation in section 3. Extensive experimen-
tal results and comparison with previous work [15, 4] are
given at section 4, where the robustness aspect of polyp tip
detection and our hierarchical information stacking are also
addressed. Finally we conclude the paper and discuss future
work.

2 Overview
Motivation & Task: Polyp segmentation is to extract a

polyp from a given initial position either clicked by a physi-
cian or provided as output by a CAD software using a closed
1D curve boundary in 3D CTC. In addition to the high work-
load and limited reading time, some physicians read the case
in 2D and some in 3D, leading to a large variation in the
initial detections. The state-of-art automated polyp detec-
tion systems [4, 17, 10, 15, 16] generate many false alarms
and predict the polyp locations with limited accuracy. Our
experiments with ∼ 300 polyps in our database show that
the detected polyp positions provided by a CAD software
may have the error/inconsistence range of 3 ∼ 12 voxel dis-
tance against the labeled annotations. This large variability
in the initial positions reduces the polyp measurement relia-
bility significantly as reported in [17, 15]. Therefore, to com-
pensate the above inaccuracy/inconsistence and improve the
overall system’s performance, our robust and learning based
polyp segmentation system is proposed. First we find the

1The essential dimensionality of a 3D shape profile is much higher than
(a collection of) 1D curves.

Figure 1. Illustrative examples of polyp segmentation in Computed
Tomography Colongraphy (CTC) for sessile polyps (a,b), mass (c),
polyp on a fold (d), pedunculated polyp (e) and flat polyp (f).
(a,b,c,d,f) are 3D colon volume renderings and the red-colored
curves presents the segmentation result of our system. (e) shows
in 2D where blue dots are the detected boundary points for inte-
rior/exterior polyp.

polyp tip as a voxel on the polyp surface by a 3D point de-
tector, followed by clustering and centering. A polar coordi-
nates system is then constructed using the detected tip as its
origin with a set of evenly sampled radial axes (1D curves on
colon surface). The polyp boundary learning is performed
along these 1D sampling axes using two-layered stacking
learning [14] using a 3D box detector and 1D curve pars-
ing detector [1] to effectively determine which portion of the
curve is polyp and which portion is nonpolyp. Finally the bi-
nary probabilistic boundary decisions on all 1D curves/axes
are assembled jointly based on their axis connectivity in the
polar coordinates to form a complete polyp segmentation in
3D.

Features: Our hierarchical, multistaged probabilistic
boosting learning framework [11, 12] relies on a large pool
of features, which are extracted from colon surfaces under
local-to-global scales. We have developed an efficient ap-
proach for computing steerable features in 3D under arbi-
trary spacial configuration[19], while, in this paper, we de-
sign two specific steerable patterns for our polyp segmen-
tation task as shown in figure 2. In (a), we show an axis-
based pattern for polyp tip detection. This sampling pat-
tern contains three sampling axes as the gradient directions
computed in any given voxel υ’s neighborhood under three
scales, centered at υ. Along each axis, nine grids are evenly
sampled and 71 intensity, gradient and curvature based lo-
cal features are computed for each grid. This process is re-
peated for half and quarter downsampled CT volumes. Al-
together we have M = 81 = 3 × 9 × 3 grid nodes which
bring 71 × 81 = 5751 features. For the box-based pattern
in (b), there are 7 × 7 × 5 sampling grids under each vol-
ume scale where total 52185 features are computed. This
is used for polyp interior/exterior material/texture classifica-
tion. In polyp boundary detection, 440 probabilistic curve



Figure 2. Steerable sampling grid pattern for (a) 3D point detector
and (b) 3D box detector.

parsing based features [1] are used for feature selection. In
our three learning steps, the polyp-class probabilistic evi-
dences are collected and grouped from a voxel-level detector
(for polyp tip voxels), to a box-level detector (for boxes of
voxels of polyp interior materials), to a curve-parsing detec-
tor using stacked probabilities [14, 18] generated by the box
detector. This local-to-global, class-conditional information
integrating framework is very robust and bring excellent ac-
curacy on our polyp segmentation task.

3 Algorithm
Our hierarchical, multistaged learning of polyp segmen-

tation method in a compositional framework includes four
steps as described below.
3.1 Polyp Tip Detection using 3D Point Detector

The polyp tip is defined as a surface colon voxel inside
the polyp region, and reasonably close to the center of the
region2 in this paper. Our polyp tip detection process is com-
posed of two steps: classification; clustering and centering,
as described below. Note that we only work in the domain of
surface voxels (ie. voxels with non-zero gradients. The con-
structed gradient surface is shown in figure 3 (b), generated
by a version of Canny edge detection in 3D.

Classification: From the labeled polyp tip position τ for
each polyp in our training set, we select its neighboring sur-
face voxels ({υ} : dist(τ, υ) < `1) with Euclidean distances
less than a predefined metric `1 as the training samples of
positive class. Other surface Voxels ({υ} : dist(τ, υ) > `2)
with relative Euclidean distances larger than `2 are collected
as the negative class. We enforce that `1 < `2 so that the
trained classifier is forced to distinguish central polyp vox-
els from non-polyp voxels. After this, we solve this binary
classification problem using a trained 3D point detector (ie.
probabilistic boosting tree3 classifier [11] with axis-based

2The exact geometric center is often ambiguous because of polyp’s ir-
regular 3D shape. Therefore our annotation is usually an approximate ge-
ometric center of the polyp region. This labeling process also have intrin-
sic, moderate inter-reader variability. As discussed later, our compositional
polyp shape representation compensates this variability well to obtain stable,
robust and accurate segmentation results.

3Probabilistic boosting tree (PBT) is a powerful two-class and multi-
class discriminative learning framework [11]. PBT can be generally consid-
ered as a generalization of adaboost learning inside the decision tree struc-
ture. In practice PBT often offers good performances for complex clas-

(a) (b)
Figure 4. (a) Left: all detected voxels in S shown in white, and the
green dot as the center of the volume, (b) Right: the red dot as the
final polyp tip detected after classification, clustering and centering,
and polar coordinates (in blue and green) fitting. As shown in this
example, the final polyp tip (red dot) can be successfully detected
up to 7.8 voxel distance away from the initial input (green dot).

steerable features in figure 2 (a)). We denote the classifier
trained in this step as PBT1. After PBT1 is learned, each sur-
face voxel candidate υ gets a positive-class probability value
prob(υ) (from 0 to 1). If prob(υ) > T1, this voxel is clas-
sified as a polyp tip voxel. An example of polyp tip voxel
detection is illustrated in figure 3 (c).

Clustering & Centering: From all detected polyp tip
voxels (S{υ} = {υ} : prob(υ) > T1) in each volume, we
find one particular voxel as the output polyp tip by clustering
and centering. We T1 is determined based on the PBT learn-
ing performance as shown in figure 9 (a). Connected com-
ponent analysis (CCA) [2] is first applied to partition the set
S{υ} into a list of n clusters C1{υ}, C2{υ}, ..., Cn{υ}. For
each of the clusters, we obtain its overall fitness of being pos-
itive polyp tip class using Pi =

∑
υ∈Ci{υ}{prob(υ)}, i =

1, 2, ..., n then we simply select the cluster with the maxi-
mal fitness: Cj{υ} where Pj ≥ Pi, i = 1, 2, ..., n and dis-
card all others. Optionally, a 3D multivariate normal dis-
tribution based spatial prior G(υ(x, y, z)|µ,Σ) can be inte-
grated into Pi to reflect the confidence of the initial polyp
position input µ from a CAD software or manual click.
Details are omitted due to space limit. Finally we calcu-
late the geometric mean µ̄(x, y, z) of the winning cluster
Cj{υ(x, y, z)} and map it onto the colon surface by finding
ῡ where dist(ῡ, µ̄) ≤ dist(υ, µ̄) and υ ∈ S{υ}.
3.2 Polyp Mesh Surface Construction and Polar

Coordinates Fitting
The Marching Cubes algorithm [6] is a widely used

method of constructing a polygonal mesh of an isosurface
from a 3D field of scalar values or voxels (ie. 3D volume)
in both medical and geological scans. An illustrative exam-
ple of an original volume and its isosurface extracted using
Marching Cubes algorithm is shown in figure 3 (a,d). For
details, refer to [6]. On the extracted mesh based polyp sur-
face, we identify the polyp tip t as the closest vertex on the

sification problems, by using boosting classifiers with the embedded tree-
clustering scheme, in a divide-and-conquer manner. For more detail, refer
to [11].



(a) (b) (c) (d)
Figure 3. (a) An example of CTC volume containing a typical polyp where the green dot shows the output position from a CAD software, ie.
the center of the volume. (b) The voxel-based gradient surface generated from (a) using 3D Canny edge detection. (c) The detected polyp tip
voxels highlighted with whiter intensity. (d) The mesh-based CTC colon surface constructed by using ”Marching Cubes” Algorithm [6].

mesh from ῡ (ie. ῡ is transferred as t). Then a local polar
coordinate system is constructed using t as its origin. Given
the normal vector nt at t, we first define the other two axes
which are orthogonal to nt. In theory, the configuration of
these two axes is not unique (ie. it can be any two axes in
nt’s orthonormal plane Pt passing t which are mutually or-
thogonal as well.), but we fix this configuration by enforcing
one axis (Y) passing though the intersection point of Pt and
a predefined line vector, such as [1, 0, z] where z is an arbi-
trary value. Denote nt as axis X, another constrained axis
as Y, and Z is computed as their cross-product. The cutting
planes Pn are defined as planes passing through nt or X, and
another line segment Y’ in Pt which evenly rotates from Y
under a clockwise manner. The axes of final constructed po-
lar coordinates are actually the intersected curves between
Pn and the polyp mesh surface extracted using Marching
Cubes algorithm [6]. The coordinates on each axis are de-
fined upon their geodesic distances from t (the origin) on
the corresponding cutting curve or axis. The total number of
axes is set as I , and they are spatially ordered in a loop. Axis
i is adjacent to axes mod(i − 1, I) and mod(i + 1, I). An
example is illustrated in figure 4.

The intention of fitting 2D polar coordinates (an spatially
ordered collection of 1D curve axis) to represent the 3D
polyp surface is due to its flexibility and convenient formula-
tion to parametrization. Compared with Conformal mapping
[13], no user identified 3D-2D correspondences are needed
and there is no constraint on 3D surface with disk topol-
ogy. More importantly, our representation of using a collec-
tion of 1D curves as sampling coordinates to model the 3D
polyp surface shape, decreases the intrinsic dimensionality
the problem (ie. 1D versus 3D modeling). As shown later,
this decomposable formulation makes it feasible to construct
or model a large variety of 3D shapes using an assembly of
simpler 1D curves which are more learnable and flexible.

3.3 Polyp Interior/Exterior Detection using Struc-
tural 3D Box Detector

From the annotated polyp boundaries Bi, i = 1, 2, ..., I
on polar coordinates, we can label all voxels along each

(a) (b)
Figure 5. (a) Left: The polyp interior class-conditional probabil-
ity responses along two examples of polar coordinates axes inside
a cutting plane. Higher probabilities are shown as surface voxels
with whiter intensities; vice versa. The green vertical line segment
is the normal vector at the origin of fitted polar coordinates. The
orange curves represent the polar coordinates axes. The intersec-
tion of orange curves and green line segment is the origin of po-
lar coordinates. The two blue dots show the polyp interior/exterior
boundaries from the expert annotations on two axes respectively.
(b) Right: The plot of polyp interior class-conditional probability
responses on the right axis originating from the origin of polar co-
ordinates. The blue bar represents the location of the polyp bound-
ary from annotation.

axis as positive class (ie. voxels lying inside the boundary
(Sp{υij} = {υij} : (PC(υij) ≤ Bi − ε)), or negative class
(ie. voxels lying outside the boundary (Sn{υij} = {υij} :
(PC(υij) ≥ Bi + ε))). PC(υij) is the polar coordinates
value for any voxel υij on the ith axis; Bi is the polar coor-
dinates of the labeled boundary point on the same axis; and ε
is a small value to keep the distance margin between Sp and
Sn for learnability (as discussed in section 3.1). Again this
binary learning problem is solved by training a Probabilistic
Boosting Tree based classifiers [11] as PBT2 with 3D box
based steerable features. Boxes are placed centering at each
voxel and aligned with its local gradient surface. Compared
with the 3D point detector PBT1 (polyp tip), the resulted box
detector PBT2 contains more structural information within a
larger neighboring spatial span for better discrimination of
[11]. The feature number of PBT2 for feature selection is
52185 versus 5751 in PBT1. Refer to figures 5 and 6 (a) for
illustrative examples of polyp interior/exterior detection.



3.4 Polyp Surface Boundary Detection using
Boosted 1D Curve Parsing and Stacking

We treat the final step of polyp boundary segmentation
as a statistical curve parsing problem [1] of finding the
polyp/nonpolyp breaking points on 1D curves. Given the
output probabilities from polyp interior/exterior detection (as
shown in figure 5 (a,b)), another layer of boundary boosting
learning is applied. This is equivalent to learn a new clas-
sifier in the embedded, semantic space learned by another
classifier (as a wrapper) in the previous step. The theory
of stacked generality [14, 18] also provides its mathematical
background. To learn the true polyp boundary of 1D vec-
tors of noisy values (5 (b)), we label the coordinates along
each axis as positive class (ie. coordinates within a small
distance threshold of the annotated boundary (S+{υij} =
{υij} : (Bi − ε1) ≤ PC(υij) ≤ Bi + ε1)), or negative
class ( ie. coordinates outside a small distance threshold of
the annotated boundary (S−{υij} = {υij} : (PC(υij) ≥
(Bi + ε2))||(PC(υij) ≤ Bi − ε2)))). ε2 > ε1 is normally
set to keep the distance margin (ε2 − ε1) > 0 between S+

and S− for reducing learning ambiguity.
From S+ and S−, we first evaluate υij’s probability value

℘ij using PBT2. Thus we obtain an array of {℘ij} on
each axis i as A(℘ij) = (℘i1, ℘i2, ℘i3, ..., ℘ij , ...). Then
the following types of features are computed according to
each υij or ℘ij from Af (℘ij) = {℘i1, ℘i2, ℘i3, ..., ℘ij} and
Ab(℘ij) = {℘i,j+1, ℘i,j+2, ℘i,j+3, ...} respectively, for two-
class PBT learning:
1) probability count features: The count of ℘s above a thresh-
old θ in array Af or Ab;
2) probability gap features: The size vector of the largest
gaps of the θ-thresholded probability array for Af or Ab,
sorted in decreasing order.
Af (℘ij) represents ℘ij’s forward array spatially from ori-
gin to υij , and Af (℘ij) represents ℘ij’s backward array spa-
tially from υi,j+1 to end. The θ-thresholded probability ar-
ray means replacing every element ℘ in Af or Ab with 0 (if
℘ < θ) or 1 (if ℘ ≥ θ); the gap size is the count of continu-
ous 0s. We set θ = i×0.05, i = 0, 1, ..19 and the size of gap
vectors to be 20 for each θ. If there are less than 20 existing
gaps, 0 will be used to fill up the 20-element vector. There-
fore total 440 = (20 + 20 × 20) × 2 features are computed
as the feature selection pool for PBT learning. The resulted
classifiers is denoted as PBT3.

With PBT3, we can compute each point υij on the po-
lar coordinates a new probability value ρij by evaluating its
forward and backward probability arrays Af (℘ij), Ab(℘ij)
output by PBT2. To determine a unique boundary point on
any axis i, the simplest way to select the υiki with its ρiki =
max{ρi1, ρi2, ρi3, ..., ρij , ...}. Assuming that the selection
of each υiki

is solely based on {ρi1, ρi2, ρi3, ..., ρij , ...} and
independent with the formation on other axes, the final polyp
segmentation boundary will probably be rugged by sequen-
tially connecting boundary points υ1k1 , υ2k2 , ..., on all axes

(a) (b)
Figure 6. Two-layered polyp segmentation based on stacked gener-
ality [14]. (a) The polyp interior class probability response map on
the polyp surface (higher probabilities shown as whiter intensities
and vice versa), (b) Final polyp segmentation boundary contours (in
red) overlayed on the local polar coordinates. Additionally two red
line segments represent the two main axes for polyp dimensioning.

(a) (b)
Figure 7. (a) The loopy structure topology of the axes of polar co-
ordinates overlayed on polyp surface, (b) The equivalent looped
sequential trellis or looped 2D graph topology constructed.

of the polar coordinates. For smoothness, these boundary
decisions can be assembled using Gaussian blurring over
their polar coordinates values PC(υ1k1), PC(υ2k2), ..., ac-
cording to neighborhoods of successive axes. Alternatively,
Viterbi-like dynamic programming algorithm [3] can also
be employed on this sequential smoothing problem with a
looped trellis structure (as interpreted in figure 7). Loopy
belief propagation [8] is another applicable solution by treat-
ing polar coordinates as a general looped 2D graph. Gaus-
sian blurring is indeed a spatially homogeneous smoothing
filter, while Viterbi and loopy belief propagation are nonho-
mogeneous functions by building pairwise content-sensitive
potential functions. All three approaches function as assem-
blers of propagating 1D axis segmentations across neighbor-
ing axes in polar coordinates.

At the end, we can enumerate the set of positive polyp
surface voxels (with their associated probability ρs) inside
the polyp boundary segmentation for each polyp. The re-
maining polyp dimensioning process is straightforward: 1)
finding a pair of positive voxels as υ11, υ12 with the maxi-
mal Euclidean distance to build the first polyp axis; 2) using
their distance dist(υ11, υ12) as the estimated polyp size; 3)
then computing other pairs of voxels υ2′

, υ2′′
which is or-

thogonal to υ11, υ12 (ie. (υ2′ − υ2′′
) � (υ11 − υ12) = 0);

4) finally selecting the pair of voxels υ21, υ22 with the max-
imal Euclidean distance as the second polyp axis, from the



filtered voxles in 3). Optionally the polyp dimension on the
third orthonormal axis can be computed in a similar manner.

4 Experiments
We present both quantitative and qualitative results on

polyp segmentation and dimensioning measurement of our
method and its comparison with the state-of-art work [4]4.
To present quantitative results, we define two metrics of the
error measure between the detection result and the annota-
tion: the difference of polyp size in both millimeter and rel-
ative percentage %; and the overlapping ratio Υ between the
sets of segmented and annotated positive polyp surface vox-
els. We train and test the dataset of 274 polyps acquired
from 10 different sites on Siemens and GE scanners, while
[4] is tested on another dataset of 154 polyps from the same
source that we have no access. The parameter settings used
at different training stages, are listed as follows. The posi-
tive/negative training margins of PBT1 are `1 = 4 voxel and
`2 = 6 voxel; and the threshold of tip detection is T1 = 0.5.
The training distance margin of PBT2 is ε = 2 voxel. ε1 = 2
and ε2 = 4 are set as the positive/negative training margins of
PBT3. The axis number of polar coordinates I is 120 (ie. the
colon polyp surface is sampled every 3o). The training Re-
ceiver Operating Characteristic (ROC) curves in three PBT
learning stages are illustrated in figure 9 (a). There are 5732
positives and 376730 negatives in training PBT1, 1203829
positives and 2949828 negatives in PBT2, and 32880 pos-
itives and 1146319 negatives in PBT3. All boosting train-
ing procedure takes about 20 hours to finish on a P4-3.2G
PC. The runtime of polyp segmentation using our system is
within 2 ∼ 4 seconds. This segmentation/measurement pro-
cess can be easily made to be parallel for all polyp candidates
in a whole colon CT scan.

We first explore the differences between our segmented
polyp size measurements and the labeled sizes. Our com-
positional framework of assembling the 2D or 3D polyp
segmentation boundary from 1D decisions on the polar co-
ordinates axes is, intrinsically insensitive to partial under-
segmentations. On the other side, the polyp axis pairs of
υ11, υ12 and υ21, υ22 are constrained to have high ρs (>
0.75) during polyp dimensioning. This strategy prevents the
polyp size measurement inaccuracy caused by less likely,
but possible peaky over-segmented boundaries with weak
ρs. Using [4], there are 80.5% polyps with size measure-
ment error E ≤ 3mm and 72.1% polyps with E ≤ 2mm
in the dataset of 154 instances (size ranging from 1.8mm to
28mm). Our cross-validation results are 98% polyps with
E ≤ 3mm and 92% polyps with E ≤ 2mm for both the
training set (221 polyps) and the testing set (53 polyps). Ran-
dom splitting is used to construct the training and testing set
from total 274 polyps. Based on our approach, the mean er-
ror is 0.82mm or 7.39%, and the standard deviation of errors

4We do not have access to another recent work [15] which has slightly
worse performance than [4] in literature.

is 0.95mm or 7.09%, respective to the absolute or relative
error metric separately. Using [4], the results are 2.00mm or
27.6% for mean, and 2.97mm or 26.7% for standard devia-
tion. This comparison proves our statistically significant per-
formance improvement over previous work [4, 15], in terms
of the polyp dimensioning accuracy. We further evaluate
our approach based on the segmented/annotated surface area
overlapping ratio Υ that is computed using the size (ie. voxel
number) of the joint set of segmented polyp voxels and anno-
tated polyp voxels divided by the size of the set of annotated
polyp voxels. There are only 2.9% polyps with Υ ≤ 60%,
and 86.9% polyps with Υ ≥ 75%, and 65.8% with Υ ≥ 90%
in our approach. Refer figures 8, and 9 for more details.

In section 3.4, we discussed three polyp boundary bind-
ing techniques with smoothness. Gaussian blurring is the
default method which participates to generate the above ex-
perimental results. Due to the space limit, we only report
the qualitative comparison results: loopy belief propagation
[8] gains slightly in segmentation accuracy, but dynamic pro-
gramming [3] has slightly worse performance than Gaussian
blurring. We leave the further investigation as future work.
4.1 Robustness of Polyp Tip Detection and Distur-

bance Testing
It is often known that the initial polyp location input is

not accurate enough to precisely locate the polyp when using
a CAD software, and has large inter-reader variation from
clicks of different clinical experts. Our compositional as-
sembling of 1D curves/axis to form 2D/3D polyp shape rep-
resentation offers the excellent and comprehensive modeling
capacity for a large variety of 3D polyp shapes (learned in
PBT3) using a limited quantity of 1D curve bases (learned
in PBT2). This is tested using random disturbance as de-
scribed below. DS-I denotes disturbances on the searching
origin (normally, set as the center of CTC subvolume con-
taining the polyp for investigation) for polyp tip detection
of PBT1; DS-II stands for directly using the disturbed clin-
ician’s clicks to initialize the polyp segmentation of PBT2

and PBT3 by skipping PBT1. Two illustrative cases of DS-
II are demonstrated in figure 10. For example, on the right,
the range of our estimated polyp size is [8.54mm, 9.12mm]
and the labeled value is 8.7mm. The resulted multiple polyp
boundaries (in red) lie consistently within a close band rel-
ative to the annotated boundary (in purple). This variation
range is comparable or smaller than the inter-reader variabil-
ity reported in [10, 16, 17]. Furthermore, the numerical per-
formance evaluation details on DS-I and DS-II are described
in table 1. On the other hand, the required manual initializa-
tion is critical and can be a sensitive factor for the final per-
formance of fuzzy clustering [15], deformable model [15, 5],
or level-set based approaches [7]. Our system is automatic,
unless required of starting from a specified user-click. In
summary, our compositional representation of learning com-
plex 3D polyp surface shape model is well validated with its
robustness against extensive DS-I and DS-II disturbances.



(a) (b) (c)
Figure 8. Comparison on the polyp size measurement errors of our supervised, data-driven learning approach and the heuristic based method
[4]: (a) Left: the error plots of ground truth verse measurement polyp sizes of 154 examples (ranging from 1.8mm to 28mm) using [4],
(b) Center: the training error plots of ground truth verse measurement polyp sizes of 221 examples (ranging from 1.8mm to 30mm) in our
system, (c) Right: the testing error plots of ground truth verse measurement polyp sizes of 53 examples (ranging from 1.8mm to 22mm) in
our system. Notice that only 11 out of 274 total available polyp examples have sizes ≤ 17mm. Particularly, we randomly chose 8 polyps in
the training set and other 3 instances for testing. Therefore the generality of our learning system is highly promising for the full polyp size
range that we explore in this paper.

(a) (b) (c)
Figure 9. (a) Left: Receiver operating characteristic curves of different levels of training in our multistaged polyp segmentation system.
Levels 1-2-3 represent the binary PBT based learning processes for polyp tip detection, polyp interior detection and polyp boundary detection
respectively. Alternative (2-3) refers direct polyp boundary learning after tip detection, boosted using 208740 geometric features sampled
along each polar coordinates axis from the origin to any scanning surface voxel. It is implemented to compare with the combination of level 2
and 3 in our current system. By leveraging from stacked generality [14], the training task of levels 2 and 3 is easier and better performed than
the directly geometric learning (2-3). (b) Center: Performance on the polyp size measurement errors of direct geometry learning method.
Based on 274 polyp examples (size ranging from 1.8mm to 28mm), there are 86.86% polyps with size measurement error ≤ 3mm and
79.93% polyps with size measurement error ≤ 2mm for direct learning. These results improve the performance of [4] at 80.5% and 72.1%
respectively, but are not as good as of our two level stacking learning approach with 98% and 92%. The mean error is 1.54mm and the
standard deviation of errors is 2.22mm. Again it is better than the values of 2.00mm, 2.97mm in [4], but worse than 0.82mm, 0.95mm
in our stacking learning. (c) Right: Comparison of overlapping ratios of polyp segmentation: direct learning (in green) versus stacking
learning (in red). From the results of all 274 polyp examples, our stacking learning achieves mean(Υ) = 86.53% and std(Υ) = 10.68%;
direct learning obtains mean(Υ) = 81.58%, std(Υ) = 13.51%. There are 0.36% versus 4.38% polyp measurements with Υ ≤ 50%, and
86.86% versus 79.20% polyp measurements with Υ ≥ 75% for stacking learning and direct geometry learning respectively.

4.2 Comparison of Direct Geometric Learning
Versus Stacking Learning [14]

We also implement a more straight way of learning 1D
polyp shapes from the geometrical features on the curve (ie.
the axis of polar coordinates). In our implementation, each
voxel υij gets its characteristic geometry feature set by con-
catenating all 3D box steerable features of four points which
are evenly sampled along its axis i originating from the co-
ordinates origin t to υij . The resulting feature number is

208740 = 52185 × 4 for PBT boosting training. Compared
with the feature number 440 in PBT3, 208740 is too large
and more prone to overfitting given the same amount of train-
ing samples. This type of learning structure is denoted as di-
rect geometric learning and our two-layered architecture of
PBT2 and PBT3 is referred as stacking learning [14, 18].
Based on the results in figures 8 (b,c), against 9 (a,b,c),
our two-layered stacking learning approach outperforms the
one-layered direct geometric learning in polyp segmentation,



No-DS DS-I(20%) DS-I(40%) DS-I(60%) DS-II(15%) DS-II(20%) DS-II(25%) DS-II(30%)
Mean(mm) 0.8207 0.8177 0.8157 0.8582 0.816 0.7997 0.9603 0.9583
Std (mm) 0.9502 0.9349 0.9512 0.9649 1.06 0.9267 1.1738 1.1346
ROS (%) 98.0 97.5 96.67 97.5 95.0 95.83 94.17 93.3
Mean(%) 7.39 7.41 7.19 7.71 7.88 7.46 8.43 8.52
Std (%) 7.09 7.23 7.47 6.96 7.12 9.14 7.63 9.73

Table 1. Robustness testing results of polyp size measurement over two types of disturbances (DS-I, DS-II) on polyp tip detection (in stage
1), compared with our original result with no disturbance (No-DS on the leftest column). The first two rows are the means and standard
deviations of absolute measurement errors in millimeters (mm); the third row shows the ratio of success (ROS) which is defined as the
percentage of the polyps with absolute error ≤ 3mm out of all polyps; the forth and fifth rows are the means and standard deviations of
relative measurement errors in percentage (%) (divided by their labeled polyp sizes respectively). All percentages (%) following DS-I or
DS-II mean the disturbance magnitudes relative to individual polyp sizes. For DS-II, by assuming that the polyp tip approximately locates in
the center of polyp surface, and the polyp size is a diameter-like measurement, the valid, maximal possible DS-II is roughly 50%. Otherwise
the disturbed polyp tip input will lie outside of the polyp region. From above, the first type of disturbance DS-I does not bring errors with
statistical differences than No-DS, which proves the stability of our polyp tip detection process in section 3.1. DS-II is considered as a more
severe type of disturbance for polyp size measurement accuracy. The performance DS-II degrades gracefully on increasing levels of noise,
which demonstrates the robustness of our compositional polyp shape representation.

Figure 10. Two examples of our robust and consistent polyp seg-
mentation/measurement performance under multiple, different user
clicks as hard-coded polyp tip inputs. The resulted multiple polyp
boundary curves are drawn in red, and the annotated boundary
curve is shown in purple.

with statistical significance. However the implemented data-
driven boosting nature of direct geometric learning still helps
to improve over the heuristic approaches in literature [4, 15].

5 Conclusion
In this paper, we have proposed a hierarchical, multi-

staged probabilistic binary classification approach for auto-
mated segmentation of colonic polyp surfaces from other, at-
tached colon tissues in 3D CTC. Our system integrates low-,
and mid-level information for discriminative learning under
the local polar coordinates which are built to align on the 3D
colon surface around polyp. More importantly, our flexibly
architectured, supervised probabilistic learning system offers
a principled means of encoding a large capacity of semantic,
clinical expert annotations on colonic polyp surface tissue
identification and segmentation (for example, figure 1). Re-
sults on extensive performance evaluations using both train-
ing and unseen data validate our significant improvement
over the previous state-of-art work [4, 15]. This has very
important clinical impacts of offering more accurate polyp
segmentation/measurement, detection and classification so-
lutions for computer-aided diagnosis systems [10, 4, 9, 16].
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