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Abstract

When fitting finite mixtures to multivariate data, it is
crucial to select the appropriate number of components.
Under regularization theory, we aim to resolve this “un-
supervised” learning problem via regularizing the likeli-
hood by the full entropy of posterior probabilities for finite
mixture fitting. Two deterministic annealing implementa-
tions are further proposed for this entropy regularized like-
lihood (ERL) learning. Through some asymptotic analysis
of the deterministic annealing ERL (DAERL) learning, we
find that the global minimization of the ERL function in an
annealing way can lead to automatic model selection on
finite mixtures and also make our DAERL algorithms less
sensitive to initialization than the standard EM algorithm.
The simulation experiments then demonstrate that our al-
gorithms can provide some promising results just as our
theoretic analysis. Moreover, our algorithms are evaluated
in the application of unsupervised image segmentation and
shown to outperform other state-of-the-art methods.

1. Introduction

As a powerful statistical modeling tool for multivariate
data, the finite mixture model [7] has been widely used in
many applications such as pattern recognition, computer vi-
sion, and image analysis. The standard method used to fit
finite mixtures to the data is the EM algorithm [9], which
converges to a maximum likelihood estimation of the mix-
ture parameters. However, the number k∗ of components in
the mixture is usually assumed to be fixed and must be pro-
vided first. In many instances, this key information is not
available, and then we have to select k∗ to best fit the data
before or during parameter estimation.

The traditional method to solve this model selection
problem is to choose the optimal number k∗ of components
via some statistical criteria such as minimum description
length (MDL) [10], minimum message length (MML) [15],
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and penalty-less information criterion [1]. However, the en-
tire parameter estimation for finite mixtures has to be re-
peated at different values of k, and the process of evaluating
these criteria incurs a large computational cost. Moreover,
since at each given k the mixture parameters are often esti-
mated by the EM algorithm, the final model selection will
be unavoidably misled by the local convergence problem
of it. Other than this deterministic method, there are some
even more computationally demanding methods to solve the
model selection problem. That is, we can take into account
the stochastic simulation [11] and resampling [6] methods
to infer the optimal mixture model.

Recently, some more efficient methods have also been
developed for automatic model selection on finite mixtures,
which follow the idea that an appropriate number of compo-
nents can be automatically selected during parameter learn-
ing by forcing the mixing probabilities of the extra com-
ponents to tend to zeros. Such component annihilation has
been combined with the MML criterion in [4] to speed up
the traditional criterion based methods, and then a MML-
based component-wise EM algorithm (MML-CEM) is de-
rived which can determine the component number in the
optimization procedure. However, the strength of compo-
nent annihilation can not be controlled and then may be too
strong to detect the component number in some cases.

Under regularization theory [12], the above problems
can be resolved via regularizing the likelihood by the full
entropy of posterior probabilities which can control the
model complexity of the mixture. Though the Dirichlet and
entropic priors have also been used as regularization terms
in [4, 2], these priors defined only by the mixing probabili-
ties can not result in a close-form solution of the M-step. Of
course, we can propose some gradient implementations for
this entropy regularized likelihood (ERL) learning. How-
ever, just as the standard EM algorithm, the gradient-type
algorithms have the local convergence problem (e.g., sen-
sitive to initialization). Hence, we follow the deterministic
annealing idea of gradually shifting minimum ERL function
to minimum negative-likelihood (i.e., maximum likelihood)
for global search of the solution, and then propose two de-
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terministic annealing ERL (DAERL) learning algorithms.
Other than the deterministic annealing EM (DAEM) algo-
rithm [13] which just considers the local convergence prob-
lem, our DAERL algorithms aim to resolve this problem
and the model selection problem simultaneously.

The main contribution of this paper is proposing a mech-
anism of entropy regularization for finite mixture fitting and
two algorithms to implement it which are: 1) able to auto-
matically select the number of components (i.e., automatic
model selection), and 2) less sensitive to initialization than
EM. We also give some asymptotic analysis of our algo-
rithms and show in theory that the global minimization of
the ERL function in an annealing way just leads to auto-
matic model selection on finite mixtures. Moreover, the re-
sults of unsupervised image segmentation on the Berkeley
segmentation database [5] demonstrate that our algorithms
outperform other state-of-the-art methods such as the MDL
based EM (MDL-EM) algorithm [3] and the MML-CEM
algorithm [4] even in this challenging application.

2. Entropy Regularized Likelihood Learning

A random variable x ∈ Rn is said to follow a k-
component finite mixture distribution, if its probability den-
sity function (pdf) can be written as:

p(x|Θk) =
k∑

l=1

αlp(x|θl), (1)

where {αl}k
l=1 is the set of mixing probabilities satisfying

αl ≥ 0 and
k∑

l=1

αl = 1, each θl is the set of parameters

defining the l-th mixture component, and Θk = {αl, θl}k
l=1

is the complete set of mixture parameters.
Given a set of N independent and identically distributed

samples S = {xt}N
t=1, the negative log-likelihood func-

tion corresponding to a k-component finite mixture model
p(x|Θk) is

L(Θk) = − 1
N

N∑
t=1

ln(
k∑

l=1

(p(xt|θl)αl)). (2)

The well-known EM algorithm for fitting finite mixtures to
the data is just an implementation of minimizing L(Θk).

Since we have the posterior probability that xt arises
from the l-th component in the finite mixture model

P (l|xt) = p(xt|θl)αl/

k∑
j=1

p(xt|θj)αj , l = 1, ..., k, (3)

the discrete Shannon entropy of these posterior probabilities
for the sample xt can then be calculated as:

E(xt|Θk) = −
k∑

l=1

P (l|xt) ln P (l|xt). (4)

Note that this entropy has a good property: E(xt|Θk) is
globally minimized at P (l0|xt) = 1, P (l|xt) = 0 (l �= l0),
i.e., the sample xt is determinedly classified into the l0-th
component in the finite mixture model.

We now consider the average entropy of the finite mix-
ture model over the sample set S:

E(Θk) = − 1
N

N∑
t=1

k∑
l=1

P (l|xt) ln P (l|xt), (5)

and use it to regularize the log-likelihood function by

H(Θk) = L(Θk) + γE(Θk), (6)

where γ ∈ [0, γmax] is the regularization factor. That is,
E(Θk) is a regularization term to reduce the model com-
plexity such that the finite mixture model can be made as
simple as possible by minimizing H(Θk).

3. Two Deterministic Annealing Implementa-
tions of ERL Learning

Since the gradient-type algorithms may converge to lo-
cal minima just as the standard EM algorithm, we further
follow the deterministic annealing idea of gradually shift-
ing minimum ERL function H(Θk) to minimum negative-
likelihood L(Θk) (i.e., maximum likelihood) with γ gradu-
ally reduced to zero, and propose two deterministic anneal-
ing implementations for searching the global minimum of
the ERL function. Unlike the traditional simulated anneal-
ing approach, the ERL function is deterministically mini-
mized at each temperature (controlled by γ), and then this
search of the global minimum is much faster.

Note that the two deterministic annealing implementa-
tions differ only in the way to estimate the posterior prob-
abilities P (l|xt) (l = 1, ..., k). On one hand, when the
posterior probabilities are considered as functions of mix-
ture parameters Θk according to (3), they can then be es-
timated by min

Θk

H(Θk), i.e., first estimate Θk and then

P (l|xt). We denote this deterministic annealing imple-
mentation of ERL Learning as DAERL1 algorithm in the
following. On the other hand, when the posterior proba-
bilities are considered as part of mixture parameters, i.e.,
Θp

k = {P (l|xt), t = 1, ..., N, l = 1, ...k}, they can then be
estimated by min

Θp
k,Θk

H(Θp
k, Θk). We denote this determinis-

tic annealing implementation of ERL Learning as DAERL2
algorithm in the following.

In order to derive an explicit expression to update the
mixture parameters by minimum ERL function, we focus
on a special case of finite mixtures, i.e., the Gaussian mix-
ture model with p(x|θl) given by a Gaussian pdf

p(x|θl) = (2π)−
n
2 |Σl|− 1

2 e−
1
2 (x−ml)

T Σ−1
l (x−ml), (7)



where ml is the mean vector and Σl is the covariance ma-
trix which is assumed to be positive definite. Note that the
deterministic annealing implementations of ERL learning
presented in the following can be applied to other types of
finite mixture models in a similar way.

3.1. DAERL1 Algorithm

We first derive a deterministic annealing implementation
of minimum ERL function (i.e., DAERL1) when the pos-
terior probabilities are considered as functions of mixture
parameters Θk. At each temperature with γ fixed, since
k∑

l=1

αl = 1, we can compose the following Lagrange func-

tion for the task of min
Θk

H(Θk):

Q(Θk, λ) = H(Θk) + λ(
k∑

l=1

αl − 1). (8)

Using the general methods for matrix derivatives, we are
then led to the following series of equations:

∂Q

∂αl
= − 1

N

N∑
t=1

1
αl

U(l|xt) + λ, (9)

∂Q

∂ml
= − 1

N

N∑
t=1

U(l|xt)Σ−1
l (xt − ml), (10)

∂Q

∂Σl
= − 1

2N

N∑
t=1

U(l|xt)Σ−1
l (Mtl − Σl)Σ−1

l , (11)

∂Q

∂λ
=

k∑
l=1

αl − 1, (12)

where Mtl = (xt − ml)(xt − ml)T and

U(l|xt) = P (l|xt)(1 + γ(ln P (l|xt) + E(xt|Θk))). (13)

By setting these derivatives of Q(Θk, λ) with respect to
αl, ml, Σl, and λ to be zeros, we then have:

α̂l =
N∑

t=1

U(l|xt)/
k∑

j=1

N∑
t=1

U(j|xt), (14)

m̂l =
N∑

t=1

U(l|xt)xt/

N∑
t=1

U(l|xt), (15)

Σ̂l =
N∑

t=1

U(l|xt)Mtl/

N∑
t=1

U(l|xt). (16)

These explicit expressions actually give us a determinis-
tic annealing implementation of minimum ERL function: at
each temperature, we first update P (l|xt) according to (3),

and then update Θk according to (14)-(16). Though simi-
lar to the standard EM algorithm, this DAERL1 algorithm
makes some important modification of the M-step. That is,
during updating Θk, the mechanism of entropy regulariza-
tion enforces a kind of competitive learning among all the
components, which then leads to automatic model selection
on finite mixtures.

3.2. DAERL2 Algorithm

We further derive another deterministic annealing im-
plementation of minimum ERL function (i.e., DAERL2)
when the posterior probabilities are considered as part of
mixture parameters Θp

k = {P (l|xt), t = 1, ..., N, l =
1, ...k}. At each temperature with γ fixed, the task of
min

Θp
k,Θk

H(Θp
k, Θk) can be implemented by a two-step min-

imization procedure similar to the EM algorithm: (1) E-
step: fix Θk, Θ̂p

k = arg min
Θp

k

H(Θp
k, Θk); (2) M-step: fix

Θ̂p
k, Θ̂k = arg min

Θk

H(Θ̂p
k, Θk).

For the E-step of ERL learning with Θk fixed, we can
compose the following Lagrange function using N La-
grange multipliers λ = (λ1, ..., λN ):

Q(Θp
k, λ) = H(Θp

k) +
1
N

N∑
t=1

λt(
k∑

l=1

P (l|xt) − 1). (17)

By setting the derivatives of Q(Θp
k, λ) with respect to

P (l|xt) and λt to be zeros, we have

ln(p(xt|θl)αl) + (γ − 1)(1 + lnP (l|xt)) = λt, (18)
k∑

l=1

P (l|xt) = 1. (19)

From the above equations, we can then obtain the following
fixed-point solution to estimate P (l|xt):

P̂ (l|xt) = (p(xt|θl)αl)
1

1−γ /

k∑
j=1

(p(xt|θj)αj)
1

1−γ , (20)

which is just the Gibbs distribution. If 0 < γ < 1, the
Gibbs distribution is more peaked than the estimated pos-
terior according to (3). That is, the belonging component
of xt is forced to become clearer, which just coincides with
our motivation to introduce entropy regularization.

For the M-step of ERL learning with Θ̂p
k fixed, Θ̂k =

arg min
Θk

H(Θ̂p
k, Θk) is equivalent to Θ̂k = arg min

Θk

L(Θk).

Since the EM algorithm is just an implementation of mini-
mizing L(Θk), the update rules for Θk can then be set the



same form as the M-step of the EM algorithm:

α̂l =
1
N

N∑
t=1

P̂ (l|xt), (21)

m̂l =
N∑

t=1

P̂ (l|xt)xt/

N∑
t=1

P̂ (l|xt), (22)

Σ̂l =
N∑

t=1

P̂ (l|xt)Mtl/

N∑
t=1

P̂ (l|xt). (23)

Through the above two-step minimization procedure, we
have actually present another deterministic annealing im-
plementation of minimum ERL function: at each temper-
ature, we first update P (l|xt) according to (20), and then
update Θk according to (21)-(23). Though similar to the
standard EM algorithm, this DAERL algorithm makes some
important modification of the E-step. That is, during updat-
ing P (l|xt), the mechanism of entropy regularization is im-
plemented on these posterior probabilities using the Gibbs
distribution, which are more peaked than the estimated pos-
terior according to (3). Hence, the belonging component
of each sample xt is forced to become clearer, which then
leads to automatic model selection on finite mixtures.

Note that the above DAERL2 algorithm takes a similar
form as the DAEM algorithm [13]. When the regulariza-
tion factor γ is replaced by the annealing parameter β in
the DAEM algorithm using γ = (β − 1)/β (0 < β <
1), the DAERL2 algorithm just becomes the DAEM algo-
rithm. Hence, for γ < 0, our method is actually a kind of
maximum-entropy (similar to DAEM) to smooth the likeli-
hood L(Θk) for overcoming the local convergence problem
of the standard EM algorithm. Moreover, for γ > 0, our
method is actually a kind of minimum-entropy to make au-
tomatic model selection for finite mixture fitting. These two
seemingly opposite methods are then unified in the frame-
work of entropy regularization.

3.3. Asymptotic Analysis of DAERL Learning

Finally, we try to give an asymptotic analysis of the
above DAERL learning, and then prove the promising prop-
erty of automatic model selection on finite mixtures when
there is a certain degree of overlap in the mixture.

Due to the randomness in the sample set, we have to con-
sider the ERL learning asymptotically, i.e., we let N → ∞.
The object function H(Θk) of the ERL learning estimated
on the sample set in (6) is rewritten as HN (Θk). Likewise,
the estimated functions L(Θk) and E(Θk) in (2) and (5) are
also rewritten as LN (Θk) and EN (Θk), respectively. Ac-
cording to the probability theory, we then have

H(Θk) = lim
N→∞

HN (Θk) = lim
N→∞

(LN (Θk) + γEN (Θk))

= L(Θk) + γE(Θk), (24)

and now L(Θk) and E(Θk) are updated as

L(Θk) = lim
N→∞

LN (Θk) = −
∫

p(x|Θ∗
k∗) ln p(x|Θk)dx,

E(Θk) = lim
N→∞

EN (Θk) =
∫

E(x|Θk)p(x|Θ∗
k∗)dx,

where Θ∗
k∗ = {α∗

l , θ
∗
l }k∗

l=1 denotes the set of the true para-
meters in finite mixtures which the sample data come from.
Specifically, k∗ is the number of the actual components and
{α∗

l , θ
∗
l } is the set of true parameters of the l-th component

for the actual mixture pdf.
In the following, we give asymptotic analysis of the ERL

learning in the case that the finite mixture model p(x|Θ∗
k∗)

has a certain degree of component overlap. According to
information theory, E(x|Θ∗

k∗) is high when the belonging
component of x is obscure, i.e., the component overlap is
large; otherwise, E(x|Θ∗

k∗) is low when the belonging com-
ponent of x is clear, i.e., the component overlap is small.
Hence, the average entropy E(Θ∗

k∗) can be used to mea-
sure the overlap of the finite mixture model. In this paper,
we assume that the overlap of the true finite mixture model
p(x|Θ∗

k∗) should not be too high, i.e., the average entropy
E(Θ∗

k∗) should be constrained as |E(Θ∗
k∗)| < M � ln k∗.

Note that the true finite mixture model p(x|Θ∗
k∗) will tend

to the maximum overlap E(Θ∗
k∗) = ln k∗, when P (l|x) =

1/k∗, l = 1, ..., k∗ at each data x.
Moreover, the finite mixture model we consider is as-

sumed to be identifiable. That is, in the cases that all
the components in the mixture are different, p(x|Θk) =
p(x|Θ′

k′) if and only if Θk ⊇ Θ′
k′ with k ≥ k′ and the

mixing probabilities of the other k−k′ extra components in
Θk being zeros. We now investigate the asymptotic conver-
gence properties of the ERL learning for the finite mixture
model and have the following theorem (see the Appendix
for the proof).

Theorem 1 Suppose that the finite mixture model p(x|Θk)
is identifiable, and the overlap of the true finite mixtures
p(x|Θ∗

k∗) is not too high, i.e., |E(Θ∗
k∗)| < M � ln k∗. If

Θh
kh(γ) = arg min

Θk

H(Θk), we then have Θh
kh(γ) ⊇ Θ∗

k∗

with kh ≥ k∗ and the mixing probabilities of the other
kh − k∗ components in Θh

kh(γ) being zeros, when the regu-
larization factor γ → 0.

According to Theorem 1, we can find that the global min-
imization of the ERL function H(Θk) in an annealing way
(i.e., γ → 0) leads to automatic model selection on finite
mixtures if we let k > k∗ and annihilate the components
with negligible mixing probabilities. That is, if the model
scale is actually defined by the number of positive mixing
probabilities in a finite mixture model, it will be equal to k∗

via globally minimizing the ERL function H(Θk). Thus,
the true model scale can be correctly detected through the
global minimization of the ERL function.



Though entropy regularization is originally introduced
into the maximum likelihood estimation to resolve the
model selection problem, we can also find that minimum
ERL function H(Θk) may escape some types of local min-
ima and then avoid the initialization dependence. That is,
when local minima of the negative likelihood L(Θk) arise
during minimizing H(Θk), the average entropy E(Θk) may
still keep large and these local minima may then be avoided.
For example, the EM algorithm may not escape one type of
local minima when two or more components in the mixture
have similar parameters (i.e., the overlap E(Θk) is high)
and then share the same data. However, the ERL learning
can promote the competition among these components by
minimum H(Θk), and then only one of them will survive
with the other annihilated.

4. Unsupervised Image Segmentation

Though our DAERL algorithms can be used in many ap-
plications, we will focus on unsupervised image segmenta-
tion which aims to automatically determine the number of
regions (objects) in an image during segmentation. Note
that unsupervised image segmentation plays an important
role in region-based image retrieval, since the image data-
bases are often huge in this application and the prior setting
of region number for each image is no longer feasible.

To resolve this model selection problem in a probabilis-
tic way for unsupervised image segmentation, we will pay
our attention to mixture model-based image segmentation
(e.g. the spatially variant finite mixture model [8]). Thus,
we can take into account our DAERL algorithms which are
proposed in the above section to make automatic model se-
lection on finite mixtures.

In the segmentation, we consider an 8-dimensional vec-
tor of color, texture, and position features for each pixel
of an image, and these features are obtained just as [3].
The three color features are the coordinates in the L*a*b*
color space, and we smooth these features to avoid over-
segmentation arising from local color variations due to tex-
ture. The three texture features are contrast, anisotropy, and
polarity, which are extracted at an automatically selected
scale. The position features are simply the (x, y) position of
the pixel. Once pixels in an image with these combined fea-
tures are grouped into regions by our DAERL algorithms,
we further merge those regions smaller than 1 percent of
the image with the adjacent regions if they are similar in the
color/texture feature space.

Since our algorithms are based on finite mixtures, we
can extend them straightforwardly to use the spatial infor-
mation just as the mixture model-based image segmentation
approach [8]. Additionally, since we can just implement
region-based image retrieval if the segmented regions are
assigned with the color/texture features, our algorithms can
further be evaluated in this application.

5. Experimental Results

Though the two DAERL algorithms can be used for
other types of mixture models, we only consider Gaussian
mixtures to present their performances. To make compar-
ison with other state-of-the-art methods such as MDL-EM
[3] and MML-CEM [4], we first give the initialization de-
tails for these algorithms and then make simulation exper-
iments on two sample sets generated from Gaussian mix-
tures. Moreover, we apply the two DAERL algorithms to
unsupervised image segmentation on the Berkeley segmen-
tation database [5], and the four algorithms are evaluated by
the probabilistic Rand (PR) index [14].

5.1. Initialization for ERL Learning

The ERL learning is always implemented with k =
kmax and γ = γmax. That is, the number of components
k is initialized a large value kmax to make sure k ≥ k∗

(k∗ is the true number of components) and then we anni-
hilate those components with α̂l reduced below a thresh-
old T (e.g., T = 0.01) after certain iterations, while the
regularization factor γ is gradually reduced from γmax to
zero by γ = γmax/(1 + ct) where t denotes the number
of iterations and we set c = 0.1 simply. Moreover, the
mean vectors and covariance matrices of the mixture com-
ponents are initialized by some clustering methods (e.g.,
k-means). In the experiments, the learning is stopped if
|(H(Θ̂k) − H(Θk))/H(Θk)| < 10−4. Note that the above
initialization method and convergence criterion are also
used similarly by MDL-EM and MML-CEM.

Since the strength of component annihilation during the
ERL learning is just controlled by γ = γmax according to
(27) in the Appendix, it is important to select this parameter
appropriately for correct model selection. When the mix-
ture overlap is lower, we can select γmax in a large range
(e.g., [0.5, 0.8]) and the component number can be cor-
rectly determined after only one run of the ERL learning.
However, when the mixture overlap becomes high, the ERL
learning may drop some components if γmax is large.

We can solve this problem by introducing the MDL cri-
terion into the ERL learning, which always starts at small
γmax (e.g., γmax ∈ [0.05, 0.50)). If the selected compo-
nent number k̂ > kmin after convergence, we can evaluate
this candidate model using MDL and then restart the ERL
learning with k = k̂ − 1 by annihilating the least probable
component with smallest α̂l (i.e., in a similar way as [4]).
We try to find the optimal model with smallest MDL via re-
peating the ERL learning until k̂ = kmin. Such ERL learn-
ing is different from the traditional approach (e.g., MDL-
EM in [3]) in that we only need make a few MDL evalu-
ations since there are some components annihilated during
each run of the ERL learning.



5.2. Simulation Results

To present the performance of the ERL learning, we first
carry out simulation experiments on the sample data set of
N = 2000 samples generated from a bivariate 8-component
Gaussian mixture as shown in Figure 1(a). The parameters
of this Gaussian mixture are:

αl = 1/8, l = 1, ..., 8, m1 = [1.5, 0]T , m2 = [1, 1]T ,

m3 = [0, 1.5]T , m4 = [−1, 1]T , m5 = [−1.5, 0]T ,

m6 = [−1,−1]T , m7 = [0,−1.5]T , m8 = [1,−1]T ,

Σ1 = Σ5 = diag[0.01, 0.1], Σ3 = Σ7 = diag[0.1, 0.01],
Σ2 = Σ4 = Σ6 = Σ8 = diag[0.1, 0.1].
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Figure 1. Two sample data sets generated from Gaussian mixtures:
(a) N = 2000, k∗ = 8; (b) N = 1000, k∗ = 4.

In the second example, we use N = 1000 samples from
a bivariate 4-component Gaussian mixture as shown in Fig-
ure 1(b). The detailed parameters of this mixture can be
found in [4]. Note that there are two components com-
pletely overlapped with the other one in this mixture, while
the first mixture as shown in Figure 1(a) has only a low de-
gree of overlap among mixture components.

In the experiments, we just set kmin = 2 and kmax = 20
for all the four algorithms. As for γmax, we simply set
γmax = 0.2. Moreover, we run all the algorithms (Mat-
lab code) on a Pentium D 2.8GHz computer with 1.0GB
memory. To make an objective evaluation, the success rate
of identifying the k∗ true components over 250 trials and
the average running time for fitting the two mixtures shown
in Figure 1 are listed in Table 1 & 2, respectively. Con-
cerning the ability of finding the global optimal solution
(i.e., identifying the true number of components and simul-
taneously avoiding local minima), we can find that the two
DAERL algorithms perform generally better than the MDL-
EM and MML-CEM algorithms, especially in complicated
situations (e.g., the Gaussian mixture of Figure 1(b)). Here,
we only evaluate different algorithms by some external cri-
teria since the class labels of all samples are known.

In order to explain in detail the mechanism of automati-
cal detection of the component numbers, we further present
the evolution of the ERL learning (only DAERL1 is con-
sidered) during fitting the second mixture from one of the
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Figure 2. Fitting the Gaussian mixture of Figure 1(b) by the
DAERL1 algorithm: (a), (b), and (c) three intermediate estimates
(for k = 12, 9, and 6); (d) the final estimate (with k = 4). Each
solid ellipse is the level-curve of a component estimate, and only
those components with α̂l > T are shown.

Algorithm Success rate Average time (sec.)
MDL-EM 94.0% 70.6

MML-CEM 100.0% 6.9
DAERL1 100.0% 52.8
DAERL2 97.6% 53.7

Table 1. Experimental results for the mixture of Figure 1(a).

Algorithm Success rate Average time (sec.)
MDL-EM 82.0% 33.3

MML-CEM 73.2% 7.0
DAERL1 92.8% 17.4
DAERL2 92.4% 16.2

Table 2. Experimental results for the mixture of Figure 1(b).

successful trials. As shown in Figure 2, we can observe that
when two or more components fall into the same data (at a
high probability), the ERL learning can promote the compe-
tition among them and then make only one of them survive
with the other annihilated.

When the computational cost is concerned, we can con-
clude from Table 1 & 2 that MML-CEM is the lowest,
DAERL (DAERL1 or DAERL2) is some more, and MDL-
EM is the highest. Though DAERL incurs more compu-
tational cost than MML-CEM, it performs much better for
identifying the true component number. Hence, DAERL is
preferred if we make an overall comparison.



5.3. Segmentation Results

We further apply our DAERL algorithms to unsuper-
vised image segmentation on the Berkeley segmentation
database [5]. This benchmark has 300 images along with
human (ground truth) segmentations by different individ-
uals. The evaluation of a segmentation algorithm can be
achieved by the PR index [14] which takes values between
0 and 1, and a higher PR score indicates that a higher per-
centage of pixel pairs in the machine segmentation have the
same relationship as in each ground truth segmentation.

Algorithm Average PR index Average time (sec.)
MDL-EM 0.778 270.0

MML-CEM 0.749 33.6
DAERL1 0.797 50.2
DAERL2 0.808 88.1

Table 3. The average PR index and running time for all the 300
images in the Berkeley segmentation database.
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Figure 3. The histogram of the average PR index for all the 300
images in the Berkeley segmentation database.

In the experiments, we simply set γmax = 0.4 for our
DAERL algorithms. Moreover, we just select the region
number in [2, 10] (i.e, kmin = 2 and kmax = 10) for the
four algorithms. We then compare these algorithms on the
whole database, and their average PR indices for all the 300
images are listed in Table 3. Just as our theoretic analysis in
Section 3.3, our algorithms make a global search of solution
and then outperform MDL-EM and MML-CEM. Moreover,
the histogram shown in Figure 3 gives more details about
their PR indices, and we find that our algorithms can cre-
ate realistic segmentations at a higher probability, if those
segmentations with PR > 0.8 are considered “realistic”.

Moreover, some segmentation samples are also shown
in Figure 4, and we can find that our DAERL algorithms
successfully detect the object of interest even from the con-
fusing background. However, the MDL-EM algorithm may
converge to local minima and then the background may
be split into two regions (see the images #134052 and
#253036), while the MML-CEM algorithm can not control

the strength of component annihilation and the object of in-
terest may be merged with other regions (see the images
#134052, #169012, and #249061).

Finally, the average running time taken by the four algo-
rithms on the Berkeley segmentation database is also listed
in Table 3. As expected, our algorithms run much faster
than MDL-EM which incurs many evaluations of the MDL
criterion. As compared with MML-CEM, our algorithms
can still be considered computationally comparable in view
of the costly annealing procedure. Additionally, if the seg-
mentation results are also taken into account, we can con-
clude that our algorithms perform generally better.

6. Conclusion

We have investigated the model selection and parame-
ter estimation for finite mixtures through implementing a
kind of DAERL learning. Some asymptotic analysis of the
DAERL learning then shows that the global minimization
of the ERL function in an annealing way can lead to au-
tomatic model selection on finite mixtures and also make
our algorithms less sensitive to initialization than the stan-
dard EM algorithm. The simulation and segmentation ex-
periments then demonstrate that our algorithms can provide
some promising results just as our theoretic analysis.
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Appendix

This appendix presents the proof of Theorem 1. We be-
gin with Θh

kh(γ) = arg min
Θk

H(Θk) at each temperature

(controlled by γ), and have H(Θh
kh(γ)) ≤ H(Θ∗

k∗). It then
follows from (24) that

L(Θh
kh(γ)) − L(Θ∗

k∗) ≤ γ[E(Θ∗
k∗) − E(Θh

kh(γ))]. (25)

Under information theory, E(Θ∗
k∗) ≥ 0 and E(Θh

kh(γ)) ≥
0. Hence, with |E(Θ∗

k∗)| < M , it follows that 0 ≤
E(Θ∗

k∗) < M . According to (25), we have

L(Θh
kh(γ)) − L(Θ∗

k∗) ≤ γE(Θ∗
k∗) < γM. (26)

The difference between Θh
kh and Θ∗

k∗ can be
measured by DKL(p(x|Θ∗

k∗), p(x|Θh
kh(γ))) =∫

p(x|Θ∗
k∗) ln p(x|Θ∗

k∗ )

p(x|Θh

kh (γ))
dx, where DKL(·, ·) is the

Kullback-Leibler distance between two probability
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Figure 4. Segmentation results for some sample images by the four segmentation algorithms. The first column is the original images. The
second to fifth columns are the results obtained by MDL-EM, MML-CEM, DAERL1, and DAERL2, respectively.

densities and it always keeps DKL(·, ·) ≥ 0. Since
DKL(p(x|Θ∗

k∗), p(x|Θh
kh(γ))) = L(Θh

kh(γ)) − L(Θ∗
k∗),

according to (26), we have

0 ≤ DKL(p(x|Θ∗
k∗), p(x|Θh

kh(γ))) < γM. (27)

When γ → 0, DKL(p(x|Θ∗
k∗), p(x|Θh

kh(γ))) = 0, i.e.,
p(x|Θ∗

k∗) = p(x|Θh
kh(γ)) under information theory. Based

on the identifiability of the finite mixture model, we then
have Θh

kh(γ) ⊇ Θ∗
k∗ with kh ≥ k∗ and the mixing proba-

bilities of the other kh − k∗ components in Θh
kh(γ) being

zeros, when the regularization factor γ → 0.
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