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Abstract

We present a novel stereo algorithm which performs sur-
face reconstruction from planar camera arrays. It incorpo-
rates the merits of both generic camera arrays and rectified
binocular setups, recovering large surfaces like the former
and performing efficient computations like the latter. First,
we introduce a rectification algorithm which gives freedom
in the design of camera arrays and simplifies photometric
and geometric computations. We then define a novel set
of data-fusion functions over 4-neighborhoods of cameras,
which treat all cameras symmetrically and enable standard
binocular stereo algorithms to handle arrays with arbitrary
number of cameras. In particular, we introduce a photomet-
ric fusion function which handles partial visibility and ex-
tracts depth information along both horizontal and vertical
baselines. Finally, we show that layered depth images and
sprites with depth can be efficiently extracted from the rec-
tified 3D space. Experimental results on real images con-
firm the effectiveness of the proposed method, which recon-
structs dense surfaces larger by 20% on Tsukuba.

1. Introduction
Onlinemetaverses have emerged as a way to bring an im-

mersive and interactive 3D experience to a worldwide audi-
ence. However, the fully automatic creation of realistic con-
tent for these metaverses is still an open problem. The chal-
lenge here is to achieve simultaneously four goals. First, the
rendering quality must be high for the virtual world to look
realistic. Second, the geometric quality must be sufficient
to let physics-based simulation provide credible interactions
between objects. Third, the computational complexity must
be simple enough to enable real-time rendering. Finally,
the data must admit a compact representation to allow data
streaming across networks.
In this paper, we propose three contributions toward

these goals. First, we introduce a special rectified 3D space
and an associated rectification algorithmwhich handles pla-
nar arrays of cameras. It gives freedom in the design of

camera arrays, so that their fields of view can be adapted
to the scene being recorded. At the same time, rectification
simplifies the reconstruction problem by making the coor-
dinates of voxels and their pixel projection integers. This
removes the need for further data resampling and simplifies
changes of coordinate systems and visibility computations.
Second, we present a set of data-fusion functions which

enable standard binocular stereo reconstruction [13] to han-
dle arrays with arbitrary number of cameras. Using one
depth map per camera, the algorithm reconstructs large
surfaces, up to 20% larger on Tsukuba, and therefore re-
duces the holes in novel-view synthesis. We introduce two
Markov Random Fields (MRF), a classical one over the ar-
rays of pixels and a novel one over the array of cameras.
The latter lets us treat all the cameras symmetrically by
defining fusion functions over 4-neighborhoods of cameras.
Finally, we introduce a global fusion algorithm which

merges the depth maps into a unique Layered Depth Image
(LDI) [15], a rich but compact data representation made of
a dense depth map with multiple values per pixel. We also
show that the recovered LDI can be segmented fully auto-
matically into sprites with depth [15]. Such sprites are re-
lated to geometry images, which can be efficiently rendered
and compressed [7].

2. Relation to previous work
Surface reconstruction methods fall into two categories,

those based on large generic camera arrays and those based
on small rectified stereo setups, most often binocular, where
the optical camera axes are normal to the baseline. The for-
mer [12, 14, 17, 21] handle a rich depth information and
can reconstruct large surfaces. However, the genericity of
the camera locations makes visibility computations difficult
and voxel projections computationally expensive.
In rectified stereo setups [2, 13, 19], on the other hand,

visibility and projections are simple. These setups also al-
low efficient reconstruction algorithms based on Maximum
A-Posteriori (MAP) inference over MRFs. However, the
depth information extracted from the images tend to be
quite poor, especially for linear arrays which only take ad-
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vantage of textures with significant gradients along their
baseline. Moreover, the small number of cameras and the
constrained viewing direction strongly limits the volume in-
side which depth triangulation is possible.
The constraint on the viewing direction can be removed

using rectification, which trades view freedom for image
distortion. So far, however, rectification has been limited to
small stereo setups with two [4, 8] or three [1, 18] cameras.
In this paper, we introduce a special rectified 3D space

and show that when the problem is defined in terms of
transformations between 3D spaces, instead of alignment
of epipolar lines, rectification can be generalized to planar
arrays with arbitrary number of cameras.
Camera arrays have access to a much richer information

than binocular setups. Quite surprisingly, however, the extra
information can prove to be detrimental and actually reduce
the quality of reconstructed surfaces [22]. The issue comes
from partially visible voxels, whose number increases with
the number of cameras. A number of methods tackle this
issue [3, 10, 22]. However, most of them are asymmet-
ric, choosing one camera as a reference. Cameras far apart
tend to have less visible surfaces in common, which limits
the number of cameras in the array and, as a consequence,
the area of reconstructed surfaces. Moreover, many multi-
view stereo methods disregard the relative locations of the
cameras when extracting the depth information from im-
ages [6, 14], which reduces the discriminative power of the
extracted information.
In the proposedmethod, we rely on multiple depth maps,

one per camera, and treat all the cameras symmetrically.
Furthermore, we define a novel MRF over the camera array
and take into account the relative locations of the cameras.
This way, the proposed method handles arrays with arbi-
trary number of cameras and extracts the depth information
along both horizontal and vertical baselines.
Surface reconstruction based on multiple depth maps has

already been studied in [5, 6, 24] but these methods lacked
the proposed rectified 3D space, which led to costly opera-
tions to compute visibility, enforce inter-camera geometric
consistency, and merge depth maps.
The proposed extraction of sprites from LDIs is related

to depth map segmentation [9], with the added complexity
of multiple depth values per pixels. Moreover, unlike [16],
the segmentation is performed automatically and is not lim-
ited to planar surfaces.

3. The rectified space
3.1. Overview

We first consider the problem of rectifying the 3D space
and the 2D camera images to simplify the stereo reconstruc-
tion problem. In the following, points are represented in
homogeneous vectors, with x � (x, y, 1)

ᵀ denoting a point

Figure 1. A few rays of light in the rectified 3D space: rays passing
through the optical centers of camera (0, 0) (a) and camera (1, 0)
(b). The rays are aligned with the voxel grid, which simplifies
visibility computations.

on the 2D image plane and X � (x, y, z, 1)
ᵀ a point in 3D

space. Points are defined up to scale: x and λx are equiv-
alent for any non-null scalar λ. This relation is denoted by
the symbol ‘∼’.
Under the pin-hole camera model [4], a 3D point X and

its projection x onto an image plane are related by

x ∼ PX (1)

whereP is a 3× 4 matrix which can be decomposed as

P = KR
(

I −c
)

(2)

where I is the identity matrix, R the camera rotation ma-
trix, c the optical center and K the matrix of intrinsic pa-
rameters. All these parameters are assumed known.
The optical centers of the cameras are assumed to lie on

a planar lattice, that is,

c = o + mv1 + nv2 (3)

where o is the center of the grid, v1 and v2 are two non-
collinear vectors, andm and n are two signed integers. The
classical stereo pair is a special case of such an array.Since a
pair (m, n) uniquely identifies a camera, we use it to index
the cameras and denote by C the set of pairs (m, n).
The proposed rectification consists in rotating the cam-

eras and transforming the Euclidean 3D space using homo-
graphies. The rectified 3D space is defined as a space where
the projection matrices P̂(m,n) take the special form

P̂
(m,n) =

⎛
⎝ 1 0 −m 0

0 1 −n 0
0 0 0 1

⎞
⎠ . (4)

It follows that, in the rectified space, a 3D point
X̂ = (x̂, ŷ, d̂, 1)ᵀ is related to its 2D projection x̂

(m,n) =(
x̂(m,n), ŷ(m,n), 1

)ᵀ on the image plane of camera (m, n)
by the equations {

x̂(m,n) = x̂−md̂,

ŷ(m,n) = ŷ − nd̂.
(5)

The 2D motion vectors of image points from camera
(m, n) to camera (m′, n′) are equal to d̂ times the baseline



(m−m′, n− n′)ᵀ. Therefore, the third coordinate d̂ of the
rectified 3D space is a disparity, while the third coordinate
z of the Euclidean space is a depth.
The projection of an integer-valued point X̂ is also an

integer. Moreover, the rays of light passing through the op-
tical centers are parallel to one another and fall on integer-
valued 3D points, as shown in Figure 1, which simplifies
visibility computations.

3.2. Rectification homographies
First, we need to recover the grid parameters o, v1, and v2

from the projection matrices P
(m,n). From (3), we obtain

the system of equations

(
I mI nI

)⎛⎝ o

v1

v2

⎞
⎠ = c

(m,n), ∀(m, n) ∈ C. (6)

In the general case, this system is over-constrained and
the vectors are obtained by least mean-square. When the
cameras are collinear, one of the vector is free to take any
value. In that case, the constrained vector is computed by
least mean-square and the free vector is chosen to limit the
image distortion. To do so, the normal vector defined by
the cross-product v1 ∧ v2 is set to the mean of the unit vec-
tors on the optical axes. The free vector is then deduced by
Gram-Schmidt orthogonalization.
We define an intrinsic-parameter matrix K̂ shared by all

the rectified cameras as

K̂ �

⎛
⎝ f̂ 0 0

0 f̂ 0
0 0 1

⎞
⎠ (7)

where f̂ is the rectified focal length. We also define a ma-
trix V as V � (v1, v2, v1 ∧ v2) and two 4D homography
matricesH1 andH2 as

H1 �

(
K̂V

−1 −K̂V
−1

o

0 f̂

)
, (8)

H2 �

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ . (9)

The rectified focal length f̂ is chosen as the mean focal
length f̄ of the actual cameras.
Multiplying (1) by K̂V

−1
R

(m,n)−1
K

(m,n)−1, intro-
ducing I = H

−1
1 H

−1
2 H2H1 between P and X, and using

the relation K̂ĉ
(m,n) = f̂ ĉ

(m,n), we obtain

K̂V
−1

R
(m,n)−1

K
(m,n)−1

x
(m,n) ∼ P̂

(m,n)
H2H1X.

(10)
By identification, we obtain the relations between Eu-

clidean and rectified quantities

(a) Original images (b) Rectified images

Figure 2. Rectification of four images from the toy sequence [23].
After rectification, both the rows and the columns of the images
are aligned.

x̂
(m,n) ∼ K̂V

−1
R

(m,n)−1
K

(m,n)−1
x
(m,n), (11)

X̂ ∼ H2H1X, (12)

which are two homographies.
The reconstruction of surfaces in the Euclidean space via

depth estimation in the rectified space is then a three-step
process. First, images are rectified by applying the homog-
raphy (11). Then 3D points are estimated in the rectified
space by matching the rectified images. Finally, these 3D
points are transfered back to the Euclidean space by invert-
ing the homography (12). Figure 2 shows an example of
rectified images.

4. Stereo reconstruction
4.1. Overview
We now turn to the stereo reconstruction. In this section,

we assume that the images have been rectified and we drop
the hat over mathematical symbols in the rectified space.
In order to reduce the computational complexity, the de-

pendencies between cameras in the array are modeled us-
ing a MRF where each camera (m, n) is associated with
an image I(m,n) and a disparity map D(m,n), as shown in
Figure 3. Specifically, each valueD(m,n)

x,y represents the dis-
parity of a 3D point along the ray of light passing by pixel
(x, y) in camera (m, n). At each camera, the dependen-
cies between pixels are also modeled using a MRF. Stereo
reconstruction then aims at inferring the hidden disparity
maps from the observed images, relations between occu-
pancy and visibility, unicity of the reconstructed scene, and
the Markov priors.
An approximate solution is obtained by an iterative pro-

cess, at the heart of which lie classical MAP-MRF infer-
ences [2, 19, 24] applied independently on each camera.
Each inference aims at solving an optimization of the form

min
D

∑
(x,y)∈P

(
Px,y,Dx,y

+ λgGx,y,Dx,y
+ Sx,y(D)

)
(13)
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Figure 3. Camera MRF associated with a 2×4 camera array. Each
node represents a camera with an observed image I and a hidden
disparity map D. Edges represent fusion functions.

where P denotes the set of 2D pixels, λg is a scalar weight,
S is a clique potential favoring piecewise-smoothness [19],
and Px,y,d and Gx,y,d are respectively photometric and ge-
ometric cost volumes.

The proposed algorithm alternates between inferences
and cost volume computations. Its novelty lies in the set
of fusion functions computing the costs volumes. Due to
the Markov assumption, the fusion functions are defined
over 4-neighborhoodsN4, i.e. cross-shaped groups of five
cameras, which usually contain a rich depth information but
only limited partial occlusions. The overall complexity of
the proposed algorithm is linear in the size of the data.

Although limited, partial occlusions tend to create large
photometric costs at voxels on the surfaces, which leads to
erroneous disparities. These outlier costs can be removed
by an explicit visibility modeling [3]. However, visibility
depends on the surface geometry, which introduces a cir-
cular dependency. We solve this issue by introducing an
implicit model of partial occlusions, which does not depend
on the surface geometry.

Robust statistics over the four pairwise cliques of each
camera 4-neighborhood can reduce the impact of outlier
costs. However, classical robust statistics do not take into
account the relative locations of the cameras and may fail
to extract the depth information along both horizontal and
vertical baselines, leading to photometric cost volumes with
poor discriminative power.

Therefore, we propose a robust measure which strives
to include the photometric costs from at least one vertical
and one horizontal camera clique at each voxel. We do this
by introducing an assumption we call “visibility by oppo-
site neighbors”: a voxel visible by a camera (m, n) is also
visible by at least one of its horizontal camera neighbors
(m − 1, n) and (m + 1, n), and by at least one of its ver-
tical camera neighbors (m, n − 1) and (m, n + 1). This
assumption usually holds, except for instance for surfaces
like picket fences or cameras having less than four neigh-
bors. In the following, we denote the quantities related to
horizontal and vertical pairwise cliques by the superscripts
h and v respectively.

4.2. Geometric cost volume G(m,n)

The geometric cost volumesG(m,n) favor consistent dis-
parity maps. In order to compute them, the disparity maps
D

(m,n)
x,y are first transformed into binary occupancy volumes

δ
(m,n)
x,y,d , whose voxels take value one when they contain sur-
faces. An occupancy volume δ

(m,n)
x,y,d is obtained by initial-

izing it to zero, except at the set of voxels {(x, y,D
(m,n)
x,y )}

where it is initialized to one.
Since all the occupancy volumes represent the same sur-

faces, they should be identical up-to visibility and a change
of coordinate system. Thanks to the rectification leading
to (5), changing the coordinate system of a volume δ from
camera (0, 0) to camera (m, n) is simply an integer 3D
shear φ(m,n) given by

φ
(m,n)
x,y,d (δ) = δx+md,y+nd,d. (14)

A change of coordinate system between two arbitrary cam-
eras is obtained by concatenating two 3D shears.
Let us consider camera (m, n) and shear the occupancy

volumes of its 4-neighbors to its coordinate system. Us-
ing the assumption of visibility by opposite neighbors, er-
roneous occupancy voxels are removed using

δ
(m,n)
x,y,d ← δ

(m,n)
x,y,d ∧

(
δ
(m+1,n)
x,y,d ∨ δ

(m−1,n)
x,y,d

)
∧
(
δ
(m,n+1)
x,y,d ∨ δ

(m,n−1)
x,y,d

) (15)

where ∨ and ∧ denotes respectively the “or” and “and”
operators.
The geometric cost volume is then computed as

G
(m,n)
x,y,d ←

⎧⎪⎨
⎪⎩

0, if δ(m,n)
x,y,d′ = 0, ∀d′

min
δ
(m,n)

x,y,d′
�=0

min (|d− d′| , τ1) , otherwise,

(16)
where τ1 is a threshold.

4.3. Photometric cost volume P (m,n)

The photometric cost volumes favor voxels with similar
intensities across images. They are based on a truncated
quadratic error measure [13], in which we introduce an out-
lier removal process to discard errors from partially visible
voxels. The outlier removal is based on a hybrid model with
an implicit part, which does not need any occupancy infor-
mation, and an explicit part, which takes advantage of the
occupancy information when it becomes available. Figure 4
illustrates this occlusion model on a synthetic example and
Figure 5 shows its impact on the disparity map estimation.
The explicit model relies on the dependency between oc-

cupancy and visibility. Due to the nature of the rectified 3D
space, a binary visibility volume ν(m,n) can be computed
from its associated occupancy volume δ(m,n) using a sim-
ple recursion along the disparity axis

ν
(m,n)
x,y,d ← ν

(m,n)
x,y,d+1 ∧ ¬δ

(m,n)
x,y,d+1, (17)



(a) Three images of two fronto-parallel planes: a dark
square in front of a bright background.

(b) Photometric cost at iteration 1: the implicit model
removes partial occlusions in camera 1 and limits their
impact in cameras 0 and 2.

(c) Disparity maps at iteration 1: errors remain on cam-
eras 0 and 2.

(d) Photometric cost at iteration 2: the explicit model
removes partial occlusions in all the cameras.

(e) Disparity maps at iteration 2: no error remains.

Figure 4. A simple example demonstrating the behavior of the oc-
clusion model. Perfect disparity maps are obtained in two itera-
tions.

where ¬ denotes the “not” operator. The recursion is ini-
tialized by setting ν to one.
In the following, we only detail the computation of quan-

(a) Truncated quadratic cost (b) Proposed cost

Figure 5. Cropped disparity maps computed on Tsukuba with five
cameras forming a cross. The proposed photometric cost reduces
the disparity errors due to partial occlusions.

tities related to horizontal cliques. The vertical ones are
obtained by a similar reasoning. The computations are con-
ducted independently at each voxel, so we drop the sub-
script (x, y, d). We define I(m,n) as the intensity volume
obtained by replicating the image I(m,n) along the dispar-
ity axis.
Let us consider the camera (m, n) and its 4-

neighborhood. Using (14), the intensity and visibility
volumes are sheared to the coordinate system of camera
(m, n). From the truncated quadratic error model and the
assumption of visibility by opposite neighbors, an horizon-
tal error volume Eh(m,n) is computed as

Eh(m,n) = min
((

I(m,n) − I(m−1,n)
)2

,(
I(m,n) − I(m+1,n)

)2

, τ2

) (18)

where τ2 is a threshold.
The photometric cost Eh(m,n) may still contain large

values when the assumption of visibility by opposite neigh-
bors is violated. Therefore, we further discard outliers by
explicitly computing visibility. Using De Morgan’s laws,
the validity of the costs is computed as

V h(m,n) = ¬ν(m,n) ∨ ν(m−1,n) ∨ ν(m+1,n). (19)
We now have two pairs of error and validity volumes,

(Eh(m,n), V h(m,n)) horizontally and (Ev(m,n), V v(m,n))
vertically. In order to create a photometric cost volume
which includes the depth information from both vertical and
horizontal texture gradients, we define this cost volume as
the weighted average

P (m,n) =
V h(m,n)Eh(m,n) + V v(m,n)Ev(m,n)

V h(m,n) + V v(m,n)
(20)

which is only defined when at least one of the validity vol-
umes takes a non-zero value. Values at voxels where this is
not the case are obtained by interpolation.

5. Global surface representation
5.1. Layered depth image
Using the special nature of the 3D rectified space, we

present a simple and efficient procedure to merge the multi-
ple disparity maps into a unique LDI [15]. The LDI offers a
compact and global surface representation. Figure 6 shows
an example of LDI.



(a) Texture

(b) Disparity

Figure 6. The 3-layer LDI obtained on Tsukuba with 25 cameras.
By treating all the cameras symmetrically, the proposed algorithm
recovers large areas, which may be occluded in the central camera.

To begin with, the disparity maps D(m,n) are trans-
formed into occupancy volumes δ(m,n) as detailed in Sec-
tion 4.2. These volumes are then sheared to a reference co-
ordinate system, the one of camera (0, 0) for instance.
The disparity layers are extracted in a front to back order

by voting. Visibility volumes ν(m,n) are computed from
their associated occupancy volumes using (17) and an ag-
gregation volume A is obtained using

Ax,y,d =
∑

(m,n)∈C

ν
(m,n)
x,y,d δ

(m,n)
x,y,d . (21)

A disparity layer D is extracted by selecting the voxels
with the largest aggregation values along the disparity axis.
These voxels are then removed from the occupancy volumes
and the process is repeated until no occupied voxel remains.

5.2. Sprites with depth
Due to the smoothness term S in (13), the layers of

the LDI are piecewise smooth. They can be converted to
smooth sprites with depth by selecting regions of the LDI
which do not contain discontinuities and which introduce
as few new boundaries in continuous regions as possible.
The extent of these regions may spread over multiple layers
of the LDI. Figure 7 shows some examples of sprites.
Before the sprite extraction begins, the disparities are

transformed into depth using (12), so that discontinuities
be in the Euclidean space used for rendering.
A sprite is defined as a depth map D and a binary alpha

map α, which takes value one inside the sprite. We focus
here on the automatic extraction of sprite masks. Refine-
ment techniques leading to high-quality textures have been
addressed elsewhere [16] and are beyond the scope of this
paper.
The sprites are extracted one at a time. First, an edge

detection is performed on the depth map, followed by a dis-
tance transform and a watershed segmentation [20]. The

Figure 7. Examples of sprites extracted from the LDI of Tsukuba
with 25 cameras. Note the absence of occlusion on the cans.

sprite alpha map is then initialized to the largest watershed
region and the sprite depth map is set to the LDI depth map
inside this region.
The sprite is updated by looping through the layers of

the LDI and solving a MAP-MRF inference each time, until
convergence. The pixels inside the sprite are then removed
from the LDI, the newly visible pixels moved to the first
layer, and the process repeated.
The MAP-MRF inference proceeds as follows. Let

D(LDI) and α(LDI) be respectively the depth map and the
binary alpha map of the current LDI layer. The sprite and
the LDI layer are first fused together to form D̄ and ᾱ such
that

ᾱx,y = αx,y ∨ α(LDI)
x,y ,

D̄x,y = αx,yDx,y + (1 − αx,y)D
(LDI)
x,y .

(22)

At each pixel (x, y), we define a likelihood px,y of be-
longing to the sprite and we model its dependencies by a
MRF. The likelihoods inside the sprite mask are fixed to
one and three transition functions are defined

px′,y′ =

⎧⎪⎨
⎪⎩

(1− 2ρ0)px,y + ρ0 where smooth,
(1− 2ρ1)px,y + ρ1 at small depth differences,
min (1− px,y, 1/2) at discontinuities,

where ρ0 and ρ1 are two transition likelihoods with 0 ≤
ρ0 < ρ1 ≤ 1/2. The third transition function states that at
a discontinuity
1. if one side belongs to the sprite, the other one does not,
2. if one side does not belong to the sprite, there is no
constraint on the other side.

Once the inference has been solved, the sprite alpha map is
set to one where p is greater than 1/2 and the sprite depth
map is updated accordingly.

6. Experimental Results
First, the rectification and stereo reconstruction algo-

rithms are validated on four images from the toy se-
quence [23]. The four cameras form a 2×2 array with non-
parallel optical axes and non-square cells. Figure 2 shows
the output of the rectification algorithm. Rectification aligns
the rows and columns of the images and introduces a limited



Figure 8. Disparity map obtained from the four rectified images of
the toy sequence shown in Figure 2.

Figure 9. Disparity maps obtained on the Middlebury dataset with
two cameras. The occlusion model leads to sharp and accurate
depth discontinuities.

amount of distortions. Figure 8 shows the disparity map ob-
tained by the proposed stereo reconstruction algorithm after
five iterations. The geometry of the scene appears clearly.
The stereo reconstruction is then tested on the binocu-

lar sequences of the Middlebury dataset [13]. In this case,
the configuration of the cameras is such that rectification
does not introduce any image distortion. Figure 9 shows
the disparity maps obtained by the proposed method using
fixed parameters. The proposed method performs consis-
tently well over the set of sequences. In particular, it does
not suffer from foreground fattening [13]: occlusion model-
ing, geometric consistency and piecewise smoothness lead
to disparity maps with discontinuities which are both sharp
and accurately located. The disparity maps contain few er-
rors, mostly located on the left and right image borders,
where less depth information is available.
Since the groundtruth is known for this dataset, we also

present numerical performance results in Table 1. The error
rates of the proposed method are close to those of the best
binocular methods.
Unlike binocular methods, however, the proposed

method scales with the number of cameras. Table 2 presents

Tsukuba Venus Teddy Cones
Proposed method 1.53 1.04 10.9 8.65
Best method 1.29 0.21 6.54 7.86
Rank 3 13 6 6

Table 1. Performances on the Middlebury dataset with two cam-
eras (from top to bottom: percentage of erroneous disparities over
all areas for the proposed method, percentage for the best method
on each image [13], and ranks of the proposed method).

2 cameras Proposed 1.5
New Kolmogorov, Zabih, 2005 [22] 2.2

Wei, Quan, 2005 [22] 2.7
5 cameras Proposed 1.3

New Kolmogorov, Zabih, 2005 [22] 1.3
Wei, Quan, 2005 [22] 1.3
Drouin et al., 2005 [3] 2.2

Kolmogorov, Zabih, 2002 [11] 2.3
25 cameras Proposed 1.3
Table 2. Percentage of erroneous disparities over all areas on
Tsukuba for several multi-camera methods. The proposed method
achieves competitive error rates and scales with the number of
cameras.

the error rates of the proposed algorithm and several multi-
view algorithms on Tsukuba [13] under three camera con-
figurations: two cameras forming a 1 × 2 binocular config-
uration, five cameras forming a 3× 3 cross, and twenty five
cameras forming a 5× 5 square.
The proposed method achieves state-of-the art results in

both the two and five camera case. Moreover, it scales to
twenty five cameras and handles well the increased amount
of partial occlusions. From these results, it seems that it is
advantageous to switch from two to five cameras, but that
little gain is achieved by further increasing the number of
cameras to twenty five.
The real gain from the twenty-five camera array comes

from the increased volume in which stereo reconstruction
takes place. Figure 6 shows the LDI obtained from such
an array. This LDI has three layers, which means that the
rays of light originating from the optical center intersect the
surfaces up to three times.
Figure 10 and Table 3 show the evolution of the LDI den-

sity as a function of the number of cameras. The number
of disparity values increases by nearly 20% when switch-
ing from a unique disparity map to a 25-camera LDI. This
behavior is confirmed by Figure 11, which shows the tex-
ture of the objects on the table recovered using two, five,
and twenty five cameras. The texture area steadily increases
with the number of cameras, which would reduce the size
of holes in renderings from novel viewpoints. Since large
parts of the textures are not visible in the central camera,
they would not have been recovered by stereo algorithms
relying on a reference image.



(a) 2 cameras (b) 5 cameras

(c) 25 cameras

Figure 10. Number of disparity values per pixel on Tsukuba
(black: no value, white: 3 values). The area of the reconstructed
surfaces increases with the number of cameras.

Number of
disparity values

Relative
increase

Disparity map 106× 103 0.0%
LDI, 2 cam. 108× 103 +2.1%
LDI, 5 cam. 116× 103 +9.7%
LDI, 25 cam. 127× 103 +19.4%

Table 3. Number of disparity values in a standard disparity map
and in an LDI, for various numbers of cameras on Tsukuba. Using
an LDI and 25 cameras increases the area of reconstructed surfaces
by almost 20%.

(a) 2 cameras (b) 5 cameras (c) 25 cameras

Figure 11. Cropped textures extracted from the LDIs of Tsukuba.
Occlusions shrink when the number of cameras increases.

7. Conclusion
In this paper, we have first presented a novel rectifica-

tion algorithm which handles planar camera arrays of any
size and greatly simplifies the reconstruction of 3D surfaces.
Second, we have introduced a stereo reconstruction method
which treats all cameras symmetrically and scales with the
number of cameras. Finally, we have presented novel algo-
rithms to merge the estimated disparity maps into layered
depth images and sprites with depth. We have validated the
proposed methods by experimental results on arrays with
various camera configurations and reconstructed dense sur-
faces larger by 20% on Tsukuba. Future work shall consider
multiple planar arrays to obtain closed surfaces.
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