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Abstract

In this work, video segmentation is viewed as an ef-
ficient intra-frame grouping temporally reinforced by a
strong inter-frame coherence. Traditional approaches sim-
ply regard pixel motions as another prior in the MRF-
MAP framework. Since pixel pre-grouping is inefficiently
performed on every frame, the strong correlation between
inter-frame groupings is largely underutilized. We exploit
the inter-frame correlation to propagate trustworthy group-
ings from the previous frame. A preceding graph is con-
structed and labeled for the previous frame. It is temporally
propagated to the current frame and validated by similarity
measures. All unlabeled subgraphs are spatially aggregated
for the final grouping. Experimental results show that the
proposed approach is highly efficient for spatio-temporal
segmentation. It makes good use of temporal correlation
and produces satisfactory grouping results.

1. Introduction
Video segmentation is used in various vision applica-

tions. The exact meaning of the term video segmentation
varies according to the context in which it is used. It refers
to a decomposition of semantic entities in content-based
video retrieval [4] and video epitomes, a segmentation of
moving blocks in video coding or a spatio-temporal group-
ing in scene interpretation [8, 13], etc. In this paper, we ad-
dress it as an efficient intra-frame segmentation reinforced
by inter-frame coherence. It is a problem of pixel labeling
based on temporal coherence and spatial grouping.

Given an image ofN pixels, let S = {s1, s1, . . . , sN} be
a set of image pixels. Define X = {Xs|s ∈ S} as a family
of random variables, and L = {1, . . . , lM} as a set of label
states. To segment the image into lM perceptual groups,
each pixel is assigned one of the prescribed labels lm so that
∀s ∈ S, Xs ∈ L. Using only constraints from image data, it

is an ill-posed problem. With the prior distribution of image
labels, Bayes’ rule is a principal way that best estimates the
likelihood of image labels by

P (X|S) ∝ P (S|X)P (X) (1)

Image labeling is the maximum a posteriori (MAP) es-
timation of P (X|S). In the MRF-MAP framework, P (S)
is modelled as a Markov Random Field (MRF), which al-
lows the incorporation of contextual constraints based on
piecewise constancy [6]. Using a log likelihood of P (X|S),
MRF-MAP is equivalent to the regularization of X by min-
imizing the energy function

E = Ed + λEs (2)
where Ed is the energy of image data, Es is the smoothness
energy, and λ is a weighting factor. The elegance of MRF-
MAP framework simplifies the image segmentation prob-
lem as an exact minimization of the above energy equation
by seeking a global solution for a non-convex energy in a
high dimensional space. Unfortunately, such an approach is
known to be difficult due to a large number of local minima.

1.1. Graph Cut

Image segmentation can intuitively be viewed as an op-
timal cut of graph G = (S,E), where S is the set of image
pixels and E is the set of edges connecting to neighbor-
ing pixels. A weight is associated with each edge based on
some attributes of the pixels it connects. Considering the
set of label states L as the terminals of graph G = (S,E),
the minimization of MRF-MAP is equivalent to finding a
minimum cost of a multi-way cut for a graph, depending
on some predefined label seeds in the image. With two ter-
minals of source s and sink t, the Potts energy model of
equation (2) can be exactly solved by a min-cut/max-flow
of the s-t graph, i.e. searching the maximum flow from s to
t in Ford-Fulkerson algorithm [1]. The NP-hard problem in
the multi-way cut is approximated by the α-expansion algo-
rithm. In spectral graph partitioning, the cost of bipartition

978-1-4244-2243-2/08/$25.00 ©2008 IEEE



Figure 1. Spatio-temporal grouping by the propagation, validation
and aggregation of a preceding graph

-ing G into subgraphs A and B is the sum of the weights
of all edges connecting the two subgraphs, denoted as
cut(A,B). The minimization of cut(A,B) is an NP-
complete problem. Relaxing the membership indicator
from discrete to continuous values is equivalent to solving
the eigen system Lx = λx (where L is the Laplacian ma-
trix of G). According to the Rayleigh quotient theorem, the
minimum value of cut(A,B) is given by the second small-
est eigenvalue of L. The eigenvector λ2 (the Fiedler vector)
is the optimal solution of cut(A,B). The minimum cut cri-
teria is prone to cutting small isolate sets. More reasonable
cut criteria have been studied, including the ratio cut, nor-
malized cut and min-max cut, etc. The min-max cut is able
to perform more compact and balanced results for strongly
overlapped clusters. The spectral graph cut has a high com-
putational cost. For example, it is proportional to O(N3/2)
in the normalized cut, limiting its application on very large
images. The Algebraic Multigrid (AMG) [11] is able to re-
cursively achieve the minimization of N-cut by an adaptive
graph coarsening with a computational cost of only O(N).

1.2. Spatio-Temporal Grouping

Inter-frame correlation provides strong constraints for an
optimal intra-frame grouping. Numerous spatio-temporal
segmentation approaches have been reported in the litera-
ture [8]. Many extend the MRF-MAP framework in time
and treat temporal correlation as another prior. In this case,
Bayes’ rule is extended to

P (X|S,T,X−,S−) ∝
P (S|X,T,X−,S−)P (X−|X,T)P (X|T) (3)

where X− and S− denote the sets of pixel labels, and image
pixels in the previous frame. T refers to inter-frame pixel
displacements. The MRF-MAP estimation is the minimiza-
tion of the energy function

E = Ed + λEs + µEt (4)

where λ and µ are weighting factors for smoothness and
temporal coherence. This energy minimization has been

suggested and solved by Iterative Conditional Modes (ICM)
in [9, 13]. Under this framework, an over-segmentation has
to be performed on each frame followed by enforcement
of temporal coherence. Unfortunately, this approach tends
to under-utilize the strong temporal correlation. Tempo-
ral correlation can be more efficiently exploited in video-
based applications, e.g. [5]. Furthermore, MRF-MAP in (4)
searches for an optimal combination of subgroups with dif-
ferent spatial scales. Such an approach will lead to an in-
tractable problem of finding a model to handle variations in
spatial scales. Simple pixel-based measures, such as inten-
sity or color, are insufficient to characterize the subgroups
with large scales. High-level scale measures, i.e. texture or
shape, have to be incorporated since scale variations com-
monly occurs among the segmented subgroups [11]. Lastly,
an estimation of pixel displacement has been a challenge.
This is especially true for those pixels with independent mo-
tions. With an erroneous motion prior, MRF-MAP in (4)
can lead to extremely sub-optimal groupings.

2. System Overview
Figure 1 shows the structure of the segmentation system.

Instead of enforcing an unrectified motion prior in MRF-
MAP, we propagate pixel labels from the previous frame to
the current using a global motion estimation, followed by
validation based on similarity measures. We preserve trust-
worthy propagated pixel labels, while removing erroneous
labels to reduce the bias in the final grouping. All unlabeled
pixels are initially grouped into subgraphs by a simple color
clustering. These subgraphs are iteratively aggregated by a
pairwise subgraph grouping.

This paper is organized as follows. In Section 3, the pro-
posed approach is formulated in detail. The propagation and
validation of a preceding graph is described in Section 3.1-
3.3. The subgraph aggregation is specified in 3.4, followed
by the analysis of computational complexity. The spatio-
temporal grouping algorithm is summarized in Section 3.5.
Experimental results and performance evaluations are given
in Section 4 and finally, Section 5 concludes the paper.

3. Problem Formulation
A preceding graph in the previous frame I− can be spec-

ified by G− = (S−,E−,L−), where S− is the set of
all nodes (pixels), E− is the set of edges connecting the
nodes, and L− = {1, . . . , lM} is the set of pixel labels.
Temporal propagation through an affine estimation com-
pensates global motion between two consecutive frames,
thereby propagating G− into G of the current frame I. Let
Gp = (Sp,Ep,L−) be the propagated graph from G−. Sp

includes all nodes that can be projected to I, Sp ⊆ S−. Ep

is the set of edges connecting the nodes in Sp in I.
Considering the inter-frame pixel variations, all nodes



Figure 2. A pair of invalidated labels of a single region due to
independent motion.

in Sp are validated by measuring the color similarity be-
tween I− and I. A validated graph Gv = (Sv,Ev,LV)
is formed by removing the nodes with wrong labels from
Gp, where Sv ⊆ Sv , Ev ⊆ Ep. Since Gv include the
nodes with correct labels, it can be used to constrain the
segmentation of the current frame I. We implant Gv into
the graph G = (S,E) of the current frame I, resulting in
G = (Gv,Gx), where Gx = (Sx,Ex) is the set of un-
labeled nodes, Sv ∩ Sx = ∅, Sv ∪ Sx = S. Hence, the
spatio-temporal grouping of the current frame I is equiva-
lent to an optimal grouping of Gx subject to a labeled Gv .
The segmentation of a partially labeled image (with sparse
labeled seeds) has been addressed in [1, 12] as an optimal
cut on a partially labeled graph using min-cut/max-flow or
random walker. In a two-label case, it is possible to find a
global optimum because the energy function is convex. In
comparison with a spatial grouping of Gx subject to Gv in
video segmentation, Lx ⊂ Gx may differ from Lv ⊂ Gv

due to dynamic scene changes. The existing labels in Lx

may not fully appear in Lv , and Lx can also contain some
new labels. This fundamental difference makes the spatial
grouping of Gx even more complicated. In this paper, we
solve it by a pairwise aggregation of subgraphs based on
color heterogeneity, edge strength and shape compactness.

3.1. Propagation

The graph Gp is reconstructed in I from the labeled
graph G− based on the geometric transformation relating
the two frames. Without loss of generality, we approximate
the inter-frame global motion by an affine transformation
A. Then, I− is warped to I by

AI− = I (5)
The above linear system can be solved by using N ≥ 3

corresponding pairs between I− and I. We employ the SIFT
algorithm in [7] to find and correspond scale-invariant fea-
tures between I− and I. In fact, corresponding pairs under-
going independent motions can cause errors in estimating
A. For a robust solution, we use the RANSAC algorithm
to reject the outliers and minimize the transformation error.
With the transformation A, Gp is constructed by projecting
all labeled nodes in S− into I. The node edges Ep are re-
connected in the topology of I. It is noteworthy that some

nodes in Sp may be not fully 4-connected due to the geo-
metric transformation.

3.2. Validation

The graph propagation G− to Gp relies only on the es-
timation of inter-frame global motion. Due to errors in-
troduced by the affine approximation and independent mo-
tions, some nodes in Sp are wrongly labeled. We validate
the node labels based on color similarity. For each label l−m
in G−, color variances σ−m(r), σ−m(g), σ−m(b) are calculated
for all nodes with label l−m. Given a node sp

n in Gp and its
corresponding node s−n in G−, sp

n is properly labeled if and
only if these conditions are satisfied:

|sp
n(r)− s−n (r)| ≤ 3σ−l−(sn)(r)

|sp
n(g)− s−n (g)| ≤ 3σ−l−(sn)(g) (6)

|sp
n(b)− s−n (b)| ≤ 3σ−l−(sn)(b)

Image noise often causes random color variations be-
tween two corresponding pixels. Instead of performing on a
stand-alone node (6) , we validate a node label by its local
neighbors (e.g. 3× 3 neighbors). With all properly labeled
nodes in Sp, a new graph Gv = (Sv,Ev,L−) is formed to
retain correct labeling information from G−.

3.3. Independent Motions

The geometric relation in (5) can only recover the inter-
frame global motion. It fails to compensate for pixel dis-
placements due to independent motions. These independent
motions can be identified by graph validation. Assume that
one segmented region r experiences an inter-frame indepen-
dent motion. Let g−r = (s−r , e

−
r , l

−
r ) be the subgraph of r

in I−. When g−r is propagated to gp
r by A, s−r is wrongly

located in I. As a result, l−r fails the validation check. Let
the subgraph gp

x = (sp
x, e

p
x, l

−
x ) represent the actual location

of r in I. Consequently, l−x is also invalidated due to color
dissimilarity.

Fig. 2 shows an example in which a pingpong ball moves
independently with respect to the inter-frame global motion.
Given the subgraph of pingpong ball g−1 in I−, graph prop-
agation provides an improper location gp

1 for it in I. The
label of subgraph gp

1 is invalidated, because the ball colors
in I− are different from the wall colors in I. The proper
location of the ball is indicated by the subgraph gp

2 . The
pre-propagated g−2 in I− is inside the wall. Therefore, the
label of subgraph gp

2 is also invalidated. For a segmented
region with independent inter-frame motion, we have the
following remark regarding graph propagation and valida-
tion,

Remark 1 The independent motion of a segmented region
causes the label of its propagated subgraph to be invalidated
in I. The label of subgraph at its actual location in I is also
invalidated.



In the case of whole region displacement, such as the illus-
tration in Fig. 2, we match the two invalidated subgraphs
based on shape similarity and exchange their labels. Other-
wise, if there is an overlap between the projected region and
the actual region in I, reassignment of region labels will be
handled by graph aggregation. This will be elaborated on
in Section 3.4. Following this rectification, we implant Gv

into the graph G = (S,E) of I. Then, G can be classi-
fied into labeled and unlabeled sets, G = (Gv,Gx). Gx

is the set of unlabeled nodes, it includes two sets Gx =
(Go,Gn), where Go is the set of propagated nodes, and
Gn is set of nodes that newly appear in I if new objects
appear.

3.4. Aggregation

The aggregation of subgraphs performs a spatial group-
ing for all unlabeled nodes in Gx based on Gv . The chal-
lenge here is that some new groups may be formed in Gx.
Instead of using a seeded segmentation as in [1, 12], we
conduct a pairwise subgraph grouping on Gx, which is sim-
ilar to [3], but with different grouping criteria. Prior to the
aggregation of subgraphs in Gx, we group the unlabeled
nodes in Sx into small subgraphs by a low-level color clus-
tering (Mean Shift [2]). It is conducted to accelerate the
grouping of Gx and to initialize reasonable scales for the
subsequent groupings. In a pairwise subgraph grouping,
each subgraph gx corresponds to an intermediate group in I.
Grouping criteria include edge, color, and shape measures.

3.4.1 Edge

The color gradient between two pixels is characterized by
the weight associated with the edge connecting their respec-
tive nodes. Let eij be the edge of two neighboring nodes si

and sj . The edge weight is defined by

Definition 1 The edge weight w(eij) between two neigh-
boring nodes si and sj is the norm of L*u*v* color differ-
ence between two pixels connected by the edge

w(eij) =
√

(li − lj)2 + (ui − uj)2 + (vi − vj)2 (7)

A strong edge connecting two subgraphs discourages
the grouping of the said subgraphs. In [3], the grouping
predicate checks if the minimum edge weight connecting a
pair of subgraphs is large relative to the internal difference
within at least one of the subgraphs. The internal difference
is defined as the largest edge weight of the minimum span-
ning tree, which tries to find a maximum gradient from a
low gradient path. This measure is very sensitive to image
noises. Given a subgraph gi = (si, ei), we assume eB

i to
be the edges crossing the region boundary, eB

i ⊂ ei. Let
wB(eB

i ) be the strength of the boundary of subgraph gi,
which is given by

Definition 2 The strength of the boundary of a subgraph gi

is the mean of all edge weights in eB
i .

In the case of two neighboring subgraphs gi and gj , we
let eJ = ei ∩ ej be the edges connecting boundary nodes
between gi and gj (we call this set of edges the “joint”) and
let wJ(eJ) be the strength of this joint eJ . Then, wJ(eJ) is
estimated by

Definition 3 The strength of the joint between gi and gj is
the mean of all edge weights in the set eJ .

In fact, we prefer the weak edges in eJ when merging gi

and gj into gk, i.e., gk = gi ∪ gj which means a smaller
wJ(eJ) thanwB(eB

k ). Therefore, we can formulate the cost
of merging gi and gj as follows

CE(gi,gj) =

{
1 if wJ(eJ) ≥ wB(eB

k )
wJ (eJ )

wB(eB
k )

otherwise (8)

3.4.2 Color

Color heterogeneity of a subgraph gi is computed as the
sum of color variances for all color channels, i.e. CH(gi) =
σL(gi) + σu(gi) + σv(gi). Given two neighboring sub-
graphs gi and gj , the merging cost in terms of color hetero-
geneity is computed by

CH(gi,gj) =

{
1 if CH(gk) ≥ avg(i, j)
CH(gk)
avg(i,j) otherwise (9)

where avg(i, j) = (CH(gi) + CH(gj))/2, gk = gi ∪ gj .

3.4.3 Shape

The merging of two subgraphs gi and gj into gk results in a
more compact representation of subgraph gk. The compact-
ness of a subgraph gi is used as a generic shape measure.
It is defined as CS(gi) = 4A(gi)/L(gi)2, where A(gi) is
the area of gi, and L(gi) is the perimeter of gi. When gi

is circle, CS(gi) = 1. If gi is infinitely long and narrow,
CS(gi) = 0. Given two neighboring subgraphs gi and gj ,
the cost of merging gi and gj in terms of shape compactness
is given by

CS(gi,gj) = 1− 4A(gk)
L(gk)2

(10)

3.4.4 Cost

The total cost of merging two subgraphs gi and gj is the
weighted sum of the following measures: color heterogene-
ity, edge strength and shape compactness. This is given by

C(gi,gj) = kECE(gi,gj)+
kHCH(gi,gj) + kSCS(gi,gj) (11)



where kE , kH and kS are weighting factors for edge, color
and compactness costs respectively.

A pairwise subgraph aggregation is conducted by search-
ing the best fitting pair of adjacent subgraphs by the rule of
mutual best fitting. Let Cmax be the maximum merging
cost. For the subgraph gi, a neighboring subgraph gj is
regarded as a merging candidate iff,

C(gi,gj) <= Cmax (12)
For the subgraph gi, we treat gj as the best fitting sub-

graph among all neighbors of gi if a lowest merging cost
exists between gi and gj . According to the rule of mutual
best fitting, the subgraph gi has to be the best fitting neigh-
bor of gj as well. Note that the neighboring subgraphs can
be labeled or unlabeled. The algorithm of a pairwise sub-
graph aggregation is summarized in Algorithm 1.

Algorithm 1 A pairwise subgraph aggregation
Require: Gx, Gv

1: Start with the initial subgraphs in Gx.
2: Construct the adjacency relations of these subgraphs.
3: Calculate the merging cost for all adjacent pairs of sub-

graphs using (11).
4: repeat
5: Search the adjacent subgraphs that satisfy (12)
6: Find the best pair of subgraphs (gi,gj) with the min-

imum merging cost.
7: Merge gi and gj into a new subgraph gk = (gi,gj)
8: Update the adjacency relations of gk.
9: Extend the label to gk if gi or gj is labeled.

10: until No more pairs of subgraphs satisfy (12).
11: Assign the new labels to the unlabeled subgraphs.

The computational complexity is determined by the
number of initial subgraph Ns, and the number of ad-
jacent segments per subgraph Na. In step 2, the com-
putation to construct the adjacency relations is at most
O(NsNa log(NsNa)). The initial number of possible sub-
graph pairsNsNa is gradually decreased as step 2 proceeds.
To update the adjacency relations of one subgraph in step 8,
the computation is at most O(log(NsNa)). The maximum
number of updated subgraphs is 2Na. Steps 4-10 are re-
peated for at mostNs times. The computational complexity
is O(Ns2Na log(NsNa)).

During the subgraph grouping, some small subgraphs
(with irregular shapes) are quite resistent to the merging.
In this case, we perform a simple smoothing on them us-
ing the nearest neighbor based on color similarity after the
above grouping procedure.

3.5. Algorithm

The algorithm of the proposed spatio-temporal segmen-
tation is summarized as follows

Algorithm 2 Spatio-temporal segmentation using a preced-
ing graph
Require: I−, I, G−

1: Estimate the affine transformation A using SIFT.
2: Propagate G− to Gp based on (5).
3: Validate the labels Lp in Gp using (6). Construct the

graph Gv that contains all trustable labels propagated
from Gp.

4: Correct labels of independent moving regions.
5: Implant Gv into G. Group unlabeled nodes Sx into

small regions using Mean Shift
6: Perform subgraph aggregation for unlabeled subgraphs

using algorithm 1.
7: Return the labeled G.

4. Experiments and Discussion

To test the validity of the proposed algorithm, we have
applied it on several typical test sequences, namely, the “Ta-
ble Tennis”, the “Coast Guard” and the “Jumping Girl” se-
quences. We will focus our discussion on the first two se-
quences. Initialization of first frame of the video sequences
was done by applying Mean Shift segmenter. Minimum
user intervention is required in tuning the parameters for
the segmenter. The over-segmentation obtained was merged
according to region similarity measures to form initialized
segmentation for every sequence. We present results for
video sequences in which different challenges arise. In the
“Table Tennis” sequence, there is high temporal activity due
to rapidly-changing independent motion. In the second se-
quence, the small sizes of independent moving objects and
their blurry edges make it difficult to contrast against the
background. Default parameters used in the total cost for-
mula (11) are: kE = 0.3, kH = 0.6 and kS = 0.2.

4.1. Overall Segmentation Evaluation

To objectively evaluate the video segmentation quality,
we refer to [10] for quality evaluation measures. Experi-
mental results are compared by overlaying the segmentation
with their manually segmented ground-truths. Fig.3 shows
the overall segmentation accuracy for frames 1−30 of the
“Table Tennis” sequence and that for frames 10−35 of the
“Coast Guard” sequence. This overall segmentation accu-
racy is defined as,

Accu(S) =
sN∑

s=s1

Naccu(s)
Ntotal(s)

(13)

where Naccu(s) is the number of correctly labeled pixels in
s, and Ntotal(s) is the number of pixels in s.

Fig.6 and Fig.7 show selected segmentation results for
sections of both sequences. The overall segmentation qual-
ity corresponding to the 2 sequences are presented in Fig. 3.



Table 1. Average percentage of propagated, validated and new pix-
els for (1) frames 1−30 of “Table Tennis (TT)” Sequence and (2)
frames 10−35 of “Coast Guard (CG)” Sequence.

Seq. Class Propagated(%) Validated(%) New(%)

TT
Table 96.20 85.10 0.20
Ball 98.35 0.29 0
Hand 97.50 12.18 6.57

CG
Boat 97.50 87.10 0.11
Water 98.35 84.20 5.22
Land 97.21 95.50 5.43

(a) (b)

Figure 3. Overall segmentation quality: (a) Overall quality for
frames 1−30 of the “Table Tennis” sequence. (b) Overall qual-
ity for frames 10−35 of the “Coast Guard” sequence

Figure 4. (a)−(d) Segmentation results of frames 1, 5, 9 and 12 in
the “Table Tennis” sequence. The pingpong ball and human hand
are segmented as independent moving objects. Note that pingpong
ball is correctly associated despite no temporal overlapping after
propagation.

Figure 5. (a)−(c) Segmentation results for frame 34, 37 and 39 of
the “Table Tennis” sequence. The poster on the wall is success-
fully detected and segmented as a newly appeared object.

The overall accuracy for the “Table Tennis” sequence drops
from an initial value of 96.35% to the lowest value of 88.9%
as the temporal section approaches its end. Similar results
are observed for the “Coast Guard” sequence, with a maxi-
mum drop of 13%. The decline in overall accuracy is due to
accumulation of propagation error. The results shown also
reflect a tolerance limit for acceptable deterioration. Tem-
poral graph validation verifies the predicted pixel labels af-

ter propagation, but it does not guarantee an error-free graph
aggregation. Some error residual will still be carried over to
subsequent frames. Empirically, it is found that to limit the
temporal error propagation to within 10%, the maximum
propagation time span allowed is about 20 frames. Further-
more, to highlight the profitable exploitation of temporal
redundancy in video segmentation, Table 1 shows the av-
erage percentage of propagated, validated and newly ap-
peared pixels for both video sections. On comparing the
percentage of validated pixel labels for both sections, we
can see that the percentage of validated labels is more than
84.20% when there is little or no independent motions (Ta-
ble 1, seq. “CG”). Selected segmentation results for the
“Jumping Girl” sequence is shown in Fig. 8.

4.2. Independent Motion

As discussed in Section 3.3, the proposed algorithm is
designed to handle independent motions. Fig. 4 illustrates a
case of fast independent motion. The video section we have
tested on (frames 1−30 of “Table Tennis” sequence) con-
tains fast independent motions. The pingpong ball bounces
up and down and the human arm, an articulated model,
swings back and forth. Traditional approaches based on
motion parameters estimation suffer from their inability to
handle fast-moving objects, while the proposed algorithm is
able to track both the pingpong ball and the arm accurately.

4.3. Newly Appeared Objects

Newly appeared objects are detected during graph aggre-
gation as “unmerged” regions. Fig. 5 shows a case where a
poster hanging on the wall enters the scene. The proposed
algorithm is able to detect this newly appeared object. De-
spite its color similarity to the pingpong ball and the table
edge, proximity constraint (only neighboring subgraphs are
merged during pair-wise subgraph grouping) is still able to
identify this object as a new comer.

5. Conclusion

In this paper, we have presented an efficient algorithm
to exploit the inter-frame correlation to propagate trustable
grouping from the previous frame to the current. A pre-
ceding graph is built and labeled for the previous frame.
It is temporally propagated to the current frame, validated
by the similarity measures, and spatially aggregated for the
final grouping. In doing so, we retain maximally the prop-
agated segmentation results and hence lessen the compu-
tational burden of re-segmenting every frame. Experimen-
tal results show that the proposed algorithm is able to han-
dle fast independent motion and appearance of new objects
through graph validation and aggregation processes. For
future work, a more robust treatment of subgraph validation



(a) (b) (c) (d) (e)

Figure 6. Selected segmentation results for the frames 1−30 in the “Table Tennis” sequence: (a) Initialized segmentation for frame 1.
(b)−(e) Segmentation results for frames 3, 7, 13 and 25 respectively.

(a) (b) (c) (d) (e)

Figure 7. Selected segmentation results for the frames 10−35 in the “Coast Guard” sequence: (a) Initialized segmentation for frame 10.
(b)−(e) Segmentation results for frames 13, 19, 27 and 33 respectively.

Figure 8. Selected segmentation results for the frames 1−30 in the
“Jumping Girl” sequence: (a)Initialized segmentation for frame 1.
(b)−(d)Segmentation results for frames 5, 15 and 30 respectively.

such as incorporating multiple low-level features would be
beneficial to the segmentation.
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