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Abstract

Recent studies have shown that embedding similar-
ity/dissimilarity measures between distributions in the vari-
ational level set framework can lead to effective object seg-
mentation/tracking algorithms. In this connection, exist-
ing methods assume implicitly that the overlap between the
distributions of image data within the object and its back-
ground has to be minimal. Unfortunately, such assumption
may not be valid in many important applications.

This study investigates an overlap prior, which embeds
knowledge about the overlap between the distributions of
the object and the background in level set tracking. It con-
sists of evolving a curve to delineate the target object in
the current frame. The level set curve evolution equation is
sought following the maximization of a functional contain-
ing three terms: (1) an original overlap prior which mea-
sures the conformity of overlap between the nonparametric
(kernel-based) distributions within the object and the back-
ground to a learned description, (2) a term which measures
the similarity between a model distribution of the object and
the sample distribution inside the curve, and (3) a regu-
larization term for smooth segmentation boundaries. The
Bhattacharyya coefficient is used as an overlap measure.
Apart from leading to a method which is more versatile than
current ones, the overlap prior speeds up significantly the
curve evolution. Comparisons and results demonstrate the
advantages of the proposed prior over related methods, and
its usefulness in important applications such as the left ven-
tricle tracking in Magnetic Resonance (MR) images.

1. Introduction

Object segmentation and tracking in image and image
sequences occurs as a fundamental early vision processing
task in many important applications. The variational level
set framework has led to effective segmentation/tracking al-
gorithms [1]-[18]. It has become very popular in computer
vision for several reasons: (a) the solution is sought fol-
lowing the optimization of a global cost functional which

balances the influence of image data and prior knowledge
in a flexible, principled, and transparent way; (b) the level
set representation handles implicitly arbitrary variations in
object topology, shape, scale and localization; (c) the ob-
tained results are promising. Level set segmentation and
tracking consist of evolving a curve to delineate the target
object in the current image. It divides the image domain
in two regions: region inside the curve (foreground), which
corresponds to the target object at convergence, and region
outside the curve (background). The curve evolution equa-
tion is obtained by optimizing a functional which, gener-
ally, contains a data term measuring the conformity of the
observed photometric data within each region to a given sta-
tistical description. In most of existing region-based level
set methods, the data term can be posed following the Max-
imum Likelihood (ML) principle [1]-[9]. This corresponds
to maximizing the conditional probability of the data given
the assumed model distributions within the object and its
background. The way of estimating the model distributions
divides level set methods into two categories: purely data
driven methods, i.e, the model distributions are estimated
from the current image along with the segmentation process
[6]-[9], [13]-[15], and methods using photometric priors1

[2]-[5], [10]-[12], i.e., the model distributions are learned
a priori from a set of segmented training images. Embed-
ding photometric priors in likelihood-based curve evolution
has significantly improved the performances of purely data
driven methods [1]. It has led to promising results in tex-
ture segmentation [4], medical image segmentation [5], and
tracking [3]. Unfortunately, likelihood-based curve evolu-
tion is sensitive to inaccuracies in estimating the model dis-
tributions [13]. Furthermore, it can not incorporate informa-
tion about the overlap between the distributions of photo-
metric variables within the object and the background. Em-
bedding such information in level set segmentation/tracking
is the main focus of the current study.

1Segmenting images with similar photometric patterns occurs in im-
portant applications such as medical image analysis [2], [5]. In this case,
learning model distributions from segmented training images is very use-
ful. For object tracking, model distributions can be learned from previously
segmented frames [10]-[12].
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Recent studies have shown the advantages and effective-
ness of using similarity/dissimilarity measures between dis-
tributions in level set segmentation [13]-[15] and tracking
[10]-[12]. Possible measures include the Bhattacharyya co-
efficient [12], [13] and the mutual information [10], [15].
However, the Bhattacharyya coefficient has shown supe-
rior performances over other criteria [12], [13]. In [13],
level set segmentation is stated as minimizing the similar-
ity (or maximizing the dissimilarity) between the distribu-
tions sampled from inside and outside the curve. In [10],
[11], the target object is identified as the region whose sam-
ple distribution most closely matches a model distribution.
This corresponds to maximizing a functional which mea-
sures the similarity between the sample distribution inside
the curve and a model distribution of the object. Similar
to likelihood-based methods using photometric priors, the
model distribution of the object is learned beforehand from
training images. The performance of these methods based
on foreground matching was improved in [12] by adding a
background mismatching term to the maximized functional.
The latter aims to maximize the dissimilarity between the
sample distribution of the background and the model distri-
bution of the object. It has been demonstrated experimen-
tally [12] that curve evolution based on the Bhattacharyya
measure outperforms the ML principle when dealing with
cluttered backgrounds. Furthermore, it is much less sensi-
tive to inaccuracies in estimating model distributions [13].

The current study is related to the level set segmen-
tation/tracking investigations using similarity/dissimilarity
measures between distributions [10]-[15]. It is most related
to the tracking methods based on photometric priors [10]-
[12]. In this connexion, existing methods (for example [10]-
[15]) are based on the following implicit assumption: The
overlap between the distributions of image data within the
object and its background in the current image/frame has
to be minimal. Unfortunately, such assumption may not be
valid in many important applications. Although those meth-
ods have been effective in some cases, they are not versatile
enough to deal with situations in which a “significant” (cf.
the left ventricle example in Fig. 1) overlap exists between
the distributions within the object and the background. As
we will show in the experiments (section 3), embedding
prior knowledge of such overlap in the tracking functional
would be very useful in important applications. It leads to a
method which is more widely applicable than existing ones.
In this study, we investigate such a prior.

We develop a variational level set tracking method which
embeds knowledge about the overlap between the distribu-
tions of the target object and the background. Our solu-
tion is sought following the maximization of a functional
containing three terms: (1) an original overlap prior which
measures the conformity of overlap between the nonpara-
metric (kernel-based) distributions within the object and the

background according to a learned description, (2) a model
matching term which measures the similarity between a
model distribution of the object and the sample distribution
inside the curve, and (3) a regularization term for smooth
segmentation boundaries. The Bhattacharyya coefficient is
used as an overlap measure2. The functional maximization
is obtained by the Euler-Lagrange equations of curve evolu-
tion, and efficiently implemented vis level sets. The remain-
der of this paper is organized as follows. The next section
presents the functional, the equation of its maximization,
and a simple interpretation of the overlap prior influence.
Section 3 describes comparisons and results. It shows prac-
tical cases in which the proposed functional is advantageous
over existing ones. Section 4 contains a conclusion.

2. Formulation

Let I : Ω ⊂ R
2 → Z be an image function from

the domain Ω to the space Z of a photometric variable
such as intensity or a color vector. Level set segmenta-
tion/tracking consists of evolving a closed planar paramet-
ric curve �γ(s) : [0, 1] → Ω to delineate a target object in
the current image/frame I . It divides Ω into two regions:
Rin = R�γ , corresponding to the interior of �γ (foreground),
and Rout = Rc

in = Rc
�γ , corresponding to the exterior of

�γ (background). The curve evolution equation of �γ is com-
monly obtained by optimizing a cost functional with respect
to �γ. In this study, we propose to maximize a functional
containing three terms.

(1) An overlap prior term
Let Pin and Pout be the nonparametric3 (kernel-based)

estimates of the distributions of data in the current frame,
respectively, inside and outside �γ

∀z ∈ Z, Pin(z) =

∫
Rin

K(z − I(x))dx

ain

Pout(z) =

∫
Rout

K(z − I(x))dx

aout
(1)

where ain is the area of region Rin: ain =
∫
Rin

dx, and
aout is the area of region Rout: aout =

∫
Rout

dx. Typical
choices of K are the Dirac function and the Gaussian ker-
nel [14]. As in related studies [10]-[12], we assume that the
target object is characterized by a model distribution, Min,
which can be learned from a relevant, previously segmented
frame. Let B(f, g) be the Bhattacharyya coefficient mea-
suring the amount of overlap between two statistical sam-

2Several studies have found the Bhattacharyya coefficient to be a good
measure for segmentation [13], and tracking [19]. Apart from leading to
outstanding results, it has a simple analytical expression.

3In order to incorporate complex statistical information in the segmen-
tation/tracking functional, the recent trend has been toward using nonpara-
metric models [5], [9]-[16].



ples f and g [13]. Consider

Bout = B(Pout,Min) =
∑
z∈Z

√
Pout(z)Min(z) (2)

Note that the values of B are always in [0, 1], where 0 in-
dicates that there is no overlap, and 1 indicates a perfect
match. Bout measures the amount of overlap between the
distribution outside the curve (background) and the model
distribution of the target object. We assume that a prior es-
timation of Bout, μB , is learned beforehand from a previ-
ously segmented frame. In order to incorporate informa-
tion about the photometric similarities between the object
and the background, we propose to maximize the following
overlap prior term which measures the conformity of Bout

to a learned overlap measure μB

O = −
√

(Bout − μB)2 (3)

This form of the overlap prior can be viewed as a gener-
alization of the background mismatching term proposed in
[12]. The particular case4 corresponding to μB = 0 reduces
(3) to the functional in [12]. The overlap prior is more ver-
satile than existing terms. It addresses cases in which an
overlap exists between the distributions within the object
and the background. As we will show in the experiments,
it leads to a method which is more widely applicable than
existing ones. In the next section, we will give a simple in-
terpretation of how the overlap prior influences curve evo-
lution.

(2) A model matching term
In conjunction with the overlap prior, we use a fore-

ground matching term which measures the similarity be-
tween the distribution inside the curve (foreground) and the
model distribution of the target object [11]

Bin = B(Pin,Min) =
∑
z∈Z

√
Pin(z)Min(z) (4)

(3) A regularization Term
We use a classic regularization term for smooth segmen-

tation boundaries

R = −
∮

�γ

ds (5)

The functional to maximize is a weighted sum of the three
terms

F = αO + βBin + λR
= −α

√
(Bout − μB)2︸ ︷︷ ︸

Overlap prior

+ βBin︸ ︷︷ ︸
Model matching

− λ

∮
�γ

ds︸ ︷︷ ︸
Smoothness

(6)

4The particular case corresponding to μB = 0 is an explicit form of
assuming that the overlap between the distributions of the object and the
background is minimal. Such assumption is implicit in existing methods.

α, β and λ are positive real constants to balance the contri-
bution of each term.

2.1. Curve evolution equation

The curve evolution equation is obtained following the
maximization of F with respect to �γ. To this end, we derive
the Euler-Lagrange ascent equation by embedding curve �γ
in a one-parameter family of curves: �γ(s, t) : [0, 1]×R+ →
Ω, and solving the partial differential equation:

∂�γ

∂t
=

∂F
∂�γ

(7)

∂F
∂�γ is the functional derivative of F with respect to �γ. After
some algebraic manipulations, we have

∂�γ

∂t
=

∂F
∂�γ

= −α
Bout − μB√
(Bout − μB)2︸ ︷︷ ︸

Overlap prior influence

∂Bout

∂�γ

+ β
∂Bin

∂�γ
+ λ

∂R
∂�γ

(8)

Before deriving the final equation, we give a simple in-
terpretation of how the overlap prior guides the curve evo-
lution. The learned overlap measure μB influences the sign
of the multiplicative coefficient (overlap prior influence) af-
fected to the flow ∂Bout

∂�γ . This coefficient is negative when
Bout is superior to its expected value μB . In this case, the
overlap prior results in a curve evolution which decreases
Bout. By contrast, when Bout is inferior to μB , the coef-
ficient becomes positive and the curve evolution increases
Bout. The overlap prior leads to a curve evolution which
keeps Bout close to its expected value.

To derive the final curve evolution equation, we need to
compute ∂Bin

∂�γ and ∂Bout

∂�γ . We have

∂Bin

∂�γ
=

1
2

∑
z∈Z

√
Min(z)
Pin(z)

∂Pin

∂�γ
(9)

To compute ∂Pin

∂�γ , we use the Euler-Lagrange equations.
We can show [8] that, for a scalar function h, the func-
tional derivative with respect to curve �γ of

∫
R�γ

h(x)dx is

h(x)�n(x), where �n is the outward unit normal to �γ. Apply-
ing this result to ain and

∫
R�γ

K(z−I(x))dx in ∂Pin

∂�γ yields,
after some algebraic manipulations

∂Pin(z)
∂�γ(s)

=
1

ain
(K(z − I(s)) − Pin(s))�n(s) (10)

We assume K is the delta function to simplify the equations.
However, the same derivation applies for an arbitrary ker-
nel. Embedding (10) into (9), and after some algebraic ma-
nipulations, we obtain:

∂Bin

∂�γ(s)
=

1
2ain

(√
Min(s)
Pin(s)

− Bin

)
�n(s) (11)



Similarly, we obtain:

∂Bout

∂�γ(s)
= − 1

2aout

(√
Min(s)
Pout(s)

− Bout

)
�n(s) (12)

Embedding (11), (12), and the derivative of the regulariza-
tion term [8] in (8) gives the final curve evolution equation:

∂�γ

∂t
= { α

2aout

Bout − μB√
(Bout − μB)2

(√
Min(s)
Pout(s)

− Bout

)

+
β

2ain

(√
Min(s)
Pin(s)

− Bin

)
− λκ}�n (13)

where κ is the mean curvature function of �γ.

2.2. Level-set implementation

We use the level-set formalism [17] to implement the
curve evolution equation in (13). Level-set implementation
represents curve �γ implicitly by the zero level set of a func-
tion u : Ω ⊂ R

2 → R (�γ = {u = 0}), with the region
inside �γ corresponding to u > 0. The level-set representa-
tion has well-known advantages over an explicit discretiza-
tion of �γ using a number of points on the curve. It handles
automatically topological changes of the evolving curve (�γ
may split and merge while u remains a function), and can be
effected by stable numerical schemes [17]. One can show
that [17] if the curve evolves according to ∂�γ

∂t = V.�n (refer
to eq. (13)), where V : R

2 → R, then the level set function
evolves according to ∂u(x,t)

∂t = −V.‖�∇u‖.

3. Experiments

We conducted a large number of tests to verify the use-
fulness of the overlap prior in important applications. We
also performed comparisons to clearly demonstrate the ad-
vantages of the proposed functional over related ones. We
compared with the functional in [12], and with a likelihood-
based functional as in [2], [4]. For comparisons, The same
training images, curve initializations, and parameters were
used for both methods. Different from existing work, the
current experimentation uses examples in which a signifi-
cant overlap exists between the distributions of the target
object and its background (refer for example to Fig. 1 (b)).
Parameter μb and the model distribution Min are estimated
beforehand in a single training image. As existing methods
[5], [11], [12], we employed a leave-one-out technique: the
actual images (images of interest) are different from train-
ing images. In most of our experiments, we gave the same
weight to the overlap and model-matching terms in (6), i.e.,
α
β = 1, and we fixed λ = 0.001α. Note that the set of pa-
rameters verifying α

β ∈ [0.1, 10] seems to be an acceptable
weighting. Note also that even λ = 0 would not affect sig-
nificantly the results. It affects the smoothness of the curve;

the higher lambda, the smoother the curve. The photometric
variable is color specified in HSV coordinates (examples in
Fig. 4), or intensity (examples in Fig. 1, 2, and 3). Color
distributions are computed using 4096 bins. Intensity distri-
butions are computed using 255 bins. In the following, we
detail comparisons, and give a representative sample of the
results.

The first comparison deals with an important applica-
tion: tracking the left ventricle chamber in MR cardiac se-
quences. This task is of great interest in automating the
diagnosis of cardiovascular diseases [2]. It is still challeng-
ing to segment the chamber in the current frame because its
intensity profile is similar to the nearby background. The
first column in Fig. 1 shows a typical example. Fig. 1 (a)
depicts the expected segmentation of the chamber (region
inside the red curve) and a region in the nearby background
corresponding to the right ventricle (region inside the blue
curve). Fig. 1 (b) illustrates the significant overlap between
the distributions of these two regions. Generally, general
purpose segmentation methods fail in successfully delineat-
ing the chamber. The fifth column in Fig. 1 (i and j) depicts
the segmentation result with a likelihood-based functional.
The fourth column (g and h) depicts the segmentation result
with the functional in [12]. With these two methods, a part
of the background, which has an intensity profile similar to
the chamber, is included in the final region. This is consis-
tent with the results in [12] showing failure of the method
in similar cases. By contrast, using the overlap prior de-
lineates accurately the chamber (Fig. 1 (e)), and leads to
a region (Fig. 1 (f)) similar to the ground truth (Fig. 1
(d)). The same training image is used for all the methods to
learn the model distribution. μB corresponds to the Bhat-
tacharyya measure between the object and the background
in the training image (μB = 0.53). Table 1 reports values of
the optimized Bhattacharyya measures at convergence. The
proposed method outperforms the method in [12], and those
based on the ML principle. Accurate chamber tracking in
the rest of the cardiac sequence with the proposed method
(using the same model distribution and the same μB from a
single training image) is shown in Fig. 3. Fig. 3 (a) plots
the corresponding optimized Bhattacharyya measures ob-
tained at convergence versus the frame number: Although
Bin varies, i.e, the true object distribution varies over the
sequence, the proposed functional leads to a very accurate
tracking due to the positive effect of the overlap prior (Bout

has approximately a constant value over the sequence). We
give here only one typical left ventricle tracking example.
The method has been tested with several other examples,
and seems to be well-suited to this important application
and many other medical applications.

The second comparison and result are depicted in Fig 2
which shows the segmentation of a vehicle in a road se-
quence frame. The proposed method recovers the target



Method with the overlap prior (μB = 0.53) without overlap prior (μB = 0) [12] Likelihood

Bin 0.98 0.97 0.95
Bout 0.54 0.45 0.45

Table 1. Obtained Bhattacharyya measures at convergence for both three methods (left ventricle example in Fig. 1): the proposed functional,
i.e., with the overlap prior; the functional in [12], i.e., without the overlap prior, and a likelihood-based functional as in [2], [4].

Method with overlap prior (μB = 0.73) without overlap prior (μB = 0) [12]

Bin 0.98 0.98
Bout 0.72 0.60

Convergence 1800 iterations 5500 iterations

Table 2. Obtained Bhattacharyya measures at convergence (the vehicle segmentation example): the proposed functional, i.e., with the
overlap prior (μB = 0.73), and the functional in [12], i.e., without the overlap prior (μB = 0). Bottom row: number of iterations required
for convergence.
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Figure 5. Maximized measures versus iteration number. Continue:
the proposed functional (μB = 0.73); discontinue: functional in
[12] (μB = 0). (a): evolution of the maximized Bin; (b): evolu-
tion of the overall functional. α = 0.1β; λ = 0.

object (the vehicle), whereas the method in [12] incorpo-
rates a part of the background inside the final curve (Fig. 2
(d) and (e)). The model distribution and μB are estimated
from a previous frame (μB = 0.73). Curve initialization
is shown in Fig. 2 (a), and is arbitrary. This illustrates the
robustness of the proposed method with respect to initial
conditions. In Fig. 5, we plotted the maximized terms ver-
sus the iteration number for both methods, which demon-
strates a computational advantage of the overlap prior. It
speeds up significantly the ascent of the maximized terms.
Maximization with the overlap prior requires about 1800
iterations to converge, whereas maximization without the
overlap prior requires about 5500 iterations. Consequently,
The proposed functional results in a curve evolution faster
than with functional in [12]. Table 2 reports values of the
optimized measures at convergence for both methods. This
example demonstrates how we can obtain different objects
having the same similarity measure with the model distri-
bution. Consequently, matching the distribution inside the
curve to a model distribution as in [11] is not sufficient.

In Fig. 4, we show comparisons and results of segment-
ing an object with an arbitrary shape in the table tennis se-

quence. Dealing implicitly with arbitrary shapes is an ad-
vantage of active curves [11], [12]. Fig. 4 (b) depicts the
target object (player arm) in the learning image (frame 6).
With the overlap prior, the object is recovered in frame 16
(g and h) and frame 26 (i and j). Without the overlap prior,
i.e., with the method in [12], the racket, which has an inten-
sity profile similar to the arm, is included in the final curve
(frame 16: c and d; frame 26: e and f).

4. Conclusion

We investigated an overlap prior for object tracking.
Comparisons demonstrated that the proposed method
outperforms existing ones for situations in which an
overlap exists between the distributions of image data
within the object and its background. Results showed
the usefulness of the overlap prior in important ap-
plications. Future investigations include embedding
statistical overlap priors in variational object segmentation.
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