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Abstract

Efficient segmentation of globally optimal surfaces in
volumetric images is a central problem in many medi-
cal image analysis applications. Intra-class variance has
been successfully utilized, for instance, in the Chan-Vese
model especially for images without prominent edges. In
this paper, we study the optimization problem of detect-
ing a region (volume) between two coupled smooth sur-
faces by minimizing the intra-class variance using an ef-
ficient polynomial-time algorithm. Our algorithm is based
on the shape probing technique in computational geometry
and computes a sequence of minimum-cost closed sets in a
derived parametric graph. The method has been validated
on computer-synthetic volumetric images and in X-ray CT-
scanned datasets of plexiglas tubes of known sizes. Its ap-
plicability to clinical data sets was demonstrated in human
CT image data. The achieved results were highly accurate
with mean signed surface positioning errors of the inner
and outer walls of the tubes of +0.013mm and 0.012mm,
respectively, given a voxel size of 0.39 × 0.39 × 0.6mm3.
Comparing with the original Chan-Vese method [8], our al-
gorithm expressed higher robustness. With its polynomial-
time efficiency, our algorithm is ready to be extended to
higher-dimensional image segmentation. In addition, the
developed technique is of its own interest. We expect that
it can shed some light on solving other important optimiza-
tion problems arising in computer vision. To the best of our
knowledge, the shape probing technique is for the first time
introduced into the field of computer vision.

1. Introduction

Efficient segmentation of globally optimal surfaces in
volumetric images is a central problem in many medical
image analysis applications. While edges defined by im-
age gradients are commonly used for segmentation, many

object boundaries in medical image data may lack strong
edges, e.g., when multiple adjacent objects with similar in-
tensity profiles are present in an image. Image segmentation
having the capability of handling weak edges is crucially
important in medical image analysis. Intra-class variance
has been successfully used in the novel Chan-Vese active
contour model without using image gradient [8], which is
based on a piecewise constant minimal variance criterion of
the Mumford-Shah functional [20]. The following formula
captures the intraclass variation, which is a very important
part of the energy function used by Chan and Vese:

E(S) =
∫

inside(S)

|u0(x, y, z)− c1|2dxdydz

+
∫

outside(S)

|u0(x, y, z)− c2|2dxdydz (1)

where u0 is the image, S is a variable boundary surface,
and the constants c1, c2, depending on S, are the averages
of u0 inside and outside S, respectively. This energy func-
tion (intra-class variance) was proven capable of producing
promising results [8]. However, Chan and Vese’s method
lacks the ability of finding the global optimality. Chan and
Vese also considered two regularization terms in their en-
ergy function, which regularizing the length of the bound-
ary and the area of the region. These regularization terms
tend to smooth the boundary of the target object.

In this paper, we develop a novel algorithm that can
find a globally optimal solution to segmentation by mini-
mizing the intra-class variance. Our approach detects an
optimal region between two coupled smooth surfaces in a
volumetric image in a low-order polynomial time. Instead
of adding the smoothness regularization term to the objec-
tive function as in the Chan-Vese model, we explicitly en-
force the smoothness of the target surfaces with geomet-
ric constraints between neighboring voxels on the surfaces
(see details in Section 2). The surface-coupled constraint
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may seem to highly limit the scope of this problem at first
sight but in fact, the guarantee of global optimality and free-
dom to design a problem-specific cost function allow the
method to be applied to a wide variety of medical image
segmentation problems and it has been used in several med-
ical practices [9, 24]. We show that the optimal solution
can be obtained via the construction of the convex hull for
a set of O(n) unknown 2-D points using the shape probing
technique [10, 12] in computational geometry, where n is
the size of the input image. The probing oracles are im-
plemented by computing a minimum s-t cut in a weighted
directed graph. The intra-class variance can then be mini-
mized by a sequence of calls to the minimum s-t cut algo-
rithm. The shape probing technique was used for image seg-
mentation [4, 23]. To the best of our knowledge, our method
is the first algorithm for globally minimizing the intra-class
variance to detect a region bounded by two coupled smooth
surfaces in a volumetric image, and the shape probing tech-
nique is for the first time introduced into the field of com-
puter vision. We believe that the developed technique is
of its own interest and expect that it can shed some light
on solving other important optimization problems arising in
computer vision.

1.1. Previous Work

Several methods have been developed trying to glob-
ally optimize the Chan-Vese functional or related function-
als. Chan et al. [7] developed global minimizers to the
Rudin-Osher-Fatemi model from the research on denois-
ing model and extended the idea to Mumford-Shah and
Chan-Vese models. Based on their research, Bresson et
al. [6] defined 3 new variational models (including the
Chan-Vese functional) based on the unification of the clas-
sical snake/Geodesic Active Contour model, and developed
global minimizers to their segmentation variational models
and also fast minimization based on a dual formulation of
the TV Norm. But in their approach, the mean intensities
of the target object and the background are fixed in each it-
eration and updated occasionally to approximate the actual
value of the average intensity. Li et al. [18] developed a
graph searching based approach to approximate the Chan-
Vese cost functional by estimating the mean intensity and
their approach does not yield a globally optimal solution.
An additional drawback is that their method can only detect
the target object bounded by a single surface.

Boykov et al. [5] developed an approach to minimize the
energy using minimum s-t cuts. A special class of edge-
weighted directed graph Gst = (V ∪ {s, t}, E) was em-
ployed. The source s and the sink t are corresponding to
object and background respectively. Edges enforce the con-
straints and create relationships between cuts and results.
Grady [14] recently developed a method for computing dis-
crete minimal surfaces using linear programming.

There are also other approaches that can globally opti-
mize energy functions. Appleton et al. [1] used the short-
est path approach to find the region minimizing the energy
function, but only the region surrounded by a single contour
can be found by this approach. They extended this research
to 3D later [2], but it may suffer from numerical approxi-
mation and must be carefully designed to ensure the robust-
ness and convergence. Ardon et al. [3] generalized globally
minimal paths for curve segmentation in 2D to surface seg-
mentation in 3D. Their approach exploits the solution to the
Eikonal equation and generates a function whose zero level
set contains all the globally minimal paths between the con-
straining curves from two user-supplied curves, through a
linear partial differential equation but not aiming at Chan-
Vese functional.

Due to the imperfections of medical imaging techniques,
insufficient image-derived information may be available for
defining an object boundary or surface. This insufficiency
can be remedied by using clues from the other mutually
related boundaries or surfaces. Co-optimization of mul-
tiple coupled surfaces thus frequently yields superior re-
sults compared to the traditional single-surface detection
approaches. Several methods for handling coupled surfaces
have been proposed in recent years (e.g., [19][18]), they all
demonstrate good performance in wide variety of medical
image segmentation problems.

2. Problem Modelling

Let I be a given 3-D volumetric image of n = X×Y ×Z
voxels, where X , Y , and Z denote the image sizes in x, y,
and z directions, respectively. The intensity level of every
voxel (x, y, z) (1 ≤ x ≤ X, 1 ≤ y ≤ Y , and 1 ≤ z ≤ Z)
is denoted by I(x, y, z). We consider the desired region
(target object) R that is bounded by two coupled terrain-
like surfaces, Sl and Su, and oriented as shown in Figure
1. Each of the bounding surfaces intersects with exactly
one voxel of every column parallel to the z-axis. We are
looking for an optimal region by minimizing the intra-class
variance among all feasible region that can be defined in the
3-D volumetric image I . Let µ0 (resp., µ1) be the average
intensity of the desired region R (resp., the background R =
I − R), that is µ0 = 1

|R|
∑

(x,y,z)∈R I(x, y, z), and µ1 =
1
|R|

∑
(x,y,z)∈R I(x, y, z). The intra-class variance is

ECV (R) =
∑

(x,y,z)∈R

(I(x, y, z)− µ0)2

+
∑

(x,y,z)∈R

(I(x, y, z)− µ1)2. (2)

The feasibility of a region in I is constrained by two sets of
application-specific parameters: (1) surface smoothness pa-
rameters, ∆x and ∆y, and (2) surface separation parame-
ters, δl and δu. The surface smoothness parameters guaran-



Figure 1. A region R enclosed by two coupled terrain-like surfaces
Sl and Su.

tee the continuity of the bounding surfaces of R. More pre-
cisely, if (x, y, z) and (x+1, y, z′) (resp., (x, y +1, z′)) are
two voxels on a feasible bounding surface, then |z − z′| ≤
∆x (resp., ∆y). The surface separation parameters ensure
that the two bounding surfaces, Sl and Su, of the desired
region R are at a certain distance range apart, that is, for ev-
ery pair (x, y), δl ≤ Su(x, y)− Sl(x, y) ≤ δu. Comparing
to the regularizing terms used in Chan and Vese’s method,
our geometric constraints not only regulate the smoothness
of the bounding surfaces, they also incorporate some shape
information: the guarantee of monotonicity and topological
constraints.

3. The Algorithm

Although minimizing the intra-class variance for general
object shapes is computationally intractable, we are able to
optimally detect the region bounded by two coupled terrain-
like or cylindrical surfaces (a cylindrical transformation is
used before performing our method) in low-order polyno-
mial time using the techniques of parametric search [17],
hand probing [10, 12] in computational geometry, and 3-D
graph-searching [21, 18, 22].

Let µ = 1
n

∑
(x,y,z)∈I I(x, y, z) be the average intensity

of the entire image I . It is known that minimizing the intra-
class variance ECV (R) is equivalent to the maximization of
the following objective function [16],

V (R) = |R|(µ− µ0)2 + |R|(µ− µ1)2.

The equivalency of the two objective functions can be
shown by comparing them,

ECV (R)

=
∑

(x,y,z)∈R

(I(x, y, z)2 − 2µ0I(x, y, z) + µ2
0)

+
∑

(x,y,z)∈R

(I(x, y, z)2 − 2µ1I(x, y, z) + µ2
1)

=
∑

I(x, y, z)2 − 2|R|µ2
0 + |R|µ2

0 − 2|R|µ2
1 + |R|µ2

1

=
∑

I(x, y, z)2 − |R|µ2
0 − |R|µ2

1 (3)

−V (R)
= −nµ2 + 2µ(|R|µ0 + |R|µ1)− |R|µ2

0 − |R|µ2
1

=
(∑

I(x, y, z)
)2

/n− |R|µ2
0 − |R|µ2

1 (4)

Noticing that both
∑

I(x, y, z)2 and (
∑

I(x, y, z))2/n
are constants for a given image, the two objective functions
differ by a constant, and thus minimizing ECV (R) is equiv-
alent to maximizing V (R).

Note that the objective function V (R) is invariant if we
replace I(x, y, z) by Ĩ(x, y, z) = I(x, y, z) − µ for every
voxel (x, y, z) in I . Without loss of generality (WLOG), we
thus assume that µ = 0 and, accordingly,

V (R) = |R|
(

U(R)
|R|

)2

+ |R|
(−U(R)
|R|

)2

=
n

|R| · |R| (U(R))2, (5)

where U(R) =
∑

(x,y,z)∈R I(x, y, z). Hence, WLOG,
we can assume U(R) ≥ 0, and thus minimizing ECV (R) is
equivalent to maximize

D(R) ≡ U(R)√|R|(n− |R|) =

∑
(x,y,z)∈R I(x, y, z)√|R|(n− |R|) . (6)

3.1. Overview of the Algorithm

Note that for each n0 (n0 = 0, 1, . . . , n), if we can com-
pute an optimal region R∗(n0) of size n0 that maximizes
the total sum of intensity of all pixels in the region (denoted
by U(R∗(n0))), then we solve the problem. Unfortunately,
that is not an easy task at all. However, the view of the prob-
lem in such a way lays down a base for further exploiting
the intrinsic geometric structure of the problem.

For each n0 = 0, 1, . . . , n, the pair (n0, U(R∗(n0))) de-
fines a point in the 2-D |R| − U(R) coordinate plane, thus
forming a set P of points. A key observation is that it may
not be necessary to compute all points in P . Here, a classi-
cal concept in computational geometry [11], called convex
hulls, plays an important role. The convex hull CH(P) of
a set P is the unique convex polygon which contains P and
all of whose vertices are points from P .

We can show that the following lemma holds.

Lemma 1 The point (|R∗|, U(R∗)) defined by an optimal
region R∗ in I (i.e., D(R∗) = maxR D(R)), must be a
vertex of the convex hull CH(P).
Proof. Let α∗ = U(R∗)/

√|R∗|(n− |R∗|). Consider
the curve ξ : y = α∗√x(n− x) in the 2-D |R|-U(R)
plane. Since U(R∗) = α∗√|R∗|(n− |R∗|), the point



(|R∗|, U(R∗)) is on the curve ξ. Notice that α∗ =
maxR{U(R)/

√|R|(n− |R|)}. Thus, for any region R
bounded by two coupled smooth surfaces, we have U(R) ≤
α∗√|R|(n− |R|), i.e., every point (n0, U(R(n0)∗)) ∈ P
(n0 = 0, 1, . . . , n) lies below or on the curve ξ (see Fig.
2). Furthermore, due to the concavity of

√
x(n− x), all

points in P lie below or on the tangent line l to ξ at the
point (|R∗|, U(R∗)). Hence, (|R∗|, U(R∗)) is a vertex of
the upper chain UH(P) of the convex hull CH(P) of P .

�

Figure 2. Illustrating the proof of Lemma 1

Thus, finding the optimum can be simplified to examin-
ing all the convex hull vertices. However, directly comput-
ing the hull vertices of CH(P) appears to be quite involved.
Inspired by the shape probing method[10, 12] which can
be viewed as recognizing a convex polygon by “touching
with lines”, we use the following probing oracle to con-
struct CH(P) when the coordinates of the points in P are
unknown.

Given a slope θ, report the tangent line with slope θ to
CH(P) and the tangent point.

Using this probing oracle, the convex hull CH(P) can be
constructed as follows. Start with slopes +∞ and −∞ to
find the two endpoints of P (leftmost and rightmost points,
which are always (0, 0) and (n, 0) in this algorithm). Note
that the convex hull P actually is an upper convex chain.
Now suppose that we have computed two vertices u and
v on the hull and there is no vertex of P between u and v
being computed so far. Let θ be the slope of the line through
u and v. Then, perform a probing oracle with respect to θ
(see Figure 3). Consequently, we either find a new vertex
on CH(P) between u and v or know that uv is an edge of
P .Thus, employing a probing oracle results in either a new
vertex or a new edge of P . Hence, the convex hull CH(P)
with k vertices can be computed with O(k) probing oracles.

A major challenge is to implement this oracle for a
given slope θ. The parametric approach [17] in compu-
tational geometry is utilized. For a given real-valued pa-
rameter θ, we define the parametric intensity sum of a re-

Figure 3. Illustrating the construction of a convex hull using the
shape probing technique.

gion R as the sum of intensities of all pixels in R mi-
nus θ|R| (i.e., U(R) − θ|R|), denoted by Uθ(R). We can
show in Lemma 2 below, that the tangent point of the prob-
ing oracle is corresponding to the optimal feasible region
with a maximized intensity sum in the parametric image Iθ

(Iθ(x, y, z) = I(x, y, z)− θ for every (x, y, z) tuple). This
last step of the optimal-region-finding process can be mod-
ified and then solved using existing graph-based segmenta-
tion method.

The algorithm can be summarized as follows.
MAIN(I)
1 I0 ← I −mean(I)
2 SHAPEPROBE(I0,0,0,n,0)

SHAPEPROBE(I ,nleft,Uleft,nright,Uright)
1 θ ← (Uright − Uleft)/(nright − nleft)
2 Iθ ← I − θ

3 Find the region R∗(θ) that maximizes Uθ(R(θ)) in Iθ.
4 if |R∗(θ)| �= nright then do
5 SHAPEPROBE(I ,nleft,Uleft,|R∗(θ)|,U(R∗(θ)))
6 SHAPEPROBE(I ,|R∗(θ)|,U(R∗(θ)),nright,Uright)

Input to the main program MAIN is the image I . Inputs
to the subroutine SHAPEPROBE are the image I , the size co-
ordinates and intensity-sum coordinates of two known ver-
tices of the convex hull CH(P) on the |R|-U(R) plane. The
subroutine SHAPEPROBE finds the hull vertices between
the two input points. Line 1 calculates the slope θ. This
parameter is used to find the tangent point by finding the
optimal region in Line 3, in the parametric image calculated
in Line 2. On the 4th Line, if a new hull vertex in between is
found, the program recursively computes the hull vertices in
the left and right intervals. The main program computes the
upper chain of the convex hull UH(P). Based on Lemma
1, we can examine every vertex of CH(P) to find the opti-
mum.

Theory and implementation details are given in the fol-
lowing sections. Section 3.2 introduces implementation de-
tails of the probing oracle and Section 3.3 gives a brief intro-
duction to the calculation of the optimal parametric region.



3.2. Implementation of the Probing Oracle

Given a real-valued parameter θ, which is output by
the shape probing procedure, we define the total sum
of the parametric intensity of a desired region R(θ) as
Uθ(R(θ)) =

∑
(x,y,z)∈R(θ) Iθ(x, y, z). We show in this

section that the probing oracle can be implemented via com-
puting in I an optimal region R∗(θ) whose parametric in-
tensity sum Uθ(R∗(θ)) is maximized. We call R∗(θ) an
optimal parametric region associated with the parameter θ.

Lemma 2 There exists a tangent line to CH(P) at the point
(n0, U(R∗(n0))) with a slope θ if and only if |R∗(θ)| = n0

and U(R∗(θ)) = U(R∗(n0)).

Proof. “⇒” Suppose that l : y = θx + b is a tangent
line to CH(P at the point (j, U(R∗

j )). This implies that
b = U(R∗

j )−jθ = U(R∗
j )−|R∗

j |θ. Note that UH(P) is the
upper chain of the convex hull CH(P). Thus for any k �= j,
the point (k, kθ + b) on l is on or above UH(P). Alterna-
tively, kθ + b ≥ U(R∗

k), that is U(R∗
j )− jθ ≥ U(R∗

k)− kθ
for any k �= j (see Fig. 4). Hence, the region R∗

j achieves
maxk{U(R∗

k) − kθ}. Since R∗
j is an optimal coupled-

surfaces-bounded region such that |R∗
j | = j and Uθ(R∗

j ) =
maxR(θ) U(R(θ)), we know U(R(θ)) = U(R∗

j ).
“⇐” The fact that |R∗(θ)| = j indicates that, for any

coupled-surfaces-bounded region R(θ), if |R(θ)| �= j, then
U(R(θ)) − |R(θ)|θ ≤ Uθ(R∗(θ)). Thus, for any k �= j,
U(R∗

k) − kθ ≤ Uθ(R∗(θ)). Based on the assumption that
U(R∗(θ)) = U(R∗

j ) and |R∗(θ)| = j, we have U(R∗
k) −

kθ ≤ U(R∗
j )−jθ for any k �= j. Consider a line l : y−θx =

b with b = U(R∗
j ) − jθ. Obviously, the point (j, U(R∗

j ))
is on the line l and the point (k, U(R∗

k)) is on or below the
line l for any k �= j (see Fig. 4). Hence, line l is a tangent
line to CH(P) at the point (j, U(R∗

j )) with a slope θ. �

Figure 4. Illustrating the proof of Lemma 2

Consequently, for a given slope θ, we need to compute an
optimal parametric region R∗(θ) bounded by two coupled
terrain-like surfaces in I . If the size of R∗(θ) is n0, based
on Lemma 2, the line l: y = θx + (U(R∗(θ)) − n0 · θ) is
a tangent line to CH(P) at the point (n0, U(R∗(θ))) with
slope θ. Let R(n0)∗ = R∗(θ). We thus recognize a hull

vertex on CH(P). Next, we develop an efficient algorithm
for computing such an optimal parametric region R∗(θ) in
I .

3.3. Computing an Optimal Parametric Region

Given a parameter θ, we reduce the problem of comput-
ing an optimal parametric region R∗(θ) in I to the prob-
lem of finding two coupled terrain-like 3-D surfaces on the
transformed images while minimizing the total sum of the
cost on both surfaces. This coupled terrain-like surfaces de-
tection problem can be formulated as a surface segmenta-
tion problem proposed by Li et al. [18].

First, we perform the following transformations on the
image I:

I ′θ(x, y, z) =
{

0 if z = 0;∑
0≤z′<z(I(x, y, z′)− θ) otherwise.

(7)
and

I ′′θ (x, y, z) =
∑

0≤z′≤z

−(I(x, y, z′)− θ). (8)

Hence, for any feasible region R(θ) bounded by two
coupled terrain-like surfaces, Sl and Su, with Su on top of
Sl, we have∑
(x,y,z)∈Sl

I ′θ(x, y, z) +
∑

(x,y,z)∈Su

I ′′θ (x, y, z) = −Uθ(R(θ)). (9)

Note that both bounding surfaces Sl and Su satisfy the
smoothness constraint and the surface separation constraint.

In this way, we convert the optimal parametric region
problem to a surface segmentation problem. We next use
Li et al.’s surface segmentation method to solve this prob-
lem [18].

The basic idea of Li et al.’s surface segmentation method
is to transform the problem into computing a minimum s-
t cut in a derived arc-weighted directed graph. Denote
by T (n′,m′) the time for finding a minimum s-t cut in
an edge-weighted directed graph with O(n′) vertices and
O(m′) edges. For example, using Goldberg and Tarjan’s
algorithm [13], T (n′,m′) = O(m′n′ log n′2

m′ ).
Lemma 3 For a given θ, an optimal parametric region
R∗(θ) in I can be computed in O(T (n, n)) time.

In summary, it suffices to compute the convex hull
CH(P) to detect in I an optimal region while minimizing
the intra-class variance by Lemma 1. Based on Lemma 2,
we can perform O(n) probing Oracle steps to obtain all ver-
tices on CH(P). Each probing oracle can be implemented
in O(T (n, n)) time by Lemma 3. Thus, the total running
time of our algorithm for minimizing the intra-class vari-
ance is O(nT (n, n)). However, in our experimentation, the
number of the probing oracle steps performed was much
less than n.



4. Experiments

4.1. Data

To validate the correctness of the modelling techniques,
we tested our method on a set of computer-generated phan-
toms containing differently textured regions or shapes, with
sizes of 256× 256× 3 voxels (Fig. 5).

To show the performance of our method in segmenta-
tion and to quantitively analyze the result, a physical phan-
tom was imaged by multi-detector CT and analyzed using
our method. The phantom contained six plexiglas tubes,
numbered 1 through 6, with nominal inner diameters of
1.98, 3.25, 6.40, 6.50, 9.50 and 19.25mm, respectively.
The corresponding outer diameters are 4.45, 6.30, 9.70,
12.60, 15.60 and 25.50mm, respectively. The phantom was
scanned using Philips Mx8000 4-slice CT scanner with 3
different scan settings (low dose, regular dose, and high
dose). Under each setting, the scans were taken at the 4
distinct angles of 0◦, 5◦, 30◦, and 90◦, rotated in the coro-
nal plane, resulting in a total of 12 datasets for use in the
validation. The regular dose scanning was intentionally
repeated, yielding another 4 datasets used for initial cali-
bration of the cost functions. In all cases, a resolution of
0.39× 0.39× 0.6mm3 was used, images consisted of 200-
250 slices, 512× 512 pixels each.

To demonstrate our method in quantitative analysis of
human pulmonary CT images, the method was applied to
concurrently segment the inner and outer wall surfaces of
intrathoracic airways imaged by multi-detector CT. 20 sets
of pulmonary CT images were used for the experiments.

4.2. The Cost Functions

Cost function design is very important in graph based
segmentation. Since our method minimizes the intra-class
variance, a cost function reflecting the homogeneity will be
good for the experiments. So in most of the experiments we
use the intensity or the linear transformation of the intensity
as the cost of a voxel. For the texture related phantom im-
ages, we also add the orientation or curvature information
to the cost function [8]. For the clinical data, our algorithm
is run on the intensity image to get an estimated position
of the bounding surfaces and then this estimated position
information is combined with the voxel intensities to form
the cost function.

4.3. Performance Indices

Surface detection accuracy was determined in physical
phantoms in comparison with the independent standard.
The mean signed surface positioning errors were computed
and expressed in micrometers. Corresponding points were
defined as pairs of points, the first point being from a com-
puter detected border and the second point from the ref-
erence standard border that are closest to each other using

the Euclidean distance metric. The local positioning errors
were defined as the minimum distance from each computer-
detected border pixel to reference standard.

5. Results

5.1. Computer Phantoms

Figure 5 presents segmentation examples obtained by
our algorithm. The objects and background were differen-
tiated by their different textures. The curvature and edge
orientation in each slice were used (as descriptions of the
patterns) for the cost functions. We also performed Chan
and Vese’s method on the same cost function and got sim-
ilar results. But for Chan and Vese’s method, the result is
quite sensitive to the selection of coefficients of regularizing
term. For some of the phantom images we tested (Figure 6),
we failed to find appropriate coefficients to achieve a rea-
sonable result (although it is possible that Chan and Vese’s
method could get the correct result with some coefficient
combination), while our method worked smoothly.

Figure 5. Computer phantoms and segmentation results.(a),(b)
Original images. (c),(d) The segmentation results from our
method, for (d), the inner boundary shrinks to the center of the
image. (e),(f) The segmentation results from Chan and Vese’s
method.

Figure 6. Computer phantoms and segmentation results.(a) Origi-
nal images. (b) The segmentation results from our method.



5.2. Accuracy and Efficiency Assessment in Physical
Phantom Tubes

The mean signed surface positioning errors of inner and
outer walls are 0.013± 0.275mm and −0.012± 0.298mm,
respectively, given a voxel size of 0.39 × 0.39 × 0.6mm3.
The unsigned errors are 0.235 ± 0.150mm and 0.254 ±
0.160mm, for inner and outer walls respectively. In these
experiments, less than 5% of the points on the |R|-U(R)
plane are on the convex hull CH(P).

Using the original Chan and Vese’s method and the same
cost function as input to the method, we got signed errors
of 0.311 ± 0.094mm and 0.097 ± 0.064mm, and unsigned
errors of 0.411 ± 0.090mm and 0.359 ± 0.063mm. Com-
paring with Chan and Vese’s method, our method has higher
accuracy but lower consistency.

5.3. Results in Clinical Data

While inner airway wall surfaces are well visible in CT
images, outer airway wall surfaces are very difficult to seg-
ment due to their blurred and discontinuous appearance.
The results revealed a high accuracy and 3-D consistency
(see Figure 7 and 8). Compared to the manual tracing-
defined independent standard, our method yielded signed
border positioning errors of 0.422 voxels and -0.127 vox-
els for inner and outer boundaries, respectively. The cor-
responding unsigned errors were 0.657 voxels and 0.572
voxels. We also tried to perform Chan and Vese’s method
on these data, but without the separation constraints, their
method can not get reasonable result from our cost image.

Figure 7. Comparison of computer-segmented and expert-traced
inner and outer airway wall borders. (a) Expert-traced borders. (b)
3-D surface obtained using our method.

6. Discussion

6.1. Advantages and Limitations

The algorithm efficiently detects the globally optimal re-
gion in the entire region-of-interest (ROI), enabling highly
accurate image segmentation that is a prerequisite of reli-

Figure 8. Segmented inner and outer walls of human pulmonary
airways imaged with multi-detector CT. (a) The transverse,
(b) sagittal cross-sections, and (c) 3-D view of an airway segment.

able quantitative image analyses. One obvious limitation is
that only one region can be found by our method. Another
apparent limitation is that it can only detect those surfaces
that can be unfolded to be terrain-like, including cylindrical
or tubular surfaces, and this unfolding process must be in-
vertible. Closed surfaces and those target objects with com-
plex shapes may require advanced unfolding techniques.

6.2. Possible Improvement

We noticed that in some clinical image segmentation
cases, minimizing the intra-class variance alone may not
guarantee good results. It is reasonable to use a combina-
tion of the intra-class variance term and an additional edge
term in the objective function, that is,

E(R) =
∑

(x,y,z)∈Sl

cl(x, y, z) +
∑

(x,y,z)∈Su

cu(x, y, z)

︸ ︷︷ ︸
edge term

+
∑

(x,y,z)∈R

(I(x, y, z)− µ0)2 +
∑

(x,y,z)∈R

(I(x, y, z)− µ1)2

︸ ︷︷ ︸
intra-class variance term

, (10)

where Sl and Su are the bounding surfaces of the region
R and cl(x, y, z) (resp., cu(x, y, z)) is the edge-based cost
of voxel I(x, y, z) for detecting the surface Sl (resp., Su).
However, it seems nontrivial to extend our algorithm for
solving this generalized problem.

6.3. More Efficient Algorithm for Single Surface
Case

In our method, the max-flow algorithm is performed for
each parameter θ. This means the number of times that
max-flow algorithm be executed depends on the number of
vertices on the convex hull CH(P). The execution of these
max-flow algorithm dominates running time and so it is de-
sirable to find a parametric max-flow algorithm to solve the



whole series of max-flow problems by performing the max-
flow algorithm just once. By studying the characteristics
of our graph used for optimal parametric region search, we
found the following properties exist for the single surface
case (i.e., the images is divided by a smooth terrain-like
surface to two parts with one being the background and the
other being the object) :

1) For edges from source to a vertex, the edge capacity
is a nondecreasing function of θ;

2) For edges from a vertex to sink, the edge capacity is a
nonincreasing function of θ;

3) For all other edges, the edge capacity is constant.
These satisfy the assumptions of parametric max-flow al-

gorithm of Gusfield et al. [15] and we can accelerate our
method by performing the max-flow algorithm once.

7. Conclusion

In this paper, we develop an algorithm to find globally
optimal solution to segmentation by minimizing the intra-
class variance. Our approach detects an optimal region
bounded by two coupled smooth surfaces in a volumetric
image in a low-order polynomial time.

We employed the techniques of parametric search, shape
probing in computational geometry, and 3-D graph-search.
The method has been validated by computer-synthetic vol-
umetric images and medical datasets.
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