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Abstract

Color and texture have been widely used in image seg-

mentation; however, their performance is often hindered by

scene ambiguities, overlapping objects, or missing parts.

In this paper, we propose an interactive image segmenta-

tion approach with shape prior models within a Bayesian

framework. Interactive features, through mouse strokes,

reduce ambiguities, and the incorporation of shape priors

enhances quality of the segmentation where color and/or

texture are not solely adequate. The novelties of our ap-

proach are in (i) formulating the segmentation problem in a

well-defined Bayesian framework with multiple shape pri-

ors, (ii) efficiently estimating parameters of the Bayesian

model, and (iii) multi-object segmentation through user-

specified priors. We demonstrate the effectiveness of our

method on a set of natural and synthetic images.

1. Introduction

Segmentation has been a fundamental topic in computer

vision and image understanding. Since a full review of seg-

mentation methods is beyond the scope of this paper, we

briefly address two important computational modules that

relate to our paper. These are level set and graph cut meth-

ods. The level set method of Osher and Sethian [16] has

been widely applied and extended for low-level image anal-

ysis. The main advantage of the level set formulation is to

define the curve evolution in a Eucledean framework, which

improves the numerical stability and ensures the topological

change. Extensions and evolutions of the level set method

have been to (i) express the curve evolution in terms of an

optimization framework, which is known as the “Geodesic

active contour” model [4]; (ii) handle regions with weak

boundaries via region-based method of Chan and Vese [6];

and (iii) incorporate the shape prior model [8, 5] with in-

variance to scaling, translation, and rotation.
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The graph cut mehtod is a combinatorial optimization

method, which arrives at a fixed point through global opti-

mization for a certain class of energy functions. Recently,

based on graph cut algorithm [3], successful interactive im-

age segmentation strategies [17, 15, 1] have been proposed,

where user interaction is reduced to a few mouse-strokes in-

dicating foreground and background features. To incorpo-

rate shape prior into the graph cut approach, Freedman and

Zhang [10] integrated information about the level set func-

tion of a template with the traditional graph edge-weights so

that the edges in the graph could convey information about

both the image and the shape prior.

Although the ultimate objective of the community is in

automated segmentation and interpretation, which can be

regarded as quasi object recognition, we have opted for an

interactive segmentation procedure as an interim step. As

a result of reducing inherent ambiguities and complexities

associated with automated segmentation, we can (i) test and

evaluate building blocks in a controlled fashion, and (ii)

build robust systems. In this paper, we propose a new al-

gorithm for interactive image segmentation with shape pri-

ors within a Bayesian framework. The framework allows

the use of multiple shape priors to obtain the best fit; affine

transformation of the model; and multi-objects segmenta-

tion within the same image.

The rest of our paper is organized as follows: In Sec-

tion 2, we briefly introduce Freedman and Zhang’s paper,

and the basic graph cut method. In Section 3, we intro-

duce an energy function with the shape prior model, which

is important for the probabilistic model definition. In Sec-

tion 4, we outline the details of the Bayesian optimization

approach. Section 5 provides experimental results and com-

parisons. Section 6 concludes the paper.

2. Related Work

In this section, we review the principal of the graph cut

method for image segmentation and Freedman and Zhang’s

work [10]. The graph cut was first introduced by Greig [11]

as a combinatorial optimization method in the context of

the max-flow/min-cut of a graphical network for a class of
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energy functionals. Following a number of recent papers

[3, 19, 14, 18], the graph cut algorithm has emerged as an

increasingly powerful tool for energy minimization in low-

level vision problems. For the segmentation problems, it

works as a binary labeling approach based on the graph

G = 〈V̄ , Ē〉 constructed from the image, where V̄ is the

set of all nodes, and Ē is the set of all arcs connecting ad-

jacent nodes. Usually, the nodes are pixels in the image,

and arcs are adjacency relationships with four or eight con-

nections between neighboring pixels. In addition, there are

some special nodes called terminals in the graph structure.

In the context of segmentation, terminals correspond to the

set of labels that can be assigned to pixels. We will concen-

trate on the case of a graph with two terminals, which are

usually called the source (S) and the sink (T ). The labeling

approach is to assign an unique label xp (0 for background,

and 1 for foreground ) for each node p ∈ V̄ , and thus the

image cutout is performed by minimizing the Gibbs energy

E(X) [12]:

E =
∑

p∈V̄

E1(xp) +
∑

(p,q)∈Ē

E2(xp, xq) (1)

Where E1(xp) is the likelihood energy, encoding the fitness

cost for assigning xp to p, and E2(xp, xq) is the prior en-

ergy, denoting the cost when the labels of adjacent nodes

p and q are xp and xq , respectively. There are polyno-

mial algorithms for the optimization on directed weighted

graphs with two terminals. These algorithms could be

classified into two groups: Goldberg-Tarjan “push-relabel”

methods[13] and Ford-Fulkerson “augmenting paths” [9].

The details of the methods could be found in [7].

Based on the graph cut formulation, Freedman and

Zhang [10] integrated the information about a level set func-

tion of a template with the traditional graph’s edge-weights

to allow the edges of the graph to convey information about

both the image and the shape prior. They used the following

objective energy function:

E =
∑

p∈P

(1 − λ)µRp(A(p)) (2)

+
∑

(p,q)∈N:A(p)6=A(q)

[

(1 − λ)Bp,q + λφ̄(
p + q

2
)
]

where p and q are pixels in the image. P is the set of all

pixels. N is the neighborhood system. A is the label of

the segmented image: A(p) = 1, if p ∈ Foreground
and A(p) = 0, if p ∈ Background. λ(0 ≤ λ ≤ 1) and

µ(µ ≥ 0) are the weights for different parts. And φ̄ is the

unsigned distance function of the shape prior model that is

derived from its contour. Additional details of the energy

terms can be found in [10]. To tackle the transformation

of the template, Freedman and Zhang mapped the center of

the user’s foreground strokes to the centroid of the object,

and used a variant of the Procrustes Method [20] to further

estimate the rotation parameter. Following translation and

rotation of the template, they computed a Gaussian pyra-

mid of the image, and performed graph cut segmentation on

each level of the pyramid, whereby the cut with minimum

normalized energy leads to the desired segmentation.

3. Incorporation of the Shape Model

In this section, we first introduce an energy function

with the shape prior for subsequent use in the probabilistic

framework. This is followed with the data and smoothness

constraints.

3.1. Shape Prior Model

Given a shape prior, which is delineated by a closed

curve c (or multiple closed curves, if there are holes inside),

we create a labeling function, L, shown in Figure 1 as:

L(p) =

{

1, if p is within the shape region

0, Otherwise

(a) (b)
Figure 1. An example of a labeling function from a given shape.

We define the energy function with the shape prior model

as

E(t, sp, A) =
∑

p∈P

(1 − λ)E(A(p))

+
∑

(p,q)∈N

(1 − λ)µ · we(p, q) · δA(p),A(q)

+
∑

p∈P

λδA(p),Lt,sp(p) (3)

where A, λ, µ, and N have the same meanings as in (2);

sp refers to the shape prior; t is a configuration of the

affine transformation matrix; Lt,sp is the transformed label-

ing function; and

δX,Y =

{

0, if X = Y
1, if X 6= Y

The first part of Equation (3) is the data fitness term; the

second component is the smoothness term; and the third

part is the shape fitness term, which is minimum when A =



Lt,sp. The third term matches the segmentation result (A)

and the labeling function (Lt,sp), and is controlled by λ.

The affine transformation matrix, T , could be written as

T =





a11 a12 b1

a21 a22 b2

0 0 1





(4)

a11 = Sx cos θ − SxSHx sin θ

a12 = Sx sin θ + SxSHx cos θ

a21 = SySHy cos θ − Sy sin θ

a22 = SySHy sin θ + Sy cos θ

where Sx and Sy are the scaling factors (in the x and y di-

mensions); SHx and SHy are the shearing factors; b1 and

b2 are the translation parameters; and θ is the rotation pa-

rameter. Hence, Lt,sp is related to L (labeling function of

sp) by

Lt,sp(x, y) = L(x⋆, y⋆), (5)

x⋆ =
a22(x − b1) − a12(y − b2)

a11a22 − a12a21
,

y⋆ =
a21(x − b1) − a11(y − b2)

a12a21 − a11a22

In contrast to Freedman and Zhang’s formulation [10],

we do not compute the distance map for c, and the shape

fitness term corresponds only to the amount of mismatches

with the labeling function, regardless of their location. As

a result, our method avoids the “translation” and “scale”

ambiguities caused via Freedman and Zhang’s formulation:

1. Translation ambiguity: Two segments should have the

same shape fitness energy if they are identical and

within the region of the prior shape. As shown in Fig-

ure 2(a), the shape fitness energies for both segments

are the same in our approach, but they are different in

other formulations [10].

2. Scale ambiguity: If a segment has the same shape

and centroid as that of the shape prior, but with dif-

ferent scale, then we represent the scale difference as

△S(≥ 0). The shape fitness energy function should

monotonically increase with respect to △S . Assume,

w.l.g, the shape prior and the candidate segment are

circular with radius r and βr(0 ≤ β ≤ 1), respec-

tively. In the continuous case, the shape fitness energy

in [10] is 2πr2 · β(1 − β); here, we drop the constant

λ for clarity. Thus, two segments with β1 = (1
2 + α)

and β2 = (1
2 − α) (0 < α ≤ 1

2 ) have the same shape

fitness energy, as shown in Figure 2(b), which causes

the scale ambiguity.

(a) (b)
Figure 2. Ambiguities in the shape fitness term: (a) translation

ambiguity; and (b) scale ambiguity.

3.2. Data and Smoothness Model

In the case of the data fitness term, we establish two

Gaussian Mixture Models (GMM ) based on user strokes

to delineate the foreground and background features, which

could be color (RGB) or texture (extracted by Gabor filter

banks). E(A(p)) is defined as,

E(A(p)) =

{

GMMB(fp)
GMMF (fp)+GMMB(fp) , if A(p) = 1

GMMF (fp)
GMMF (fp)+GMMB(fp) , if A(p) = 0

in which GMMF (fp) and GMMB(fp) are the probabili-

ties of feature fp from the foreground and background mod-

els, respectively. The smoothness term is defined as,

we(p, q) ∝ exp
(−dist(fp, fq)

2σ2

)

where dist(fp, fq) is the Euclidean distance between fea-

ture vectors of fp and fq. σ is kept as a constant(σ = 3)

for all experiments except for the synthetic texture image,

in which σ is set to be 6.

4. Optimization of the Bayesian Model

We begin our approach with user interactions, the details

of which are covered in Section 4.3. Next, we formulate the

problem of interactive image segmentation with shape pri-

ors in a well-defined Bayesian framework, which is solved

via the maximum a posterior (MAP ) technique. MAP es-

timates (t, sp, A) given the image I and the set of shape

priors, SP , in which sp ∈ SP . It is a maximization over a

probability distribution P and can be expressed via Baye’s

rule as:

arg max
t,sp,A

P (t, sp, A|SP, I) (6)

= arg max
t,sp,A

P (SP, I|t, sp, A)P (A|t, sp) ·

P (t, sp)/P (SP, I)

= arg max
t,sp,A

P (SP, I|t, sp, A)P (A|t, sp)P (t, sp)

where P (SP, I) has been dropped, because it is a constant

with respect to the optimization. We now outline every

component of the probabilistic modeling and optimization

step.



4.1. Probabilistic Models

1. The P (t, sp) Model describes the probability of shape

prior, sp, with transformation parameters, t. For each

(t, sp), we construct a partition to exactly match the

transformed shape prior: A = Lt,sp. The energy of

this partition could be calculated via (3), and the model

is defined as:

P (t, sp) =
E(t, sp, A = Lt,sp)

−1

∑

sp′∈SP

∫

T
E(t′, sp′, A = Lt′,sp′)−1dt′

(7)

in which T is all combinations of transformation pa-

rameters. Since segmentation could be formulated as

an energy minimization approach, the above definition

indicates that the combination, (t, sp), with smaller en-

ergy of the pre-segmentation, is more likely to lead to

the desired shape prior and its transformation.

2. The P (A|t, sp) Model describes the probability of seg-

mentation A, under the condition of shape prior, sp,

and its transformation parameters, t, and is defined as,

P (A|t, sp) =
E(t, sp, A)−1

∑

A′∈A
E(t, sp, A′)−1

(8)

in which A is the set of all possible partitions. For

two-region segmentation, the number of all possible

partitions is 2K , in which K is the total number of pix-

els in the image. This definition means that, with fixed

(t, sp), the partition with smaller energy is more likely

to be the desired segmentation.

3. The P (SP, I|t, sp, A) Model takes advantage of the

independence between the shape prior and image con-

tent. Thus, it is modeled as,

P (SP, I|t, sp, A) = P (SP |t, sp, A)P (I|t, sp, A)

P (SP |t, sp, A) ∝ exp
(− ‖ Lt,sp − A ‖

‖ Lt,sp ‖

)

P (I|t, sp, A) ∝

∏

p∈P

E
(

1 − A(p)
)

where P (SP |t, sp, A) models the fitness between

the segmentation and the transformed shape prior,

P (I|t, sp, A) represents the data fitness under the cur-

rent label configuration, and

‖ Lt,sp ‖ =
∑

p∈P

Lt,sp(p)

‖ Lt,sp − A ‖ =
∑

p∈P

δA(p),Lt,sp(p)

4.2. Optimization Procedure

Equation (6) is optimized iteratively:

1. Initialization: Construct two GMMs based on user

strokes delineating foreground and background fea-

tures, respectively. Iter = 0.

2. IF (Iter = 0), estimate the best fit (t, sp), which leads

to maxt,sp P (t, sp).
ELSE, refine transformation parameter, t, based on es-

timated (t, sp) and A to maximize P (SP |t, sp, A).

3. Estimate the partition A that leads to maxA P (A|t, sp)
with estimated (t, sp). Iter = Iter + 1.

4. Repeat steps 2 and 3, until (6) remains unchanged.

Details of each step are described as follows:

4.2.1 Estimation for (t, sp)

By definition, the maximum P (t, sp) will be based on

the minimum E(t, sp, A = Lt,sp), and the shape fitness

term in (3) has no impact. Therefore, the problem could

be refined as the estimation of (t, sp), which leads to

mint,sp E(t, sp, A = Lt,sp). Here, we rewrite the objective

energy function as,

E(t, sp, A) =
∑

(x,y)∈Ω

E(A(x, y) = 1) · Lt,sp(x, y) (9)

+
∑

(x,y)∈Ω

E(A(x, y) = 0) · (1 − Lt,sp(x, y))

+ µ
∑

(x,y)∈Ω

we · |∇Lt,sp(x, y)|

where, A = Lt,sp; Ω is the image domain; and the constant

(1 − λ) has been dropped for clarity. Our analysis indi-

cates that the smoothness energy in (3) has little impact on

the estimation of (t, sp), because once shape information is

necessary for improving robustness, it means that the edge

information may not be reliable due to overlapping objects

or ambiguities in feature-based representation. Hence, by

setting µ = 0, we can simplify the estimation problem. The

objective energy is minimized by fixing sp, and applying

the gradient descent with respect to the transformation pa-

rameters:

∂Sx

∂t
=

∑

Ω

K · Lx⋆

(SHy sin θ + cos θ)(x − b1)

S2
x(1 − SHxSHy)

−
∑

Ω

K · Ly⋆

(SHy cos θ − sin θ)(x − b1)

S2
x(1 − SHxSHy)

(10)



∂Sy

∂t
= −

∑

Ω

K · Lx⋆

(SHx cos θ + sin θ)(y − b2)

S2
y(1 − SHxSHy)

−
∑

Ω

K · Ly⋆

(SHx sin θ − cos θ)(y − b2)

S2
y(1 − SHxSHy)

∂SHx

∂t
=

∑

Ω

K · Lx⋆

(SHy sin θ + cos θ)(y − b2)

Sy(1 − SHxSHy)2

−
∑

Ω

K · Lx⋆

SHy(SHy sin θ + cos θ)(x − b1)

Sx(1 − SHxSHy)2

+
∑

Ω

K · Ly⋆

SHy(SHy cos θ − sin θ)(x − b1)

Sx(1 − SHxSHy)2

−
∑

Ω

K · Ly⋆

(SHy cos θ − sin θ)(y − b2)

Sy(1 − SHxSHy)2

∂SHy

∂t
= −

∑

Ω

K · Lx⋆

(SHx cos θ + sin θ)(x − b1)

Sx(1 − SHxSHy)2

+
∑

Ω

K · Lx⋆

SHx(SHx cos θ + sin θ)(y − b2)

Sy(1 − SHxSHy)2

−
∑

Ω

K · Ly⋆

(SHx sin θ − cos θ)(x − b1)

Sx(1 − SHxSHy)2

+
∑

Ω

K · Ly⋆

SHx(SHx sin θ − cos θ)(y − b2)

Sy(1 − SHxSHy)2

∂θ

∂t
= −

∑

Ω

K · Lx⋆

(SHy cos θ + sin θ)(x − b1)

Sx(1 − SHxSHy)

−
∑

Ω

K · Lx⋆

(SHx sin θ − cos θ)(y − b2)

Sy(1 − SHxSHy)

−
∑

Ω

K · Ly⋆

(SHy sin θ + cos θ)(x − b1)

Sx(1 − SHxSHy)

+
∑

Ω

K · Ly⋆

(SHx cos θ + sin θ)

Sy(1 − SHxSHy)

∂b1

∂t
=

∑

Ω

K · Lx⋆

SHy sin θ + cos θ

Sx(1 − SHxSHy)

−
∑

Ω

K · Ly⋆

SHy cos θ − sin θ

Sx(1 − SHxSHy)

∂b2

∂t
= −

∑

Ω

K · Lx⋆

SHx cos θ + sin θ

Sy(1 − SHxSHy)

−
∑

Ω

K · Ly⋆

SHx sin θ − cos θ

Sy(1 − SHxSHy)

where L is the fixed labeling function representing the shape

prior, sp, and Lt,sp is related to L via Equation 5, and

Lx =
∂L

∂x
, Ly =

∂L

∂y
,

K = E(A(x, y) = 1) − E(A(x, y) = 0)

t is initialized by: S0
x = S0

y = 1, SH0
x = SH0

y = 0,

b0
1 = Cx, b0

2 = Cy , and θ0 = 0, where (Cx, Cy) is the

centroid of the user-specified rectangular region; in cases

of single-object segmentation per image without a bound-

ing box, (Cx, Cy) is taken as the centroid of foreground

strokes. For each sp ∈ SP , we perform the gradient descent

approach to get a minimum energy and the corresponding

transformation parameters, t. The (t, sp), which leads to

the minimum among the minimum energies, is chosen as

the estimated (t, sp).

4.2.2 Estimation for A

Similar to the estimation of (t, sp), maximizing P (A|t, sp)
is equivalent to minimizing E(t, sp, A). In other words, the

problem can be converted to estimating A, which leads to

minA E(t, sp, A) with fixed (t, sp). We have opted to use

the graph cut algorithm [2] for its efficiency. With esti-

mated (t, sp), we construct a classical two-terminal graph

with weights, shown in Table 1, and perform the graph cut

algorithm to get the optimal partition, A.

Edge Weight For

∞ p ∈ F
p → S 0 p ∈ B

(1 − λ)E(Ap = 0) + λL′
p Otherwise

0 p ∈ F
p → T ∞ p ∈ B

(1 − λ)E(Ap = 1) + λ(1 − L′
p) Otherwise

w{p,q} (1 − λ)µ · we(p, q) {p, q} ∈ N

Table 1. Edge weights for the graph construction. F and B are

user-specified foreground and background samples, respectively.

Ap = A(p), L′

p = Lt,sp(p).

4.2.3 Refinement for t and A

After the first iteration, t is refined to further maximize

P (SP |t, sp, A) via the gradient descent method, which is

not listed in this paper, due to space limitation. With

the refined t, the optimal partition, A, is re-computed, as

described in Section 4.2.2. Notice that we did not use

P (I|t, sp, A) to refine A, the rationale being that, without

shape information, this data fitness term could be mislead-

ing for the segmentation; however, it plays an important

role for overall optimization by compromising between the

shape fitness and data fitness. The iterative procedure stops

when (6) is optimized.

4.3. Specification of User Interaction

Two types of user interactions are supported with differ-

ent functionalities:



1. Boxed Regions: Unnecessary for single-object seg-

mentation per image. The desired object is strictly

within the rectangular region.

2. Stroke: Necessary. Pixels marked by “red” strokes

and “blue” strokes are labeled as foreground and back-

ground features, respectively.

The roles of “Boxed Region” are to (i) initialize the cen-

troid of the object, (b0
1, b

0
2), as the centroid of the rectan-

gle, (Cx, Cy); and (ii) enable the multi-object segmentation

within one image by converting the problem into several sub

segmentation problems within each rectangular region.

Note: The strokes within one specific rectangular region

are for that specific sub segmentation only. The strokes out-

side all rectangular regions are for all sub segmentations.

5. Experimental Results

We have applied our approach to both natural and syn-

thetic images incorporating complex color and texture fea-

tures. In our experiments, we used an 8-neighborhood

system for graph construction, and represented color in

the RGB space. Texture features were extracted by

the Gabor filter banks, in which σ ∈ {2, 3} and θ ∈
{0, π

6 , π
3 , π

2 , 2π
3 , 5π

6 }, and λ, µ for each experiment are

listed in the caption of the corresponding figure. For multi-

object segmentation, we constructed a graph for each rect-

angular region to compute the sub segmentation separately.

All the shape priors were drawn by hand.

Figure 3 shows the segmentation of four leaves (three

of them are maple leaves) in one image, where Figure 3(b)

gives the shape priors used for segmentation, Figures 3(e)-

(h) are the auto-selected priors with estimated poses by our

approach, and Figures 3(i)-(l) indicate the segmentation re-

sults. For comparison, we set λ = 0 when computing

E(t, sp, A) to drop the shape prior in the estimation pro-

cess, which led to the traditional graph cut method. Fig-

ure 3(d) shows the best segmentation result produced by

traditional graph cut with the same foreground and back-

ground seeds, which is erroneous due to the ambiguities

in the foreground and background features, whereas, this

problem is well solved by our approach. Figures 4-6 show

three more examples with seven segmented objects. Each of

them has at least one challenging problem, such as feature

ambiguity, or missing or overlapping parts, which further

demonstrates the effectiveness of our approach.

Freedman and Zhang’s approach has additional require-

ments of the strokes to indicate the center and pose of the

object, which leads to increased sensitivity to initialization.

Thus, for comparison, we emulated Freedman and Zhang’s

strokes to meet these requirements. Figure 7 shows an im-

proved performance of our approach over [10], which is

mainly due to our extended capture range for transforma-

tion, and iterative optimization strategy. Generally, we con-

sider the work in [10] to be a specific, simplified case within

our framework.

One might question how accurate the shape prior should

be to ensure a satisfactory result. In our approach, the shape

prior should express the main structure of the object within

an affine transformation. For example, the shape prior for

the “plate” in Figure 4 is an ellipse, and the segmentation

of the letters in Figure 6 was based on priors with different

fonts and affine transformation. However, there are cases

that more accurate shape information is required to solve

the ambiguity, such as the claws of the “cabrite” in Figure 5.

With respect to the optimization efficiency, in all our cases,

the method converged in less than 4 iterations.

6. Conclusion and Future Work

We have developed an interactive image segmentation

approach with the shape prior models in a well-defined

Bayesian framework. The method allows the incorporation

of multiple shape priors, from which the best shape prior

and its transformation parameters are estimated efficiently,

and enables multi-object segmentation in one image. Our

experimental results indicate that our method leads to sat-

isfactory results in complex cases, where feature ambigu-

ity, overlapping objects, and missing parts can exist. Fu-

ture work will focus on the incorporation of (i) more com-

plex shape deformation, and (ii) automatic shape detection.

(a) (b) (c)

(d) (e)
Figure 7. Comparison between our approach and the method

in [10] based on the same user strokes and shape prior.(a) User

strokes; (b) distance map estimated by the method in [10]; (c) seg-

mentation result via the method in [10]; (d) Lt,sp estimated by our

approach; and (e) segmentation results via our approach.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Figure 3. Segmentation for maple leaves with λ = 0.2, µ = 100: (a) User input through mouse strokes and bounding box; (b) shape priors;

(c) user interaction for graph cut; (d) segmentation result through graph cut; (e)-(h) estimated Lt,sp for the four leaves; (i)-(l) results from

the proposed method.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 4. Segmentation for the mug and plate with λ = 0.5, µ = 100: (a) User input through strokes and bounding box; (b) shape priors;

(c) user input for graph cut; (d) segmentation result from graph cut; (e)(f) estimated Lt,sp; and (g)(h) results from the proposed method.

[2] Y. Boykov and V. Kolmogorov. An experimental com-

parision of min-cut/max-flow algorithms for energy

minimization in vision. In IEEE Transaction on PAMI,

26(9):1124–1137, 2004. 5

[3] Y. Boykov, O. Veksler, and R. Zabih. Fast Approxi-

mate Energy Minimization via Graph Cuts. In IEEE

Transaction on PAMI, 23(11):1222–1239, 2001. 1, 2

[4] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic ac-

tive contours. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision, pages 694–

699, 1995. 1



(a) (b) (c) (d)
Figure 5. Segmentation for the cabrite image with λ = 0.5 and µ = 100: (a) user input for both our method and the graph cut approach;

(b) shape prior; (c) segmentation result via graph cut; and (d) segmentation result via with our approach.

(a) (b) (c) (d)
Figure 6. Segmentation for synthetic textured letters: The first three letters are in “Arial,” the last one is in “Times New Roman”, and the

prior shapes are in “Arial” with λ = 0.2 and µ = 100. (a) User input for both our method and the graph cut approach; (b) shape priors; (c)

segmentation results via graph cut; and (d) segmentation results via our approach.

[5] T. Chan and W. Zhu. Level set based shape prior seg-

mentation. In Proceedings of the Conference on Com-

puter Vision and Pattern Recognition, pages 1164–

1170, 2005. 1

[6] T.F. Chan and L.A. Vese. Active contours with-

out edges. IEEE Transactions on Image Processing,

10:266–277, 2001. 1

[7] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, and

A.Schrijver. Combinatorial Optimization. John Wiley

& Sons, 1998. 2

[8] D. Cremers, N. Sochen, and C. Schnorr. To-

wards recognition-based variational segmentation us-

ing shape priors and dynamic labeling. In Int. Conf.

on Scale Space Theories in Computer Vision, pages

388–400, 2003. 1

[9] L. Ford and D. Fullkerson. Flows in Networks. Prince-

ton University Press, 1962. 2

[10] D. Freeman and T. Zhang. Interactive graph cut based

segmentation with shape priors. In Proceedings of the

Conference on Computer Vision and Pattern Recogni-

tion, pages 755–762, 2005. 1, 2, 3, 6

[11] D. Geeig, B. Porteous, and A. Seheult. Exact max-

imum a posteriori estimation for binary images. In

Jorunal of the Royal Statistical Society, 51(2):271–

279, 1989. 1

[12] S. Geman and D. Geman. Stochastic relaxation, Gibbs

distribution and the Bayesian restoration of images. In

IEEE Transaction on PAMI, 6(6):721–741, 1984. 2

[13] A. V. Goldberg and R. E. Tarjan. A new approach to

maximum-flow problem. In Journal of the Association

for Computing Machinery, 35(4):921–940, 1988. 2

[14] H. Ishikawa. Exact optimization for Markov Random

Fields with convex priors. In IEEE Transaction on

PAMI, 25(10):1333–1336, 2003. 2

[15] Y. Li, J. Sun, C.K. Tang, and H.Y. Shum. Lazy snap-

ping. In Proc. of ACM SIGGRAPH, pages 303–308,

2004. 1

[16] S. Osher and J. Sethian. Front propagation with

curvature dependent speed: Algorithms based on

Hamilton-Jacobi formulation. Journal of Computa-

tional Physics, 79:12–49, 1988. 1

[17] C. Rother, V. Kolmogorov, and A. Blake. Grabcut -

Interactive foreground extraction using iterated graph

cuts. In Proc. of ACM SIGGRAPH, pages 309–314,

2004. 1

[18] S. Roy. Stereo without epipolar lines: A maximum-

flow formulation. In International Journal of Com-

puter Vision, 34:147–162, 1999. 2

[19] V.Kolmogorov and R.Zabih. What energy functions

can be minimized via graph cuts. In IEEE Transaction

on PAMI, 26(2):147–159, 2004. 2

[20] T. Zhang and D. Freeman. Tracking objects using den-

sity matching and shape priors. In Proceedings of the

IEEE International Conference on Computer Vision,

pages 1056–1062, 2003. 2


