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Abstract

Classifying an event captured in an image is useful for
understanding the contents of the image. The captured
event provides context to refine models for the presence and
appearance of various entities, such as people and objects,
in the captured scene. Such contextual processing facili-
tates the generation of better abstractions and annotations
for the image. Consider a typical set of consumer images
with sports-related content. These images are taken mostly
by amateur photographers, and often at a distance. In the
absence of manual annotation or other sources of informa-
tion such as time and location, typical recognition tasks
are formidable on these images. Identifying the sporting
event in these images provides a context for further recog-
nition and annotation tasks. We propose to use the domain-
specific saliency of the appearances of the playing surfaces,
and ignore the noninformative parts of the image such as
crowd regions, to discriminate among different sports. To
this end, we present a variation of the hidden-state condi-
tional random field that selects a subset of the observed fea-
tures suitable for classification. The inferred hidden vari-
ables in this model represent a selection criteria desirable
for the problem domain. For sports-related images, this se-
lection criteria corresponds to the segmentation of the play-
ing surface in the image. We demonstrate the utility of this
model on consumer images collected from the Internet.

1. Introduction

The ease and convenience of digital photography rela-
tive to film photography have resulted in an explosion in the
number of personal photographs. The size of these collec-
tions presents difficulty in browsing and searching for speci-
cific images in these collections, obviating the need of a sys-
tem that could select a subset of such collections based upon
rich queries like “Alice playing tennis” or “Bob at a soccer
game”. In the absence of effective content-based image re-

Figure 1. Most people will identify the sporting event in this im-
age as “tennis”, and associate tags like “French Open” and “clay
court” with this image. A careful observer may also add “Rafael
Nadal” and “serving” to the annotation. The scope of this work
is to recognize the sporting event, which can be seen as providing
context for subsequent tasks such as identifying people, venue, and
activity.

trieval systems, retrieving images relevant to such queries
is dependent on the meta-information associated with the
images such as tag words. Manually annotating individual
images with key words, however, is a tedious task, which
motivates the need for the automatic generation of intelli-
gent annotation for images.

Consider the image shown in Figure 1, which is a typ-
ical sample from a personal photo collection. Identifying
the sporting event, i.e., tennis, in this image would provide
context for recognizing the venue and the player. The cap-
tion of Figure 1 shows examples of the desired annotations,
some of which are difficult to generate using the appearance
of the corresponding image regions alone. In particular, at
the current resolution, even a very sophisticated face recog-
nizer [9] will find it difficult to identify the player in this
image. Using the context that this image captures a game
of tennis played on clay court in the year 2007, however,
makes the identity of the player as Rafael Nadal more likely
than Bjorn Borg or Tiger Woods.
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Figure 2. A typical image in a personal collection is usually cap-
tured while sitting in the spectator area, and often has a wide-angle
view of the sporting event with crowd covering most of the image
region. While the resolution of such images is often too low to
recognize sport accessories such as a ball or a racquet, the playing
surface stands out as a reliable and robust source of information to
identify the sporting event.

1.1. Playing Surface

Sports related images in a personal collection are usually
captured while sitting in the stands, and are at a distance
from the playing surface (see Figure 2 for an example).
Spectators occupy significant areas in these images, yet pro-
vide little information about the sporting event. These im-
age regions can be potentially distractive to the algorithms
that analyze the general scene statistics to classify the sport-
ing event shown in an image (basketball, in Figure 2). Ig-
noring the crowd regions in such images of most popular
sports, it is reasonable to assume: (a) the playing surface
for a single sport is consistent across different venues and
over time; and (b) the markings on the ground are different
for different sports, e.g., a lot of parallel lines on a (Amer-
ican) football field for yard markings as opposed to a dia-
mond on a baseball field. These observations motivate the
utility of identifying and characterizing the playing surface
for recognizing the sport shown in an image.

To characterize it in terms of its distinctive markings, the
playing surface needs to be segmented in a given image,
which is a nontrivial task. We present a novel variation of
the hidden-state conditional random fields, selective hidden
random fields, which jointly segments a region of interest
and selects the features computed on it to classify the event.
This model can be applied to domains that require a selec-
tive processing of data. For example, an autonomous vehi-
cle can use it to determine a parking lot or a crossing using
the markings on the surface while ignoring the image re-
gions that are unlikely to be labeled as road or horizontal.

1.2. Related Work

Image understanding is a well-studied field in computer
vision. While a general-purpose system for interpreting the

scene captured in an image is unlikely to materialize in the
near future, some systems have achieved appreciable results
in domain-specific settings. Recent advances were made
by Hoiem et al. [7], however, the related work dates back
decades to VISIONS [5]. The scope of our work is lim-
ited to the classification of popular sporting events that are
played on a horizontal surface such as tennis and soccer;
sports involving uneven terrain like golf and skiing are be-
yond the scope of this work.

Most of the research in event classification is focused on
video data, where the trajectories of objects or people [8]
are used to recognize different events. Specific to sports
videos, several groups like Messer et al. [17] and Kittler
et al. [12] developed systems for semantic annotation and
summarization. Despite the abundance of sports-related im-
ages (as opposed to videos) on the Internet and in personal
collections, little research has been done towards classify-
ing sporting events or identifying players in still images.
One of the most relevant works is Li et al.’s [14], where the
scene structure and general image statistics are used to clas-
sify the images of eight sporting events like bocce, sailing,
and snowboarding. Their work goes beyond event classi-
fication and makes annotation for image regions as well.
Their work, however, relies on highly discriminative gen-
eral scene statistics of different sporting events, which is not
effective for discriminating among sports with very similar
global appearances such as soccer and American football.
For these highly similar event classes, some additional in-
formation about the scene context is required.

Berg et al. [2] and Jain et al. [10] used the context from
the captions associated with images to cluster face images
according to the identity of different people, but they ig-
nored building a visual context. Because their data set was
collected from news sources, the associated captions were
very reliable and informative of the image content. Con-
sumer images, on the other hand, do not have such informa-
tion available with them, and thus require the context to be
built from the visual cues only, which is the primary focus
of this work.

To extract the distinct domain-specific features, the fore-
ground object (playing surface, for sports images) needs to
be segmented in an image. The training images are anno-
tated with the class label but not the segmentation, which
must be inferred. Hidden-state conditional random fields
(HRF) [20] include latent variables to represent similar be-
havior. Several of its variants were found to be useful in
different applications such as gesture recognition [21] and
learning discriminative parts (LHRF) [11]. Both HRF and
LHRF require that the segmentation of the foreground ob-
ject be observed for the training images. The unavailability
of these labels makes these models unsuitable for our data
set. We present another model from this family for the se-
lection of features that are part of the foreground and are



useful for the classification task. To represent this joint cri-
terion, we model the segmentation label for the foreground
as a hidden variable, and the event class as the unobserved
variable. Note that for a general set of features, the hidden
variables need not correspond to the selection criteria, but
for our choice of features, the learned hidden variables have
the desired semantics.

2. Methodology

Instead of using a decision theoretic framework for pro-
cessing the data sequentially, we obtain several higher level
abstractions such as lines and horizontal planes for an image
and collectively use them to perform the required classifica-
tion task. The abstractions used in our system are discussed
in this section, and the joint probabilistic framework that
uses these components is presented in Section 3.

2.1. Building Line Hypotheses

The markings on the playing surface are not very easy
to recognize due to the perspective view, image resolution,
occlusions, and other imaging artifacts. To approximate
these markings, we use collections of straight lines and the
pairwise interactions (intersections and parallelism) among
them. Kosecka et al. [13] used straight lines to estimate
the vanishing points in an image, which helps in building a
hypothesis for the orientation (horizontal or vertical) of dif-
ferent image regions. We use their approach to determine
long line segments in an image, and compute a histogram
of orientations weighted by the length of the line segments.
This histogram is rotated to center around the most frequent
orientation to compensate for some changes in the viewing
angle. The average orientation histograms for the lines de-
tected on the entire image and the playing surface are shown
in Figure 3.

2.2. Super-pixel Representation

Pixels are fundamental entities in an image, but a raw
pixel-based representation is very high-dimensional. Pix-
els in an image with very similar appearances in terms of
color or texture can often be collected into regions or seg-
ments, which reduces the dimensions of the image represen-
tation with a slight information loss. Selecting the permis-
sible variations within a segment depends on the goal of the
application. One such criterion is to group the pixels into a
super-pixel representation based on the similarity in appear-
ance. The resulting segments can be succinctly represented
by computing statistical quantities like moments over them.

We are interested in extracting the image regions corre-
sponding to the horizontal planes, crowd, players, and re-
lated semantic groups. Instead of designing specific ana-
lytical criteria for merging the pixels, we adopt a general-
purpose technique to obtain super-pixels based on the
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Figure 3. Average distribution of the cumulative length of lines
detected in the entire image (top) and on the playing surface (bot-
tom). The lines are clustered by their orientation, and the resulting
histogram is rotated to center around the bin with maximum cu-
mulative length. The distribution at the bottom is more useful for
discrimination among the classes than is the distribution on the
top.

Type Features
Location and shape

Position normalized mean x,y
Shape area, second moment

Appearance
Color mean(RGB), mean(HSV)

Texture mean(8 DOOG filter responses)
Geometry
Single line histogram of lines in 9 orientations

Pair of lines no. of intersections
length of parallel lines

Table 1. Features computed for every super-pixel. DOOG filters
refer to the difference of oriented Gaussian filters.

color/appearance without using any related context. In par-
ticular, we use the mean-shift approach suggested by Co-
maniciu and Meer [4]. For each super-pixel, we compute
several features to describe its location, shape, appearance,
and geometry (see Table 1).

2.3. Inference of Surface Orientation

The super-pixel representation is limited by the spatial
neighborhood of pixels in the image, so the super-pixels
that do not share a boundary are not merged irrespective of
the similarity in their appearances. A naı̈ve algorithm can
compare all pairs of super-pixels for a possibility of merg-
ing, but it is nontrivial to determine whether a super-pixel
is part of the playing surface. Hoiem et al. [6] developed



Figure 4. Surface orientation annotation obtained by Hoiem et
al. [6]. Green color represents horizontal and red represents ver-
tical. For this work, we ignore the subdivisions of the vertical
surfaces: planar orientations (arrows), nonplanar solid (‘x’) and
porous (‘o’). The left image shows the results on an outdoor scene
with buildings, and the right image shows the results on a sports-
related image. While their results are very impressive on street
scenes, we did not find the learned statistics to be useful in model-
ing the surface orientations in sports images.

a system that classifies the orientation of different surfaces
in an image as horizontal and vertical. They obtained very
impressive results on outdoor scenes containing streets and
buildings. The features and statistics learned for their do-
main are not useful in analyzing the sports-related images,
as the edges in the three principle coordinate axes are not
uniformly present in all the sports images. Figure 4 shows
examples of annotations obtained using their approach.

For every super-pixel, we compute the features shown in
Table 1. We labeled all the super-pixels of a few images as
horizontal or non-horizontal and used them to train a sup-
port vector machine (SVM) classifier. An SVM classifier is
trained to minimize the cumulative error for all the training
samples. Since the non-horizontal super-pixels occur about
forty times more frequently than the horizontal super-pixels,
the learned classifier generates a large number of false neg-
atives for the minority class (horizontal, in this case). Since
we want to minimize the average class error, we use the
synthetic minority over-sampling technique (SMOTE) [3]
to rectify the imbalance in the class frequencies. Using the
output of this classifier, we define the following probability
measure to represent the confidence in the predicted orien-
tation:

p(horizontal|d) =
exp(d)

1 + exp(d)
, (1)

where d is the distance from the separating hyper-plane in
the projected space obtained by the SVM classifier.

2.4. Interest Points and Regions

We avoid considering the complete set of image patches
over all sizes, shapes, and resolution by sub-sampling the
image using an interest point detector. In a detailed com-
parison of scale and affine invariant interest point detec-
tors [18], Mikolajczyk and Schmid found the extrema of
difference of Gaussian (DoG) operator [15], and maximally
stable extrema regions (MSER) [16] to be useful for a vari-

ety of visual scene categories. Both of these detectors, how-
ever, generate only a few samples on relatively uniform re-
gions like the horizontal playing surface in a sports-related
image. The affine invariant Harris corner detector, on the
other hand, responds to relatively local yet salient interest
points on these image regions.

We use these detectors: DoG, MSER, and affine-Harris,
to sub-sample an image, and use the scale invariant fea-
ture transform (commonly known as SIFT) [15] to repre-
sent the detected interest points. A SIFT descriptor requires
the scale at which the interest point/region is detected. The
MSER detector does not work in the scale space of an im-
age, so we normalized the image region by fitting an el-
lipse, using the method of moments, to compute the appro-
priate SIFT descriptor. A similar normalization was used
for affine-invariant Harris corners.

2.5. Bag of Visual Words

Representing an image as an unordered set of image
patches or “bag of visual words” has been found to be
useful in many computer vision tasks. The usual ap-
proach to obtain this representation is to cluster the interest
point/region representation (discussed in previous section)
into bins called “visual words”; a collection of these bins is
called a “visual vocabulary”. In this work, we cluster the
SIFT descriptors into visual words to represent an image
in terms of their occurrence frequencies in the image. We
use the k-means algorithm with cosine distance measure for
clustering these descriptors.

While this representation throws away the spatial infor-
mation for these patches, the performance of systems using
this type of representation on classification and recognition
tasks [14] are impressive. For every image, we compute the
visual words to add the global image statistics as context.

3. Selective Hidden Random Field

A selective hidden random field (SHRF) is a variation of
the hidden-state random field that has binary hidden vari-
ables to represent a selection criterion for the features com-
puted on the observed data. In the context of sports clas-
sification, these binary hidden variables are used to infer
whether a given image region is a part of the horizontal
playing surface. Figure 5 shows the factor graph repre-
sentation of this model. xi represents the information ex-
tracted from the ith super-pixel of an image using different
experts such as edge detectors, appearance features, and vi-
sual vocabulary. hi is a latent binary variable representing
the surface orientation of the ith super-pixel, and s repre-
sents the sports label for the image. The boxes represent the
factors computed for the connected variable nodes; factors
of the same color are of the same form and share parame-
ters. Given a set of observations x and the parameters θ, the



Figure 5. Factor graph representation of Selective Hidden Ran-
dom Field. In this graphical model, the node s represents the sport
label, and hi and xi represent the surface annotation and observed
features for the ith super-pixel, respectively. A blue box represents
the local evidence for the surface annotation of a super-pixel, a
green box denotes compatibility between the annotations for con-
nected super-pixels, a purple box represents the contribution of a
super-pixel towards the sport label for the image, and the black
box represents the prior probabilities for different sporting events.
Note that some of the edges (e.g., the edge connecting the green
box between hi and hk with xi) are omitted for clarity. Best seen
in color.

conditional probability of a class (sports) label s is modeled
as:

p(s|x, θ) =
∑

h

p(s,h|x, θ) =
∑

h exp(ψ(s,h,x; θ))∑
s

∑
h exp(ψ(s,h,x; θ))

,

(2)
where

ψ(s,h,x; θ) =
∑

i

φb
i (xi, hi) +

∑

i,j∈E

φg
ij(hi, hj , xi, xj)

+
∑

i

φp
i (s, hi, xi) + φk(s). (3)

In Equation 3, (i, j) ∈ E implies that the ith and jth

super-pixels share a boundary, and are similar in appear-
ance. The factors φ have the following semantics:

• Horizontal plane hypothesis (blue box): For every
super-pixel, we compute a value f1(xi) reflective of its
likelihood of having a horizontal orientation. In partic-
ular, we use the probability measure obtained from the
surface classifier (Equation 1).

φb(hi, xi) = θT
b [δhi=1f1(xi) δhi=0(1 − f1(xi))]T .

(4)

• Neighborhood compatibility (green box): For every

pair of connected1 super-pixels, we compute a value
f2(xi, xj) representing the similarity in appearance
between the two. This helps us make consistent an-
notation for neighboring super-pixels. We use the co-
sine similarity between the feature vectors for the two
super-pixels.

φg(hi, hj , xi, xj)
= θT

g [δhi=hj
f2(xi, xj) δhi �=hj

(1 − f2(xi, xj))]T(5)

• Selection of super-pixels for features (purple box):
The purpose of this potential is to select the super-
pixels that are labeled as part of the playing surface,
and use the features f4(xi) computed on them to de-
termine the sporting event.

φp(s, hi, xi) = sT θT
p [f4(xi)δhi=1]T (6)

• Prior information about the occurrence of sport (black
box): This potential represents a prior information
about the frequencies of different sporting events in a
data set. For example, if the owner of the collection
is passionate about soccer and tennis, but would rarely
go to a baseball game, the corresponding prior would
have more probability mass for soccer and tennis than
baseball. For our data set, we are assuming a uniform
prior.

φk(s) = 1 (7)

Given the parameters θT = [θT
b θT

g vec(θp)T ] and ob-
served image x, the label is given by argmaxsp(s|x, θ)
(specified in Equation 2). The parameters θ are estimated
by maximizing

L(θ) =
∑

d

log p(sd|xd, θ) − 1
2σ2

‖θ‖2, (8)

where the first term is the conditional log-likelihood of the
training data and the second term represents a Gaussian
prior on the parameter values. We use a conjugate-gradient
method for this optimization. Computing the gradient of
L(θ) and p(s|x, θ) involves the evaluation of quantities like
the partition function Z(s|x, θ) =

∑
h exp(ψ(s,h,x; θ)).

The presence of cycles in the connectivity graph prevents
the use of exact methods for inference of these quantities.
Thus, we resort to loopy belief propagation [19] for doing
approximate inference in this graph.

1We apply different heuristics, such as sharing of boundary and thresh-
old on similarity in appearance, to reduce the connectivity in graph, as
opposed to a fully connected graph. This is done to ensure that the approx-
imate inference algorithm converges.



Training set Average class accuracy
original data 55.87 ± 3.70

data balanced by SMOTE [3] 89.58 ± 2.33

Table 2. In a given sports image, the regions that are part of the
playing field are more in number than the regions that are not.
Such imbalance in class frequencies often affect the performance
of a classifier on the minority class if it is trained by minimizing
the cumulative error. This table shows a big boost in average class
accuracy for an SVM classifier for the playing surface when the
class frequencies in the training data are balanced.

4. Data Set

We collected sports images from Flickr [1], an online
photo management and sharing application that provides an
API that supports multiple word queries for searching, list-
ing, and downloading images. We used some sports team
names and venues as queries to construct a data set of im-
ages of five popular sports: baseball, basketball, football,
soccer, and tennis. We discarded the images without a sig-
nificant view of the playing field, but did not restrict the
images to include the entire view of the field. Some of the
images include players, balls, or other objects, occluding
the distinctive markings on the ground.

The data set contains 2449 images with roughly the same
number of images for each sport. We split the data set into
three parts: 50% for training, 25% for validation, and 25%
for testing. The training and validation sets are used for
tuning the parameters, and the test set is used for the final
evaluation.

5. Experiments

We labeled all of the super-pixels of a few images (100
images each for training and testing) as horizontal or non-
horizontal, to evaluate the SVM classifier for the playing
surface (Section 2.3). Table 2 shows a significant improve-
ment in the average class accuracy by removing the class
imbalance in the training data.

To evaluate the proposed model, we consider the follow-
ing approaches:

• SVM: We train a linear SVM for each of the three
representations discussed in Section 2: visual vocab-
ularies, line features, and super-pixel features, to ob-
tain baseline accuracy values for comparison. Finally,
we concatenate these representations together and train
another SVM for it. For every choice of features, we
compare the computation of features on (a) the entire
image, and (b) the predicted horizontal surface. The
obtained results verify our hypothesis about the utility
of the playing surface.

• CRF+SVM: We build a CRF similar to our proposed

model by modeling hidden hi variables as target and
removing the sports node s, to obtain the segmenta-
tion of the playing surface. We trained this model on
the same examples used for training the SVM classi-
fier for playing surface (Section 2.3). We observe an
improvement of about four percent in the labeling ac-
curacy by exploiting the consistency of labeling in the
spatial neighborhood. Some example annotations are
shown in the fifth row of Figure 6. This improvement
in the segmentation performance motivates the proba-
bilistic modeling of the consistencies across the neigh-
bors.The super-pixels that are labeled as horizontal are
used to compute the features that are fed into an SVM
to classify the sporting event.

• HRF: We implemented a hidden random field similar
to Quattoni et al.’s model [20] for gesture recognition
with appropriate choice of potential functions. This
method automatically learns the discriminative parts
for different objects. This framework is not apt for
our problem as the object of interest, i.e., the play-
ing surface, is very similar in appearance across dif-
ferent sports, and the field markers – and not the im-
age patches – are the discriminative components. The
classification results obtained with this model are not
competitive with other approaches discussed here, and
the learned hidden variables do not correspond to the
orientation of the image regions. Note that this imple-
mentation does not use the orientation labels obtained
for a few images.

• SHRF: Our proposed model, selective hidden random
field (see Section 3).

Rows 2-3 of Figure 6 show some of the features com-
puted on the example images (shown in row 1) of differ-
ent sports. The last four rows show a qualitative compari-
son of the predicted surface annotations obtained using the
above-mentioned approaches. Table 3 compares the aver-
age class accuracies for 5-fold cross validation. The pro-
posed model consistently outperforms the other approaches
in average class accuracies and provides more accurate seg-
mentation of the playing surface. Another key observation
in the comparison between SHRF and CRF+SVM is that a
joint segmentation-classification approach improves upon a
sequential segmentation-classification approach.

6. Discussion

This paper makes three contributions: (a) It presents se-
lective hidden random fields that simultaneously does the
segmentation of the object of interest and uses it for classifi-
cation. (b) It demonstrates the utility of exploiting domain-
specific saliency for event classification, i.e., identifying



Figure 6. Features and predicted surface orientation: The top row shows example images of five different sports. The second row shows
the line hypotheses generated for the example images, and the third row shows the probability of the orientation of different image regions
to be horizontal; red represents horizontal and blue represents non-horizontal. The next four rows show the segmentation of the playing
surface obtained using different approaches. The fifth row demonstrates that the features and statistics learned by Hoiem et al. [7] for street
scenes, containing prominent horizontal and vertical surfaces in the same image, do not generalize to the sports images. Segmentations
of the playing field obtained by an independent super-pixel model (SVM, row 4) are improved by including the dependencies on the
neighbors (CRF, row 6) as the holes are filled and most of the field markers are correctly labeled. The segmentations obtained by our model
(SHRF, row 7) are similar to those of CRF, and further improves the labeling for surfaces with very dissimilar appearance for neighboring
super-pixels (see basketball image, column 2). The details of these methods are given in Section 5. Best seen in color.



Approach Avg. class accuracy
SVM

Visual Vocabulary
Super-pixel features
Line features
All features

entire horizontal
image surface

41.56 ± 1.79 44.00 ± 7.02
52.07 ± 0.81 53.24 ± 1.01
50.83 ± 4.22 55.34 ± 3.16
56.76 ± 3.40 59.92 ± 2.92

CRF + SVM 61.38 ± 2.01
HRF 31.94 ± 4.19
SHRF 65.28 ± 3.85

Table 3. Average class accuracy for sports classification. The er-
ror terms correspond to 5-fold cross-validation experiments. This
shows an improvement in performance by selecting the features on
the horizontal surface for all the types of features. The difference
is least significant in the case of visual vocabularies as the sam-
pling rate is very low on the horizontal surfaces and they tend to
represent the global image statistics. Among the type of features,
line features gave the best performance. The results for HRF are
not competitive with the other approaches.

and characterizing the playing surface to classify the sport-
ing event. (c) It attempts to solve the recognition problem
for popular sports that are more structurally challenging
than the reported effort of Li et al. [14] (facilitated by the
first two contributions).

Unlike many published data sets used for event classifi-
cation, the events included in our data set have huge intra-
class variations and inter-class similarities in the general
scene statistics. In light of the difficulty of the data set,
the improvement in performance – both accuracy and seg-
mentation results – is remarkable, which justifies the use
of the proposed model. Furthermore, we believe that the
efficacy of the proposed model is not limited to this prob-
lem domain only. This model could be used for exploiting
domain-specific contextual cues for other settings such as
autonomous vehicle navigation, where an appropriate for-
mulation of the selection criterion would replace the exist-
ing criterion for segmenting the playing surface.
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