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Abstract

Statistical model-based segmentation of the left ventri-

cle from cardiac images has received considerable atten-

tion in recent years. While a variety of statistical models

have been shown to improve segmentation results, most of

them are either static models (SM) which neglect the tem-

poral coherence of a cardiac sequence or generic dynami-

cal models (GDM) which neglect the inter-subject variabil-

ity of cardiac shapes and deformations. In this paper, we

use a subject-specific dynamical model (SSDM) that han-

dles inter-subject variability and temporal dynamics (intra-

subject variability) simultaneously. It can progressively

identify the specific motion patterns of a new cardiac se-

quence based on the segmentations observed in the past

frames. We formulate the integration of the SSDM into the

segmentation process in a recursive Bayesian framework in

order to segment each frame based on the intensity informa-

tion from the current frame and the prediction from the past

frames. We perform “Leave-one-out” test on 32 sequences

to validate our approach. Quantitative analysis of experi-

mental results shows that the segmentation with the SSDM

outperforms those with the SM and GDM by having better

global and local consistencies with the manual segmenta-

tion.

1. Introduction

Segmentation of the left ventricle (LV) from cardiac im-

ages plays an important role in quantitative functional anal-

ysis, such as ejection fraction estimation and myocardial

motion analysis. In recent years, statistical shape models

have been extensively used in LV segmentation (see [3] for

an overview). For example, Mitchell el al. proposed a mul-

tistage Active Appearance Model (AAM) to segment left

and right ventricles from cardiac MR images [7]. They later
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extended their work to segmenting 3-D images [6]. These

models, however, supply a prior just for the shape, but not

for the motion of that shape. Hence, they are static in time

and ignore the characterization of cardiac motion patterns.

The heart is a dynamic system, making time-independent

segmentation inadequate. Perperidis el al. extended 3-D

model to 4-D case by adding the temporal information [10].

They built two separate models to account for the inter-

subject variability and cardiac dynamics (intra-subject vari-

ability) respectively. While these two models were success-

fully applied to the classification of cardiac images from

normal volunteers and patients of hypertrophic cardiomy-

opathy, they are not related, making them inappropriate for

LV segmentation.

Some work has been done to build dynamical models.

Mitchell extended their AAM to 2-D Active Appearance

Motion Model (AAMM) [6]. However, it is nontrivial to

extend 2-D AAMM to segmenting a full 3-D cardiac se-

quence because of the high dimensionality. Sun proposed

to learn the cardiac dynamics using a second-order dynam-

ical model [11]. In the computer vision community, Blake

proposed to use dynamical model to track objects in a fil-

tering framework [1]. Cremers used a second-order au-

toregressive model to describe the silhouettes of a walking

person [2]. While this approach shows improvement for

gait tracking, a second-order system is insufficient to de-

scribe complex shape deformations such as cardiac dynam-

ics. Also, they learn a uniform model for all sequences,

thus ignoring the subject variability of the motion patterns,

making them generic dynamical models (GDM).

Our objective is to build a subject-specific dynamical

model (SSDM) to account for two factors that cause the

cardiac shape variability simultaneously. One factor is the

inter-subject variability, the other is the temporal dynam-

ics caused by cardiac deformation during a cardiac cycle,

as shown in Figure 1. These two factors are interactive and

cannot be separated into two independent statistical models.

Unfortunately, conventional Principal Components Analy-

sis (PCA) and Independent Component Analysis (ICA) can

1978-1-4244-2243-2/08/$25.00 ©2008 IEEE



only account for one factor at one time, and therefore are

inappropriate for our dynamical model.

subject 1

subject 2

subject n

temporal dynamics

inter-subject

variability

Figure 1. The interaction of cardiac temporal dynamics and inter-

subject shape variability.

To address this problem, we extend conventional PCA

and ICA to higher orders, and use Multilinear PCA (MPCA)

and Multilinear ICA (MICA) [12, 13] to build a dynami-

cal model that decomposes the training set in order to take

care of the temporal dynamics (intra-subject variability) and

inter-subject variability simultaneously. In addition, we de-

sign a dynamic prediction algorithm that can progressively

identify the subject vector associated with a new cardiac se-

quence and use this subject vector to predict the subject-

specific dynamics from segmentations observed in previous

frames. We formulate the integration of such SSDM into

the segmentation process in a recursive Bayesian frame-

work. This framework models the evolution of endocar-

dial (ENDO) and epicardial (EPI) surfaces driven both by

intensity information from the current frame as well as the

dynamical shape prior inferred from the past segmentations,

with the knowledge learned from the training set.

This paper is structured as follows: In Section 2, we

introduce the cardiac shape decomposition algorithm and

dynamic prediction algorithm. In Section 3, we introduce

a Bayesian formulation for the cardiac sequence segmen-

tation that integrates the intensity information and SSDM.

In Section 4, we provide experimental results and compare

them with those obtained with the static model (SM) and

GDM. Finally in Section 5, we conclude this paper. In Ap-

pendix A and B, we review the mathematical foundations

of multilinear algebra, MPCA, and MICA.

2. The construction of SSDM

2.1. Shape Alignment

Training Data We acquired 32 sequences of breath-hold

canine MR images from a GE signa 1.5 Tesla scanner. The

image acquisition was triggered by electrocardiographic

(ECG) signals recorded by a MR-compatible sensing device

to suppress noises and artifacts induced by gradient mag-

netic fields. Axial images through the LV were obtained

with gradient echo cine technique. The resulting 3-D image

set consists of 16 temporal frames per cardiac cycle, with

an in-plane resolution of 1.6mm and a slice thickness of

5mm. The cardiac sequences were temporally aligned us-

ing ECG signals. The ENDO- and EPI surfaces were manu-

ally outlined by cardiology collaborator using the BioImage

Suite Software [8] and then sampled to 0.5 voxel resolution.

In this work, we performed “Leave-one-out” test that alter-

nately selects 31 sequences to build the SSDM and leaves

one sequence to validate the automatic segmentation algo-

rithm.

Alignment The second stage is to align cardiac shapes to

a common coordinate system. In particular, we mapped all

frames of each sequence to the first frame of the first se-

quence by performing inter-subject and intra-subject regis-

trations as shown in Figure 2. We used an affine transform

to account for the global shape difference, followed by a

shape-based non-rigid transform that minimizes the differ-

ence in principal curvatures to accommodate detailed shape

differences. The accuracy of the shape-based non-rigid

transform was validated using implanted markers in [9]

Landmark Extraction and Propagation In the third stage,

we first extracted 1095 landmarks on the ENDO surface and

1200 landmarks on the EPI surface in the first frame of the

first sequence. We then propagate this set of landmarks to

all frames of each sequence using the affine and non-rigid

transforms obtained in the second stage. We illustrate this

process in Figure 2. Finally, we obtained 2295 landmarks

for each frame, and 16 frames in each sequence.

2.2. Cardiac Shape Decomposition

Appendix A reviews the basic mathematics of multi-

linear algebra, and appendix B overviews the fundamen-

tals of MPCA and MICA. We use a third-order tensor to

X ∈ R
I×J×K to represent the aligned cardiac shapes ob-

tained in Section 2.1, where I = 31 is the number of sub-

jects, J = 16 is the number of frames within a sequence,

and K = 2295 × 3 = 6885 is the dimension of the land-

mark vectors. By applying MPCA to tensor X , we obtain

X ≃ S ×1 U
subject ×2 U

motion ×3 U
landmark (1)

where S ∈ R
P×Q×R is the core tensor which represents

the interaction of the subject, motion, and landmark sub-

spaces. Matrices U
subject ∈ R

I×P , Umotion ∈ R
J×Q and

U
landmark ∈ R

K×R are the subject subspace, motion sub-

space, and landmark subspace respectively. Matrix U
subject

contains row vectors u
subject
i ∈ R

P (1 ≤ i ≤ I) of coeffi-
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Figure 2. Overview of landmark propagation. All individual data

sets are matched to an atlas, i.e. the first frame of the first se-

quence, via inter- and intra-subject registrations. The landmarks

in the atlas are then copied to the individual subjects.

cients for each person i, and matrix U
motion contains row

vectors u
motion
j ∈ R

Q (1 ≤ j ≤ J) for frame j.

While it is reasonable to apply PCA in the subject sub-

space, it is not appropriate to use it in the motion subspace

because the deformation of cardiac shapes does not have a

Gaussian distribution. Decomposition of the motion sub-

space using PCA would result in a set of mixed modes, as

shown in Figure 3. To handle this problem, we adopt ICA

in the motion subspace to obtain a set of independent modes

in the motion subspace.

X ≃ S ×1 U
subject ×2 U

motion ×3 U
landmark

= S ×1 U
subject ×2 U

motion
W

T
W

−T ×3 U
landmark

= S̃ ×1 U
subject ×2 Ũ

motion ×3 U
landmark (2)

where the core tensor S̃ = S ×2 W
−T , the column vec-

tors of Ũ
motion are the independent components of the mo-

tion subspace Ũ
motion.

To reduce dimensions, 1) we select the complete eigen-

vectors in the motion subspace, i.e. Q = J , and perform

MPCA in the subject and landmark subspaces to find the

optimal P and R such that the approximation keeps more

than 98% of the original energy; 2) we fix P and R, and

perform MICA in the motion subspace and choose Q ac-

cording to following criteria:

1. All selected modes correspond to significant shape

variations;

2. After decomposition, more than 96% of the original

energy is retained.

In practice, we reduced I = 31 to P = 5 and K = 6885
to R = 15 in the first step, and further reduced J = 16 to

Q = 3 in the second step. We kept around 98.2% of the

original energy in the first step and 96.6% of the original

energy in the second step. In the second step, we observed

three significant modes of shape variation: short-axial con-

traction, twisting of the heart, and long-axial contraction, as

shown in Figure 4.

Mode 1

Mode 2

Mode 3

Figure 3. The mixed-mode decomposition in the motion subspace

obtained with PCA. All three modes contain short-axial contrac-

tion. The dense displacement fields are obtained using the shape-

based tracking algorithm described in [9].

Mode 1

Mode 2

Mode 3

Figure 4. The significant modes of variation in the motion sub-

space obtained with ICA. Mode 1: short-axial contraction; Mode

2: twisting of myocardium; Mode 3: long-axial contraction.

2.3. Dynamic Prediction

In Section 2.2, we decomposed the cardiac shape train-

ing set into the subject subspace U
subject, motion subspace

Ũ
motion, and landmark subspace U

landmark. Thus, we can

represent a new cardiac shape using



x = S̃ ×1 u
subject ×2 ũ

motion ×3 U
landmark (3)

where u
subject is the subject vector and ũ

motion is the

motion vector. Given the segmentations of a new cardiac

sequence from frame 1 to frame t − 1, we want to predict

its segmentation in frame t. The idea is to first project the

given segmentations to the subject subspace to identify the

subject vector associated with this sequence, and then use

this subject vector to construct the LV shape in frame t.

Let x1:t−1 = {x1,x2, ...,xt−1} denote the observed

segmentation of a new cardiac sequence, we can predict the

segmentation at frame t as follows:

• Projection The subject vector associated with this se-

quence can be represented as

û
subject = x1:t−1 · T−1

(1) (4)

where T(1) is the mode-1 unfolding of tensor T =

S̃ ×2 ũ
motion
1:t−1 ×3 U

landmark.

• Prediction With this subject vector, we can predict the

segmentation in frame t as

x
∗

t = S̃ ×1 û
subject ×2 ũ

motion
t ×3 U

landmark (5)

3. Cardiac Segmentation

Assume that we are given a cardiac sequence I1:t : Ω →
R, where I1:t denotes the set of images {I1, I2, ..., It} at

different frames. Also, let Ct =
{
C

+
t ,C−

t

}
be the my-

ocardial contour at frame t, where C
+
t is the ENDO surface

and C
−

t is the EPI surface. Using the Bayesian formula, the

problem of segmenting the current frame t can be addressed

by maximizing the conditional probability

Ĉt = arg max
Ct

P (Ct|I1:t)

= arg max
Ct

P (It|Ct, I1:t−1)P (Ct|I1:t−1)

= arg max
Ct

P (It|Ct, I1:t−1)

∫

P (Ct|C1:t−1)

P (C1:t−1|I1:t−1) dC1:t−1

(a)
= arg max

Ct

P (It|Ct)
︸ ︷︷ ︸

data adherence

P
(

Ct|Ĉ1:t−1

)

︸ ︷︷ ︸

dynamic prior

(6)

As explained in [2], we make two assumptions at step

(a) of equation 6, which lead to a computationally more fea-

sible problem:

• We assume that I1:t are mutually independent, i.e.

P (It|Ct, I1:t−1) = P (It|Ct);

• We assume that the distributions of previ-

ous states to be strongly peaked around the

maxima of the respective distributions, i.e.

P (C1:t−1|I1:t−1) = δ
(

C1:t−1 − Ĉ1:t−1

)

, where

Ĉi = arg maxP (Ci|I1:i) are the estimates of

myocardial contours in the past, and δ (·) denotes the

Dirac Delta function [2].

Thus, equation 6 defines a recursive Bayesian formula

to implement sequential cardiac segmentation, in which the

segmentation of each particular time frame is based not only

on the image data at that instant, but on the predictions from

previous frames as well.

3.1. Data Adherence

Due to their robustness, region-based segmentation

methods have been successfully applied to the segmenta-

tion of images with weak edges. Here, in our approach, we

evolve a region-based deformable model based on the sta-

tistical intensity distribution from cardiac MR images.

To decide the intensity distribution of cardiac MR im-

ages, the entire image is partitioned by the ENDO- and EPI

surfaces into three regions-LV blood pool, LV myocardium,

and background, as shown in Figure 5. The LV blood pool

and myocardium are homogeneous, and therefore can be

modeled with a unimodal distribution. The most common

distribution for MR images is Gaussian (Normal) distribu-

tion.

P (I; µl, σl) =
1√
2πσl

exp

{

− (I − µl)
2

2σ2
l

}

(7)

where µl is the mean of Gaussian distribution, and σl is

its variation. For l = 1, it models the intensity distribu-

tion in LV blood pool. For l = 2, it models the intensity

distribution in LV myocardium.

LV 

Blood Pool

LV 

Myocardium
RV 

Blood 

Pool

RV Myocardium

Lung Air

Figure 5. The short-axis view of

the heart. Two dotted circles are

ENDO- and EPI contours.

Figure 6. An example of vol-

umetric MR data set with au-

tomatically extracted ENDO-

and EPI surfaces.



The background, however, is inhomogeneous (see Fig-

ure 5) because it contains more than one tissue (RV blood

pool, RV myocardium, lung air, and etc). Therefore, mod-

eling it with a single distribution would be insufficient. To

handle this problem, we used a mixture model and invoke

Expectation Maximization (EM) algorithm to fit the back-

ground histogram.

P3 (I; µ3, σ3) =
M∑

k=1

αkP3,k (I; µ3,k, σ3,k) (8)

where M is the number of components, αk is the mix-

ture proportion of component k that satisfies
M∑

k=1

αk = 1,

µ3,k and σ3,k are the mean and deviation of its component

Gaussian distribution. We show in Figure 7 the histogram

of each region with fitted distribution function.
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Figure 7. The histograms of LV blood pool, LV myocardium, and

background with their fitted distributions.

Let Ωt,1, Ωt,2, and Ωt,3 denote the LV blood pool, LV

myocardium and background in each frame t. Thus, the

data adherence term can be defined as a log-likelihood func-

tion as follow:

logP (It|Ct) = logP
(
It|C+

t ,C−

t

)

=
3∑

l=1

∫

Ωt,l

logP (It; µl, σl) dx (9)

The maximization of equation 9 can be interpreted as the

propagation of C
+
t and C

−

t that maximizes the piecewise

homogeneities.

3.2. Dynamic Prior

As shown in Section 2.3, we predict the ENDO- and EPI

contours at frame t based on the previous segmentations us-

ing equation 4 and 5. Thus, we define the dynamic prior as

follows:

P
(

Ct|Ĉ1:t−1

)

∝ exp

{

−α

∫

‖Ct − C
∗

t ‖
2
dx

/

2

}

(10)

where α is a weighting parameter, and C
∗

t is the pre-

dicted contour using the dynamic prediction algorithm de-

scribed in Section 2.3. We found in the experiment that

0.5 ≤ α ≤ 2 is applicable to most of the data sets.

3.3. Optimization

Combining equation 9 and 10, the maximization of the

posterior probability defined in the Bayesian framework can

be identified by the following Euler-Lagrange equations:

∂C
+
t

∂τ
= log

(P (It; µ2, σ2)

P (It; µ1, σ1)

)

n
+
t − α

(
C

+
t − C

∗+
t

)

∂C
−

t

∂τ
= log

(P (It; µ3, σ3)

P (It; µ2, σ2)

)

n
−

t − α
(
C

−

t − C
∗−

t

)

where n
+
t and n

−

t are the normals of C
+
t and C

−

t re-

spectively, and τ is the time step used to numerically solve

the above equations. Thus, we can recursively segment the

ENDO- and EPI contours for each frame, based on the in-

tensity information from the current frame and the predic-

tion from previous frames.

4. Experiments

In this section, we show the experimental results from

our algorithm and compare them with those obtained from

the segmentation with the SM and GDM. As mentioned

in Section 2.1, we adopted “Leave-one-out” test that al-

ternately chooses one out of 32 sequences to validate our

algorithm. Figure 8 shows the short-axis view of automat-

ically segmented ENDO-and EPI surfaces on consecutive

frames during ventricular systole. Figure 6 shows an exam-

ple of volumetric MRI data set with automatically extracted

ENDO-and EPI surfaces.

Figure 8. Short-axis view of ENDO-and EPI surfaces from MRI

images during ventricular systole. Top: ENDO, Bottom: EPI.

To quantify the accuracy of our approach, we used two

distance error metrics and two area error metrics: mean ab-



solute distance (MAD), Hausdorff distance (HD), percent-

age of true positives (PTP), and percentage of false positives

(PFP).

Let A and B be two surfaces from the automatic segmen-

tation and manual segmentation respectively. Suppose they

are represented as point sets, i.e. A = {a1,a2, ...,an} and

B = {b1,b2, ...,bm}, we define MAD and HD as follows

MAD(A,B) =
1

2







1

n

n∑

i=1

d (ai, B) +
1

m

m∑

j=1

d (bj , A)







HD(A,B) = max

{

max
i

d (ai, B) ,max
j

d (bj , A)

}

where d (ai, B) = min
j

|bj − ai|. While MAD is a

global measure of the match of two surfaces, HD reflects

their local similarities.

Let ΩA and ΩB be two regions enclosed by the surfaces

A and B respectively, we define PTP and PFP as follows

PTP =
V olume (ΩA ∩ ΩB)

V olume (ΩB)

PFP =
V olume (ΩB) − V olume (ΩA ∩ ΩB)

V olume (ΩA)

4.1. Static versus Dynamical Models

Figure 9 compares the experimental results with the SM

and SSDM. Table 1 and 2 use MAD, HD, PTP, and PFP to

quantitatively analyze the segmentation results on ENDO-

and EPI surfaces respectively. We observe that both MAD

and HD decrease with the SSDM, which implies that SM

is biased in the global sense because it is trapped easily in

the local minima. Also, we observe the SSDM improves

ENDO segmentation more than EPI segmentation because

the epicardium does not move as significantly as the endo-

cardium when the heart beats.

Figure 9. Comparing segmentation results using SM (blue) and

SSDM (red). It can be seen that the segmentation with SM, when

applied to noisy images, can easily be trapped in local minima.

Moreover, we calculated the MAD between the pre-

dicted contour and the contour from manual segmentation

Table 1. Comparison with the SM for segmentation of ENDO sur-

faces
SM SSDM

MAD(mm) 2.34 ± 0.12 0.60 ± 0.08
HD(mm) 3.54 ± 0.15 1.54 ± 0.12
PTP(%) 87.6 ± 2.44 98.7 ± 0.54
PFP(%) 12.4 ± 2.34 1.21 ± 0.49

Table 2. Comparison with the SM for segmentation of EPI surfaces

SM SSDM

MAD(mm) 3.23 ± 0.14 1.23 ± 0.09
HD(mm) 4.35 ± 0.21 1.67 ± 0.15
PTP(%) 84.2 ± 2.42 95.6 ± 0.89
PFP(%) 15.7 ± 2.43 4.5 ± 0.77

for each frame during ventricular systole (see Figure 10).

We took the mean shape of SM as its predicted contour. We

observe that SSDM progressively improves the prediction

accuracy as additional segmentations from previous frames

become available. In contrast, SM is most accurate in the

middle of cardiac systole, at which time point the LV shape

is closet to the mean shape of SM.

Figure 10. Comparing the prediction errors from the SM and

SSDM.

4.2. Generic versus Subject­Specific Dynamical
Models

In Figure 11, we compare the experimental results with

GDM and SSDM. Table 3 and 4 use MAD, HD, PTP and

PFP to present the quantitative analysis of the segmenta-

tion results on ENDO-and EPI surfaces respectively. We

observe that while the MADs from GDM and SSDM are

quite close, the HD from SSDM is significantly smaller than

that from GDM. It implies that while GDM can capture the

global deformation, it does not reflect the local shape varia-

tions.

Table 3. Comparison of GDM and SSDM for segmentation of

ENDO surfaces
GDM SSDM

MAD (mm) 0.98 ± 0.09 0.60 ± 0.08
HD (mm) 3.51 ± 0.15 1.54 ± 0.12
PTP (%) 95.7 ± 0.65 98.7 ± 0.54
PFP (%) 4.5 ± 0.65 1.21 ± 0.49



Figure 11. Comparing segmentation results using GDM (blue) and

SSDM (red). While the GDM captures the global shape deforma-

tion, it does not characterize the local shape variations.

Table 4. Comparison of GDM and SSDM for segmentation of EPI

surfaces
GDM SSDM

MAD (mm) 1.34 ± 0.10 1.23 ± 0.09
HD (mm) 3.30 ± 0.15 1.67 ± 0.15
PTP (%) 93.3 ± 0.98 95.6 ± 0.89
PFP (%) 6.7 ± 0.80 4.5 ± 0.77

We also computed the HD between the predicted con-

tours and manually segmented contours for each frame dur-

ing ventricular systole, as shown in Figure 12. We found

that the SSDM progressively improves the predictive accu-

racy while the GDM produces an almost constant error.

Figure 12. Comparing the prediction errors from GDM and

SSDM.

5. Conclusion

In this paper, we have developed a subject-specific dy-

namical model (SSDM) that accounts for the fact that a par-

ticular cardiac shape in a given frame depends on the shapes

observed in previous frames. In the training phase, we used

MPCA and MICA to decompose the cardiac shape train-

ing set into subject subspace, motion subspace, and land-

mark subspace. In the prediction phase, we projected the

segmentations in the past frames to the subject subspace to

identify the subject vector associated with this cardiac se-

quence, followed by the prediction of cardiac shapes in the

future frames with the estimated subject vector. The inte-

gration of the SSDM into the segmentation task is formu-

lated on the basis of Bayesian framework, which combines

the intensity information from the current frame and the dy-

namic prior from the past frames to estimate the LV bound-

aries. This process is repeated through a cardiac cycle.

Future work includes the development of a system that

integrates segmentation and motion analysis into a single

framework, where the motion module takes the segmented

contours as input and estimates the spatially-dense myocar-

dial displacement fields through a cardiac cycle based on

the biomechanical model [9]. The estimated displacement

fields can in turn be used to improve the segmentation re-

sults.

A. Multilinear Algebra

A tensor, also known as multi-dimensional array, is a

higher order generalization of a vector (first-order tensor)

and a matrix (second-order tensor). An element of ten-

sor A ∈ R
I1×...×In is denoted as Ai1...in

where 1 ≤
in ≤ In. The mode-n fibers of tensor A are the In- di-

mensional vectors obtained from A by varying index in
while keeping the other indices fixed. The mode-n unfold-

ing of tensor A is defined by stacking its mode-n fibers

in a particular order, as shown in Figure 13. We de-

note the n-mode unfolding of tensor A ∈ R
I1×...×In as

A(n) ∈ R
In×(In+1In+2...IN I1I2...In−1). The n-mode prod-

uct of tensor A by a matrix U ∈ R
Jn×In , denotes by A×n

U, is an (I1 × I2 × ... × In−1 × Jn × In+1 × ... × IN )-
tensor of which the entries are given by

(A×n U)i1i2...in−1jnjn+1...iN
=

∑

in

Ai1i2...in−1inin+1...iN
Ujnin

(11)

Figure 13. Unfolding of the (I1 × I2 × I3)-tensor A to the

(I1 × I2I3)-matrix A(1), the (I2 × I3I1)-matrix A(2) and the

(I3 × I1I2)-matrix A(3) ; Left: Mode-1, 2, and 3 fibers; Right:

Mode-1, 2, and 3 unfolded matrices.



B. Multilinear PCA and ICA

A matrix A ∈ R
I1×I2 is a second-order tensor that can

be decomposed using singular value decomposition (SVD)

as A = U
(1)

SU
(2)T , where U

(1) and U
(2) are orthonor-

mal matrices. In terms of the n-mode tensor products de-

fined above, this matrix product can be rewritten as A =
S×1 U

(1) ×2 U
(2). By extension, an N th-order tensor can

be decomposed using multi-linear SVD (MSVD) [5] as fol-

lows

A = S ×1 U
(1)... ×n U

(n)... ×N U
(N) (12)

where tensor S is the core tensor governing the interac-

tion between mode matrices U
(n) containing orthonormal

vectors in the column space of U
(n).

In Principal Components Analysis (PCA), we can ap-

proximate matrix A by deleting the eigenvectors associated

with the smaller singular values.

A ≃ A
′ = S

′ ×1 U
′(1) ×2 U

′(2) (13)

Dimension reduction for Multilinear PCA (MPCA) is

optimized in the least squares sense using Alternating Least

Squares (ALS) method [5]. Analogously to equation 13, we

can reconstruct tensor A as

A ≃ A′ = S ′ ×1 U
′(1)... ×n U

′(n)
... ×N U

′(N)
(14)

where S ′ ∈ RJ1×J2×...×JN and U
′(n) ∈ R

In×Jn for all

n = 1, ..., N .

Unlike PCA, Independent Component Analysis (ICA)

looks for a linear combination of a set of statistically inde-

pendent component whose non-Gaussianity is maximized.

ICA can be computed from PCA solution through the ro-

tation of the principal components such that they become

independent [4]:

A
T = U

(2)
SU

(1)T =
(

U
(2)

SW
−1

) (

WU
(1)T

)

= K
T
C

T

(15)

where W is an invertible transformation matrix com-

puted by the ICA algorithm, C = U
(1)

W
T are the inde-

pendent components, and K = W
−T

SU
(2)T are the coef-

ficients.

Analogously to equation 14, Multilinear ICA (MICA) is

obtained using the relationship between SVD and ICA as

shown above [13]:

A ≃ S ×1 U
(1) × ... × U

(N)

= S ×1 U
(1)

W
T
1 W

−T
1 ... ×N U

(N)
W

T
NW

−T
N

= S ×1 Ũ
(1)

W
−T
1 ... ×N Ũ

(N)
W

−T
N

=
(
S ×1 W

−T
1 ... ×N W

−T
N

)
×1 Ũ

(1)... ×N Ũ
(N)

= S̃ ×1 Ũ
(1)... ×N Ũ

(N) (16)

where the core tensor S̃ = S ×1 W
−T
1 ... ×N W

−T
N .
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