
Generalised Blurring Mean-Shift Algorithms for Nonparametric Clustering

Miguel Á. Carreira-Perpiñán

EECS, School of Engineering, University of California, Merced

mcarreira-perpinan@ucmerced.edu

Abstract

Gaussian blurring mean-shift (GBMS) is a nonparamet-

ric clustering algorithm, having a single bandwidth param-

eter that controls the number of clusters. The algorithm

iteratively shrinks the data set under the application of a

mean-shift update, stops in just a few iterations and yields

excellent clusterings. We propose several families of gen-

eralised GBMS (GGBMS) algorithms based on explicit, im-

plicit and exponential updates, and depending on a step-size

parameter. We give conditions on the step size for the con-

vergence of these algorithms and show that the convergence

rate for Gaussian clusters ranges from sublinear to linear,

cubic and even higher order depending on the update and

step size. We show that the algorithms are related to spec-

tral clustering if using a random-walk matrix with modified

eigenvalues and updated after each iteration, and show the

relation with methods developed for surface smoothing in

the computer graphics literature. Detailed experiments in

toy problems and image segmentation show that, while all

the GGBMS algorithms can achieve essentially the same

result (for appropriate settings of the bandwidth and step

size), they significantly differ in runtime, with slightly over-

relaxed explicit updates being fastest in practice.

Gaussian mean shift (GMS) and Gaussian blurring

mean shift (GBMS) are nonparametric clustering algo-

rithms which have received considerable recent attention

in image segmentation [7, 3, 5, 1]. Both are determinis-

tic (no initial conditions to set, unlike e.g. k–means) and
have a single user parameter, the scale or bandwidth σ > 0,
that is intuitive (being measured in pixels) and indirectly

determines the number of clusters (from many for small

σ to 1 for large σ). These algorithms do not assume a
prior model for the clusters’ shape and are thus particu-

larly suitable for segmentation (often a front-end for other

tasks such as tracking). Both GMS and GBMS are based on

a kernel density estimate of the dataset {xn}N
n=1 ⊂ R

D:

p(x) = 1
N

∑N
n=1 K

(

‖x−xn

σ ‖2)

, where we will focus on

the Gaussian kernel G(t) = e−t/2. GMS is a fixed-point

algorithm that finds the modes of p(x) by iterating

p(n|x(τ)) =
exp

(

− 1
2

∥

∥(x(τ) − xn)/σ
∥

∥

2)

∑N
n′=1 exp

(

− 1
2

∥

∥(x(τ) − xn′)/σ
∥

∥

2) (1a)

x
(τ+1) = f(x(τ)) =

∑N
n=1 p(n|x(τ))xn (1b)

starting from each data point xn. All data points converg-

ing to the same mode form one cluster. GMS is an EM

algorithm [2] that converges from any starting point but it is

very slow because its convergence order is linear (and oc-

casionally sublinear). GBMS differs from GMS in a small

but crucial detail: after one GMS iteration is carried out in

parallel for every data point, the entire dataset is updated.

Specifically, we do xn = f(xn) for every n = 1, . . . , N
and keeping f fixed. Then, the kernel density estimate (and

thus f) is recomputed based on the new dataset, and the

process is repeated. This results in a sequence of datasets

X
(0),X(1), . . . (where each X is an N × D matrix of row
vectors) that eventually converges to a datasetX(∞) with all

points coincident (x
(∞)
1 = · · · = x

(∞)
N). However, before

this happens, a phase occurs where points are locally clus-

tered. Carreira-Perpiñán [1] gave a reliable criterion to de-

tect this situation and stop the algorithm at that time (yield-

ing the clustering), and also gave an accelerated GBMS al-

gorithm that yields the same clustering; fig. 2 in that paper

shows an example of the evolution ofX(τ). In practice, ac-

celerated GBMS works very well, yielding clusters which

are very similar to those of GMS but 5–60 times faster.

Writing the GBMS update in matrix form reveals the

core operation of the algorithm and suggests ways to de-

fine new algorithms. Calling X and X̃ (both matri-

ces of N × D) the current and new datasets (at iter-
ations τ and τ + 1), then W is the N × N matrix

of Gaussian affinities wnm = exp (−‖xn − xm‖2
/2σ2),

D = diag (
∑N

n=1 wnm) is the degree matrix; and P =
D

−1
W is the N × N random-walk matrix, well-known

in spectral clustering1. Then, the GBMS update becomes

1The Gaussian random-walk matrix P is positive definite, stochastic,

with pnm ∈ (0, 1) and
PN

m=1 pnm = 1. It has a single eigenvalue 1
associated with an eigenvector of ones (P1 = 1) and N − 1 eigenvalues
in (0, 1).

1

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

repeat

W =
(

exp
(

− 1
2 ‖(xm − xn)/σ‖2))

nm

D = diag
(

∑N
n=1 wnm

)

P = D
−1

W

X = φ(P)X
until stop

connected-components
(

{xn}N
n=1, min diff

)

Figure 1. Generalised Gaussian blurring mean-shift (GGBMS).

X̃ = PX, which can be seen as a shrinking or smoothing

of X using a filter defined by P. This suggests that we can

define new algorithms by replacing P with a different filter

φ(P), thus defining the update as X̃ = φ(P)X. The ob-
jective of this paper is to study in theory and experiment the

properties of such generalised GBMS (GGBMS) algorithms,

which may guide the choice of φ in practice: how differ-
ent are their clustering results? Do they converge, and with

what order? How fast are they overall? We begin (section 1)

by introducing several useful types of updates (explicit, im-

plicit, exponential) dependent on a step-size parameter. We

then show (section 2) an important property for them: that,

for a Gaussian cluster, the updated cluster remains Gaussian

but with a smaller variance. This allows us to characterise

the conditions and order of convergence for each method.

We give a similar analysis in the context of spectral cluster-

ing (section 3), showing that each method is equivalent to

using a P matrix with the same eigenvectors but modified

eigenvalues. We give the computational cost of each algo-

rithm (section 4) and compare the algorithms with toy and

image segmentation problems over a range of step sizes and

bandwidths (section 5), and review related work (section 6).

1. Generalised GBMS (GGBMS)

We focus on the GGBMS algorithm of fig. 1. Its acceler-

ated version will be described in section 4. Both are exactly

like the algorithm of [1] except that the update there was the

GBMS update X̃ = PX and here we consider a more gen-

eral update X̃ = φ(P)X where X = (x1, . . . ,xN)T is an

N×D matrix. At each iteration, GGBMS builds theN×N
affinity matrixW =

(

exp (−‖xn − xm‖2
/2σ2)

)

nm
and

the degree matrix D = diag (
∑N

n=1 wnm), which define
the random-walk matrix P = D

−1
W. As in [1] GGBMS

is stopped when the entropy of the distribution of distances

{‖x
(τ+1)
n − x

(τ)
n ‖}N

n=1 does not change between two con-

secutive iterations. This detects the typical situation where

points have clustered locally intoK clusters (yielding a his-
togram withK bins) and then these clusters keep approach-
ing each other over iterations (so the bins change location

but not mass). After the iterations stop, the dataset consists

of clusters where points are almost but not exactly coinci-

dent; a connected-components step (using a small positive

threshold min diff) merges all points into their clusters.

We consider the following updates X̃ = φ(P)X (we re-
fer to both parameters η, n as the step size):

GBMS: φ(P) = P. Also explicit–η, n for η, n = 1.

Explicit–η: φ(P) = (1 − η)I + ηP for η ∈ (0, 2] (overre-
laxed: η > 1, underrelaxed: η < 1).

Explicit–n: φ(P) = P
n for n = 1, 2, 3 . . .

Implicit–η: φ(P) = ((1 + η)I − ηP)−1 for η > 0.

Rational GBMS: φ(P) = A(P)−1B(P) where A(P) =
∑n

i=0 aiP
i (with a0 6= 0) and B(P) =

∑n
i=0 biP

i

are polynomials of order n with real coefficients. This
generalises the explicit and implicit cases.

Exponential–η: φ(P) = e−η(I−P) for η > 0, where the
matrix exponential is defined as eA =

∑

∞

i=0 A
i/i! if

the series converges.

The function φ(P) can be represented as a matrix poly-
nomial in all cases. In particular, the rational function

φ(P) = A(P)−1B(P) results from solving the linear sys-
tem A(P)X̃ = B(P)X.

2. Analysis of convergence and its order

Consider the GGBMS update X̃ = φ(P(X))X. For
Gaussian datasets, the update can be characterised analyt-

ically (see proofs in appendix). For non-Gaussian datasets,

this model seems to be a good approximation to the later

stages of the algorithm, when each cluster of the data set

does (in isolation) look Gaussian. Our main results are as

follows:

• If X is Gaussian then X̃ is Gaussian with the same

mean, the update X̃ = f(X) = φ(P)X is a linear

mapping, and the standard deviation maps linearly

and separately for each principal component. Specifi-

cally, if along one principal component the dataset is

x ∼ N (µ, s2) for x ∈ R, then the new dataset is

x̃ ∼ N (µ, (φ(r)s)2), where

r = r(s) =
1

1 + (σ/s)2
∈ (0, 1). (2)

This allows a complete characterisation of the condi-

tions and order of convergence in terms of the real

function φ(r), r ∈ (0, 1), instead of a matrix function.

• The sequence of standard deviations satisfies

s(τ+1) = |φ(r(s(τ)))| s(τ) for s(0) > 0. We can then
determine: (1) conditions of convergence, by requiring

|φ(r)| < 1 so that the cluster shrinks; and (2) the order

Method φ(r) step size range convergence order p ̺ cost c per iteration
explicit–η 1 − η + ηr η ∈ (0, 2] \ {1} 1 1 − η 1
GBMS (explicit η, n = 1) r η = 1 3 σ−2 1
explicit (η = 2) −1 + 2r η = 2 sublinear −1 1
explicit–n rn n = 1, 2, 3 . . . 2n + 1 σ−2n n
implicit–η 1

1+η−ηr η ∈ (0,∞) 1 1
1+η

1
3

N
D

rational (polynomials A, B) B(r)/A(r) depends depends depends depends

exponential–η e−η(1−r) η ∈ (0,∞) 1 e−η 2N
D

explicit–η explicit–n implicit–η exponential–η

η=0.25

η=0.5

η=0.75

η=1

η=1.25

η=1.5

η=1.75

r
0
0

1

1

n=1

n=2

n=3

n=5

n=10

r
0
0

1

1

η=0.5

η=1

η=10

η=100

η=1000

r
0
0

1

1

η=0.5

η=1

η=10

η=100

η=1000

r
0
0

1

1

Table 1. Summary of the methods’ properties and graph of their defining function φ(r), r ∈ (0, 1).

p of convergence, which is the largest p > 0 for which
̺ = limτ→∞

∣

∣s(τ+1) − s(∞)
∣

∣/
∣

∣s(τ) − s(∞)
∣

∣

p
< ∞.

The results (which we have checked empirically) are

given in table 1 for each method and its step size.

Explicit–n offers the higher convergence order (2n + 1),
in particular GBMS converges cubically—extremely fast.

Explicit–η (for η 6= 1) converges linearly; it is fastest for
η ≈ 1 (when ̺ → 0) and slowest for η close to 0 or 2
(when |̺| → 1), becoming sublinear for η = 2 (extremely
slow). For η ∈ (1, 2] (overrelaxation) the method yields an
alternating series.

Implicit–η and exponential–η behave quite similarly (as
seen from their φ-curves in table 1 and in the experiments).
They converge linearly but, for large step sizes, ̺ is very
small so convergence will be fast. However, we cannot

take η → ∞ since then they would converge in one it-

eration to one cluster. In practice, η from 10 to 1 000
is fast, with larger η bringing only a slight improvement.
For 0 < η ≪ 1, all 3 methods are equivalent, since

1
1+η−ηr ≈ e−η(1−r) ≈ 1 − η + ηr.
The linearly convergent methods preserve the ratio

of standard deviations along different directions, but not

explicit–n. For the latter, the ratio is powered to 2n + 1
at each iteration, so the principal component quickly dom-

inates all others, as happens for GBMS [1]. This results in

strong denoising properties.

Ultimately, the convergence order is only part of the al-

gorithm performance, as (1) each algorithm has a different

cost per iteration and (2) part of the computation takes place

in the first, highly non-Gaussian iterations. Sections 4 and 5

quantify this.

3. Relation with spectral clustering

In a typical spectral clustering algorithm (e.g. the nor-

malised cut [11]), one builds the matrixN = D
−

1
2 WD

−
1
2

(equal to I−L where L is the normalised graph Laplacian)
and computes the eigenvectors u1, . . . ,uK corresponding

to the leading K eigenvalues of N. Then, the data are pro-
jected onto these eigenvectors, where their cluster structure

is enhanced (but generally not obvious), and a secondary

clustering algorithm (e.g. k-means) is used to obtain the
clusters. All the GGBMS algorithms have a strong relation

with spectral clustering. Recall that, for Gaussian affini-

ties, N is symmetric positive definite with real eigenval-

ues λ1 > · · · > λN ∈ (0, 1] and eigenvectors un. Thus,

P = D
−1

W = D
−

1
2 ND

1
2 has the same eigenvalues λn

and eigenvectors vn = D
−

1
2 un. Writing N = UΛU

T

in terms of its eigenvectors U = (u1, . . . ,uN) and eigen-
values Λ = diag (λ1, . . . , λN) and using P = D

−
1
2 ND

1
2 ,

we see that P
n = D

−
1
2 N

n
D

1
2 = D

−
1
2 UΛ

n
U

T
D

1
2 for

n = 0,±1,±2, . . . and thus that a polynomial
A(P) =

∑n
i=0 aiP

i = D
−

1
2 U

(
∑n

i=0 aiΛ
i
)

U
T
D

1
2 , etc.

Therefore the matrix function φ(P) yields a matrix with the
same eigenvectors v1, . . . ,vN as P but eigenvalues φ(λ)
for all methods. Naturally, one could compute the eigenval-

ues and eigenvectors ofP at each iteration and then modify

at will the eigenvalues, but this would be very costly for

large P.

Consider now the GGBMS update X̃ = φ(P(X))X. If
Pwere not updated afterX has been updated, then repeated

iterations would soon be dominated by the leading eigen-

vectors of φ(P): φ(P)n
X ≈

∑K
i=1 φ(λi)

n
vi(v

T
i DX),

which are also the leading eigenvectors of P since φ is

monotonically increasing (see table 1) and so preserves the

order of the eigenvalues. This situation would be very sim-

ilar to spectral clustering except that the latter discards the

eigenvalues and just uses the eigenvectors. The convergence

to a dominant space of eigenvectors would be quite slow

(determined by the ratio of consecutive eigenvalues), and

ultimately convergence would be to the constant eigenvec-

tor v1 = 1 associated with λ1 = 1. However, the key dis-
tinguishing aspect of GGBMS algorithms is the fact that the

dataset and also the matrix P is updated after each itera-

tion. The effect of this is that the dataset quickly clusters

locally and the matrix P becomes almost perfectly split in

diagonal blocks of 1s, and 0s elsewhere (and after many

more iterations these clusters merge). Also, GGBMS does

not discard trailing eigenvectors; the product φ(P)X uses
the information of all eigenvectors and eigenvalues of φ(P).
Analysing the eigenvalues φ(λ) of φ(P) is another

way to obtain conditions for convergence of GGBMS. For

φ(P) to be a stochastic matrix (so every iteration pushes
the dataset towards a one-cluster solution) we must have

φ(1) = 1 (leading eigenvalue) and |φ(λ)| < 1 for λ ∈ (0, 1)
(remaining eigenvalues). This yields the ranges in table 1.

For example, for the rational φ(P) = A(P)−1B(P) this
implies the following condition on ai, bi:

∑n
i=0 bi

∑n
i=0 ai

= 1 and

∣

∣

∣

∣

∑n
i=0 biλ

i

∑n
i=0 aiλi

∣

∣

∣

∣

< 1 ∀λ ∈ (0, 1). (3)

4. Computational cost

We consider as fundamental unit (normalised iteration)

one product PX = D
−1(WX) costing N2D multiplica-

tions (strictly ND + N2D ≈ N2D for N ≫ D). This
operation underlies all methods, as solving a linear system

(e.g. by conjugate gradients) can be accomplished by iter-

ating such products. Table 1 shows the cost c of one iter-
ation of unaccelerated GGBMS measured in this unit. The

explicit methods are O(N2D) while the implicit and expo-
nential methods are O(N3). For implicit–η, the dominant
cost is solving a linear system AX̃ = X with AN×N and

XN×D. Gauss elimination (Matlab: A\X) takes
1
3N3 mul-

tiplications [8, p. 98]. Today’s preferred method to com-

pute the matrix exponential is using the Padé approximation

with scaling and squaring (Matlab: expm(P)), which takes

(conservatively) 2N3 multiplications [8, p. 574]. We imple-

ment explicit–n and A(P) and B(P) in rational GGBMS
with Horner’s rule for polynomials.

The accelerated technique for GBMS proposed in [1]

carries over to GGBMS. The idea is that, as points approach

each other over the course of iterations, they form compact

local groups (by definition, smaller than a small distance

min diff > 0); thus, we can replace one local group con-
taining M points with a single point of mass M . This ef-
fectively reduces the total number of points N (τ) at each

dataset C = 10 C = 6 C = 4 C = 2

dataset C = 11 C = 5 C = 3 C = 2

Figure 2. Example datasets and typical results (for all methods,

each using a different σ value) for different numbers of clustersC.

iteration (which becomes faster) and yields the same clus-

tering as the unaccelerated algorithm if min diff is small

enough. Accelerated GGBMS can be implemented by in-

terleaving the GGBMS update with connected-components

steps (of negligible cost).

Assuming k actual iterations, the speedup unacceler-
ated/accelerated is kN2/

∑k−1
τ=0 (N (τ))2 for explicit and

kN3/
∑k−1

τ=0 (N (τ))3 for implicit/exponential methods. If
using a sparse graph Laplacian instead, the cost of both

versions would reduce proportionally to z/N (for some

z ≪ N) but the speedup would remain the same. In the
experiments, for accelerated GGBMS we only report its ac-

tual iterations divided by the speedup.

5. Experimental results

We have run all the algorithms in several datasets of dif-

ferent dimensionality, size and type (e.g. toy, images), and

over a large range of σ (not just one best value), with essen-
tially equivalent conclusions. We show detailed results for

the toy dataset of fig. 2 (which shows both a clustered and

low-dimensional structure). In all experiments, we consid-

ered 4 types of methods (see table 1): explicit–η with step
size η = 0.25, 0.5, 1 (GBMS), 1.25, 1.5, 1.75; explicit–n
with power n = 1 (GBMS), 2, 3, 5, 10; and implicit–η
and exponential–η with step size η = 0.5, 1, 10, 1000.
These values explore the ranges of the respective step sizes

and complement the theory of section 2. For each case we

ran the unaccelerated and accelerated versions of GGBMS

and the experiments were performed for 41 values of the

bandwidth σ (over a range chosen to yield between 1 and
many clusters). Fig. 3 reports (as a function of σ) the num-
ber of clusters, number of actual iterations (i.e., not nor-

malised) and actual CPU time. Fig. 4 reports the number of

normalised iterations for accelerated GGBMS.

In terms of clustering quality, all algorithms behave sim-

ilarly, producing the same given clustering for appropriate

σ and step size. The number of clusters C decreases with
either increasing σ or increasing η (or n), and empirically
we find these 3 variables are dependent. Specifically, for

Number of clusters Actual iterations CPU time (seconds)

ex
p
li
ci
t–

η

0

20

40

60

80

100
η=0.25

η=0.5

η=0.75

η=1

η=1.25

η=1.5

η=1.75

0

20

40

60

80

100

η=0.25

η=0.5

η=0.75

η=1

η=1.25

η=1.5

η=1.75

0

0.1

0.2

0.3

0.4

0.5

0.6
η=0.25

η=0.5

η=0.75

η=1

η=1.25

η=1.5

η=1.75

ex
p
li
ci
t–

n

0

20

40

60

80

100
n=1

n=2

n=3

n=5

n=10

0

20

40

60

80

100

n=1

n=2

n=3

n=5

n=10

0

0.5

1

1.5

n=1

n=2

n=3

n=5

n=10

im
p
li
ci
t–

η

0

20

40

60

80

100
η=0.5

η=1

η=10

η=100

η=1000

0

20

40

60

80

100

η=0.5

η=1

η=10

η=100

η=1000

10
−1

10
0

10
1

η=0.5

η=1

η=10

η=100

η=1000

ex
p
o
n
en
ti
al
–
η

0.03 0.05 0.07 0.1 0.2 0.35
0

20

40

60

80

100
η=0.5

η=1

η=10

η=100

η=1000

σ
0.03 0.05 0.07 0.1 0.2 0.35
0

20

40

60

80

100

η=0.5

η=1

η=10

η=100

η=1000

σ
0.03 0.05 0.07 0.1 0.2 0.35

10
0

10
1

10
2

η=0.5

η=1

η=10

η=100

η=1000

σ
Figure 3. Performance of the algorithms on the toy dataset of fig. 2 (N = 500 points in 2D). The X axis (σ) and (for implicit/exponential)
the CPU time are on a log scale. The dashed lines are for accelerated GGBMS.

explicit–η explicit–n implicit–η exponential–η

0.25 0.5 0.75 1 1.25 1.5 1.75
0

5

10

15

20

25
2moons small

cameraman

2moons

GaussCluster

sine

hand

η 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35
2moons small

cameraman

2moons

GaussCluster

sine

hand

n
0.5 1 10 100 1000
0

1000

2000

3000

4000

5000
2moons small

cameraman

2moons

GaussCluster

sine

hand

η 0.5 1 10 100 1000
0

0.5

1

1.5

2

2.5
x 10

4

2moons small

cameraman

η
Figure 4. Average (over σ) number of normalised iterations for each accelerated GGBMS algorithm, for several representative datasets.
The datasets were chosen to contain clustering and/or low-dimensional manifold structure, as follows (size,dimension): 2moons small: 500,

2D (fig. 2, 2 curved clusters); 2moons: 2000, 2D; sine: 2000, 2D (sinecurve, no clusters); GaussCluster: 2000, 2D (3 Gaussian clusters);

cameraman: 2500, 3D (fig. 2, greyscale image); hand: 2000, 5D (colour image).

all datasets we tried, log σ − α log η is a linear function
of C with α ≈ 1

6 for the implicit/exponential, α ≈ 1
12 for

explicit–n and α ≈ 0 for explicit–η (i.e., independent of
η). This gives a rough guideline to select a good range of
σ given a step size; and suggests fixing the step size to the
one that runs fastest, and using σ to control the number of
clusters (a useful rule in practice).

As predicted by the theory, the lowest numbers of actual

iterations occur for the largest η (implicit/exponential) or n
(explicit–n), but these methods have a high cost per itera-
tion. As shown by the CPU curves2, the explicit methods

are the fastest: although they take more iterations, these are

very cheap (one PX product).

In practice, the bottomline performance is that of the

accelerated GGBMS, whose number of actual iterations

(dashed lines in fig. 3) is, unlike that of the unaccelerated

GGBMS, remarkably independent of σ. Fig. 4 shows the
normalised iterations (averaged over all σ), and thus indi-
cates the optimal step size for each method. Notably, the

fastest method of all is explicit–η with η ≈ 1.25 (overre-
laxation, taking just 4–5 iterations), even though it has only
linear convergence. The curve for explicit–η deviates a bit
from the theoretical rate ̺ = 1 − η (which is symmetric
around its optimum at η = 1); perhaps datasets lacking
symmetry benefit from overshooting the step size (alternat-

ing sequence). GBMS (η = 1) is only slightly slower, be-
cause the curve is quite flat for η ∈ [1, 1.5]; it is also op-
timal for explicit–n. For implicit/exponential, the optimum
occurs for η → ∞, but a step size of 10–1 000 is practically
optimal, requiring just 1–2 actual iterations. However, this
is still far more costly in runtime than explicit–η.

6. Related work

The development of the (G)BMS algorithm in the ma-

chine learning literature has been motivated by a proba-

bilistic modelling point of view: by turning the empirical

dataset into a kernel density estimate (by smoothing with a

Gaussian kernel), we can derive from its gradient a conve-

nient algorithm to find its modes (mean-shift), and by mov-

ing each data point according to it we obtain the GBMS

update X̃ = PX. The GBMS update was introduced by

Fukunaga and Hostetler [7], who also noted its potential for

clustering and denoising data if the algorithm was stopped

when the desired clusters or denoising arose. Cheng [3]

showed its convergence to a single cluster. The algorithm

in its present form, with an automatic stopping rule and

2The CPU times correlate very well with our normalised iterations (ta-

ble 1, cost c) except in two aspects for the implicit/exponential methods.

(1) Exponential–η is considerable slower than implicit–η than our predic-

tion suggests (other than that, both methods behave almost identically). (2)

For both implicit/exponential the CPU time varies with σ for a fixed prob-

lem size (N , D): linear systems for larger σ seem to be solved by Matlab

10× as fast as for small σ (note the elbow in the CPU curves, without a
correlate in the iterations curves).

the connected-components acceleration, was introduced by

Carreira-Perpiñán [1], who also proved its cubic conver-

gence order for Gaussian clusters and demonstrated its per-

formance in image segmentation. The algorithm has also

been applied as a preprocessing step to improve density es-

timation [4] or classification [9]. Our present paper is the

natural continuation of this line of work, by extending the

theory and experiments to a more general family of GBMS

algorithms for clustering.

A similar type of work (but with significant differences)

has developed in the computer graphics literature. While

in the machine learning literature the problem driving work

on GBMS has been clustering, denoising or preprocessing a

possibly high-dimensional dataset in an abstract setting, in

computer graphics the problem has been much more con-

crete: denoising a large dataset of known dimensionality

(and possibly known topology: holes, juntions, corners,

etc.), specifically denoising (smoothing) a 2D surface living

in 3D space. Such a surface is obtained by laser-range tech-

niques, which yield millions of 3D points approximately ly-

ing on the surface of an object. The objective is to remove

the (small) noise while preserving features such as corners.

Common aspects of these techniques are: they assume a

sparse mesh (neighbourhood graph) that implicitly repre-

sents the surface, often by triangulation; they must be fast (if

possible, linear in the number of points) to allow interactive

operation with large models; and they use guidance from

the user, e.g. to determine the mesh or topology, stop the al-

gorithm and tune parameters. A basic smoothing technique

is Laplacian smoothing, used to refine irregularly triangu-

lated meshes in finite-element methods [10]. This moves

each interior (non-boundary) point in the mesh to the mean

of its neighbours: x̃n = 1
k

∑

m∼n xm. It is thus a form of

mean-shift with a sparse random-walk matrix P with con-

stant entries pnm = 1
k if n ∼ m, where k is the number

of neighbours of xn. Taubin [12, 13] extended this idea by

approaching the problem from a signal processing point of

view, where different filters φ(P) could be used to obtain
different denoising results; in particular, he proposed the

use of the λ|µ algorithm (an explicit method), as providing a
good bandpass filter. He also suggested more general filters:

explicit (IIR filter), and implicit and rational (FIR filter).

Desbrun et al. [6] noted that the λ|µ algorithm takes many
iterations to achieve good denoising and instead proposed

an implicit filter implemented with preconditioned conju-

gate gradients, and claimed it takes 60% the CPU time. It is

important to note the following differences with our work.

(1) The nature of the problems (clustering in our case, sur-

face denoising in computer graphics) is different and so is

the behaviour of the algorithms in terms of quality of re-

sults and CPU time. (2) Crucially, the computer graphics

literature seems to have focused on algorithms that update

X but not the matrixP (or graph Laplacian) after each itera-

tion. This is partly to reduce computation, but also because

in the popular Laplacian smoothing P is constant.3 This

means that, effectively, they are running power iterations of

Pwith eigenvalues modified by φ (see section 3), which de-
feats the advantage of GGBMS algorithms: that the updates

of X and P feedback each other resulting in faster conver-

gence. Also, the computer graphics work seems not to have

used affinities based on a scale parameter (such as Gaussian

with bandwidth σ), which is necessary to control the num-
ber of clusters. (3) The algorithms are stopped by hand or

trial and error when the user observes sufficient smoothing

(but not so much that the surface shrinks).

Finally, the GGBMS algorithms can also be seen from

the perspective of the diffusion equation [6, 9]. Consider

a continuous low-dimensional manifold whose mass dif-

fuses across the high-dimensional space that contains it:
∂X

∂t = ∇2
X where ∇2 is the Laplace-Beltrami operator.

The problem of interest in denoising is the inverse case,

where the diffused data return to the manifold. Consid-

ering then ∂X

∂t = −∇2
X and discretising the equation we

obtain ∂X

∂t ≈ Xt+1−Xt

η for the temporal derivative (for-

ward difference with step size η) and∇2
X ≈ −(I − P)Xt

or ∇2
X ≈ −(I − P)Xt+1 for the spatial derivative (graph

Laplacian defined as I − P), which yield respectively the

explicit and implicit methods. This suggests another way to

define generalised algorithms, by using different finite dif-

ferences and graph Laplacians.

7. Conclusion

We have introduced generalised versions of the GBMS

algorithm for nonparametric clustering by defining explicit,

implicit, rational and exponential updates controlled by a

step-size parameter. Our theoretical analysis shows that

the algorithms turn Gaussian clusters into Gaussian clus-

ters with a smaller variance, eventually compressing them

to a point, and we have given conditions for convergence on

the step size for each method, as well as determined the or-

der of convergence (which ranges from sublinear to linear,

cubic and even higher order depending on the method and

step size). From the spectral clustering point of view, these

algorithms alternate between updating the dataset with one

power iteration by the random-walk matrix P (with modi-

fied eigenvalues), and updating P itself. Experimental re-

sults show that all methods are practically equivalent in

terms of quality of clusters, i.e., over a range of bandwidths

they can obtain the same clustering (at possibly different σ
values). However, they markedly differ in computational

cost, with the explicit update of step size η ≈ 1.25 being
fastest (even though its convergence is linear), closely fol-

lowed by the original GBMS (η = 1, cubic convergence).

3Distance-basedP have been used, e.g. proportional to ‖xn − xm‖2,

but even in this case either P is not updated, or if it is then the neighbour-

hood structure is not updated, so P has the same zeros.

We have also described the relation with algorithms used in

computer graphics for denoising (smoothing) surfaces. We

hope that future work in machine learning and computer

graphics will continue to exploit these connections.

While we have explored an important subset of gener-

alised GBMS algorithms, future work should be directed

to active design of updates φ(P) that are optimal (in some
sense) for clustering. The present paper has also focused on

Gaussian affinities using a full graph. We are exploring the

use of sparse graphs and efficient linear solvers, which may

offer great computational savings for image segmentation.

Acknowledgements: this work was supported by NSF

CAREER award IIS–0754089.

A. Convergence results for the Gaussian case

We focus on the case where the dataset is Gaussian. This can

be solved in closed form for all methods, which allows a com-

plete characterisation of the conditions and order of convergence

in terms of the real function φ. The analysis of the non-Gaussian
case is difficult; in our practical experience, the Gaussian model is

a good approximation to the later stages of the algorithm.

TheoremA.1. LetX be a Gaussian random variable inD dimen-
sions (the dataset) and consider the GGBMS update X̃ = f(X) =
φ(P)X, where φ is a real function in [0, 1] with φ(1) = 1, and
P = p(y|x) is the random-walk (continuous) matrix. Then the
random variable X̃ is Gaussian with the same mean asX, the up-

date is a linear mapping, and the standard deviation maps linearly

and separately for each dimension ofX.

Proof. We build on the proof approach of [1] for GBMS, which

carries over directly to explicit–η but needs modification for
implicit–η. To avoid dependence on a given finite dataset, we
consider a continuous dataset with a Gaussian distribution, so the

update replaces sums over data points with integrals. For exam-

ple, the following two equations become eqs. (8) and (11) below,

respectively:

explicit–η: x̃m = (1 − η)xm + η
PN

n=1 p(n|xm)xn (4)

implicit–η: (1 + η)x̃m − η
PN

n=1 p(n|xm)x̃n = xm. (5)

To simplify the analysis, let us first see that (1) the update is co-

variant to translation and rotation, and (2) the dimensions separate.

To see that the GGBMS update covaries under rotation and trans-

lation (this is true for any dataset, finite or infinite, and not just

Gaussian), letRD×D be an orthogonal matrix and t ∈ R
D a vec-

tor, and callX′ = XRT + 1tT . Then

X̃
′ = φ(P(X′))X′ (a)= φ(P(X)) (XR

T + 1t
T) (6)

= φ(P(X))XR
T + φ(P(X))1t

T (b)
= X̃R

T + 1t
T
(7)

since (a) P(X′) = P(X) (because P depends only on the Eu-

clidean distances ‖xn − xm‖, which are invariant to rotation and
translation), and (b) φ(P) is constructed so it yields a stochastic
matrix (φ(1) = 1 as a scalar function). This means we can al-
ways chooseX to be zero mean and with diagonal covariance (by

translation and rotation). To see that the dimensions separate, note

(see below) that in the infinite-sample case each column (dimen-

sion) of X̃ = PX or in general Pf(y) (where y is a column of

X) equals the expectation of f(y) under p(y|x) ∝ G(x−y)q(y),
which is factorised since G (the isotropic, or even diagonal, ker-
nel of the kernel density estimate) and q (the dataset distribution)
are factorised. The same holds for polynomials φ, as these can be
written as repeated expectations (e.g. P2 = E {E {·}}).
Hence, w.l.o.g. we consider the zero-mean 1D case. Let the

data distribution be q(x) = N (x; 0, s2) (Gaussian with zero mean
and variance s2) and the Gaussian kernelG(x) = N (x; 0, σ2), so
the kernel density estimate p(x) = 1

N

PN

n=1 K
`

‖x−xn

σ
‖2 ´

is, as

N → ∞, the convolution p(x) = (q∗G)(x) = N (x; 0, s2 +σ2).
Explicit case. For explicit–η, the new dataset is

x̃ = (1 − η)x + η

Z

∞

−∞

p(y|x)y dy ∀x ∈ R (8)

where, by Bayes’ theorem, p(y|x) = G(x − y)q(y)/p(x) =
N (y; rx, rσ2) with

r =
1

1 + (σ/s)2
∈ (0, 1). (9)

Thus, the integral equals the posterior mean E {y|x} = rx and so
the new dataset is a linear map of the original dataset:

x̃ = (1 − η + ηr)x = φ(r)x = f(x), (10)

with distribution p(x̃) = N (x̃; 0, (φ(r)s)2).
Implicit case. The implicit–η case is more complicated. The

new dataset satisfies

(1 + η)f(x) − η

Z

∞

−∞

p(y|x)f(y) dy = x ∀x ∈ R (11)

where x̃ = f(x) is the unknown mapping that we want to deter-
mine and p(y|x) = N (y; rx, rσ2) as before. The integral

I =

Z

∞

−∞

p(y|x)f(y) dy, (12)

which is the posterior expectation of f(y), can be solved as fol-
lows:

1. Change variables z = y − rx, so

I =

Z

∞

−∞

p(z|x)f(z + rx) dz (13)

with p(z|x) = N (z; 0, rσ2).

2. Taylor-expand f(z+rx) = f(rx)+f ′(rx)z+ 1
2
f ′′(rx)z2+

. . . We get:

I = f(rx) +
1

2
f ′′(rx)rσ2 +

∞
X

n=2

f (2n)(rx)

(2n)!
µ2n (14)

where µ2n is the 2n-th moment of the Gaussian
N (z; 0, rσ2).

Plugging I into (11) we obtain an ordinary differential equation
for f :

(1 + η)f(x) − η

„

f(rx) +
1

2
f ′′(rx)rσ2 +

terms in

f iv, f vi, . . .

«

= x.

Since its solution must be unique and a linear function satisfies it,

the solution is

f(x) =
1

1 + η − ηr
x = φ(r)x (15)

so the new dataset is again (as in the explicit case) a linear

map of the original: x̃ = φ(r)x with distribution p(x̃) =
N (x̃; 0, (φ(r)s)2).
It is easy to see that the approach holds for polynomials φ

(again, these are just sums of repeated expectations) and so for

all the algorithms defined in the paper.

The previous theorem reduces the analysis of the matrix up-

date to the analysis of the scalar function φ(r), r ∈ (0, 1). We

can now determine conditions and order of convergence. The se-

quence of standard deviations satisfies s(τ+1) = |φ(r(s(τ)))| s(τ)

for s(0) > 0. A general condition on φ for the sequence to con-

verge to 0 may be obtained from the contractive mapping theo-

rem, namely −∞ < φ(0) < ∞ (so s = 0 is a fixed point)

and |d(sφ(rs))/dx| < 1 ∀s > 0, which by means of the chain

rule leads to |φ(r) + 2r(1 − r)φ′(r)| < 1 ∀r ∈ (0, 1). Sim-

pler conditions may be obtained for the functions φ considered

in the paper by requiring |φ(r)| < 1 so that the cluster shrinks.

The order p of convergence is the largest p > 0 for which

̺ = limτ→∞ |s(τ+1) − s(∞)|/|s(τ) − s(∞)|p < ∞. The results

are given in table 1 for each method and its step size.

References

[1] M. Á. Carreira-Perpiñán. Fast nonparametric clustering with

Gaussian blurring mean-shift. In ICML, 2006.

[2] M. Á. Carreira-Perpiñán. Gaussian mean shift is an EM al-

gorithm. IEEE Trans. PAMI, 29(5):767–776, May 2007.

[3] Y. Cheng. Mean shift, mode seeking, and clustering. IEEE

Trans. PAMI, 17(8):790–799, Aug. 1995.

[4] E. Choi and P. Hall. Data sharpening as a prelude to density

estimation. Biometrika, 86(4):941–947, Dec. 1999.

[5] D. Comaniciu and P. Meer. Mean shift: A robust approach

toward feature space analysis. IEEE Trans. PAMI, 2002.

[6] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. Im-

plicit fairing of irregular meshes using diffusion and curva-

ture flow. In SIGGRAPH 1999, pp. 317–324, 1999.

[7] K. Fukunaga and L. D. Hostetler. The estimation of the gra-

dient of a density function, with application in pattern recog-

nition. IEEE Trans. Info. Theory, 21(1):32–40, 1975.

[8] G. H. Golub and C. F. van Loan.Matrix Computations. Johns

Hopkins University Press, Baltimore, third edition, 1996.

[9] M. Hein and M. Maier. Manifold denoising. In NIPS 19,

pages 561–568, 2007.

[10] K. Ho-Le. Finite element mesh generation methods: A review

and classification. Computer-Aided Design, 20(1), 1988.

[11] J. Shi and J. Malik. Normalized cuts and image segmenta-

tion. IEEE Trans. PAMI, 22(8):888–905, Aug. 2000.

[12] G. Taubin. A signal processing approach to fair surface de-

sign. In SIGGRAPH 1995, pages 351–358, 1995.

[13] G. Taubin. Geometric signal processing on polygonal meshes.

In Eurographics’2000: State of the Art Reports, 2000.

