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Abstract

High-level generative models provide elegant descrip-
tions of videos and are commonly used as the infer-
ence framework in many unsupervised motion segmentation
schemes. However, approximate inference in these models
often require ad-hoc initialization to avoid local minima is-
sues. Low-level cues, obtained independently from the high-
level model, can constrain the search space and reduce the
chance of inference algorithms falling into a local minima.
This paper introduces a novel principled fusion framework
where, local hierarchical superpixels segmentation of im-
ages are used to capture local motion. The low-level cues
such as local motion, on their own, not adequate to obtain
full motion segmentation as occlusion needs to be handled
globally. We fuse the low-level motion cues with the high-
level model in a principled manner to surmount the short-
comings of using only the high-level model or low-level cues
to perform motion segmentation. The fused model contains
both continuous and discrete variables which forms a num-
ber of Markov Random fields. Variational approximation or
belief propagation algorithms cannot be applied due to the
complex interactions between the variables. Hence, approx-
imate inference is performed using expectation propagation
(EP) algorithm. The scheme is demonstrated by performing
motion segmentation in two video sequences.

1. Introduction

Unsupervised motion segmentation of a video can be
considered as a task of learning the appearances and mo-
tions of independently moving, constituent layers that are
present in that video. The problem is difficult to solve
because of complex object motions, occlusions and vary-
ing imaging conditions. Due to the unsupervised nature
of the task, high-level generative models such as layer-
representation [10, 2, 11], are used as the inference frame-
work. The video can be reconstructed using the generative
model if the hidden variables (e.g. appearances and mo-
tions of layers) are known. The motion segmentation task
is concerned with the inverse process: inferring the hidden
variables from the video data. Figure 1(a) describes a com-
monly used [2, 11] high-level model of a video with two
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Figure 1. Fusion of High-level model and low-level cues (a)
An example of a layer-based generative model of video used in
many motion segmentation schemes [2, 4, 11] (b) Superpixel seg-
mentation of a video frame obtained using the algorithm proposed
by Ren and Malik [5]and the corresponding local motion of the
superpixels into the next frame. The motions with highest cross-
correlations are shown for each superpixel. Similar colours indi-
cate similar motions. Blue indicates the superpixels are occluded
in the next frame.

foreground layers in front of a stationary background.
Most high-level motion segmentation schemes are ham-

pered by local minima problems and harness various low-
level cues, mostly through ad-hoc techniques to obtain good
results. This paper describes a more principled way for fus-
ing the high-level generative models with low-level cues,
allowing interactions between the two levels. We use hier-
archical superpixel representation of the video frames to es-
timate local motion (figure 1 (b)). This information is then
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fused with the high-level model. Expectation propagation
algorithm (EP) is used to perform approximate inference in
this fused model. Next section reviews some relevant liter-
ature to set up the context for our proposed framework.

2. Related Work

Many motion segmentation schemes utilise different
variations of expectation-maximisation (EM) algorithms to
learn the hidden variables of the generative models in an it-
erative manner. The task is not straight forward; the search
space is large even for simple motions such as translations
and affine motions; EM type inference algorithms are ham-
pered by local minima, and need good initialization to con-
verge to the correct solution. The exact manner of initial-
ization vary from scheme to scheme and often involve im-
provised domain-specific procedures. The common theme
among these methods is that they use low-level image cues,
independent of the generative model, to obtain an approx-
imate estimation of the hidden variables and then proceed
with the top-down inference. However, the quality of the
convergence inevitably depends on the initialization and be-
cause of that most methods use elaborate, often ad-hoc, pro-
cedures to obtain a reasonably good initialization.

For example, Allan et al. [1] uses SIFT features to track
and separate individual objects as the initialization proce-
dure. Kumar et al. [4] first identify independently moving
objects from frame to frame and then uses a complicated
clustering procedure to learn the appearances of the individ-
ual objects. Once the approximate appearances and frame
to frame transformations are estimated, they use the mul-
tiway graph-cut technique to refine the mask labels further.
This allows them to first limit the search space of the hidden
variables such as transformations of foreground objects and
secondly to avoid the inference falling into a local minima.
However, combining low-level information with the gener-
ative model in this sequential fashion has some drawbacks;
low-level information is discarded after initialization and is
not further used to guide the evolution of the inference in
the generative model; due to the ad-hoc nature of the initial-
ization procedure, it is difficult to generalise these schemes
to include different types of low-level information.

On the other end of the spectrum lie the elegant, top-
down probabilistic motion segmentation schemes, which
completely avoids any ad-hoc initialization. Jojic and Frey
[2] introduced a variational framework [12] that iteratively
learns approximate factorized distributions over the hidden
variables. They used this framework to segment fronto-
parallel translation in videos. Winn and Blake [11] extended
it to segment the affine motion of a single object in front of
a static background in video sequences. They choose ex-
ponential forms for the likelihood and prior terms of the
generative model and the partition function of the poste-
rior distribution is equal to 1 by design. Additionally the
graphical model is strictly maintained as a directed acyclic
graph (DAG). This careful design allows them to derive an
elegant variational scheme for approximating the posterior

distribution. However, like other EM algorithms they are
highly susceptible to local minima. Random initialization
of these schemes invariably leads to wrong local minima
even in simple video sequences with just two foreground
objects (If there is only a single foreground object, the so-
lution has a well defined global minima and hence EM type
algorithms usually converges correctly from random initial-
izations [11]). Instead of random initializations, using one
of the explicit initialization schemes [1, 4] described above,
will allow these models to converge to the correct solution.
However, it will introduce the same disadvantages of the
EM-type algorithms discussed above, in addition to loosing
the elegance of the probabilistic methods.

It is desirable to have a framework, where low-level
cues are integrated with the top-down generative model so
that the initialization is handled implicitly in a principled
manner, in contrast to any explicit initialization of the hid-
den variables. In addition, the continuous interaction of
low-level cues and generative model, reduces the chances
of inference falling into local-minima solution. Low-level
cues introduce local constraints, while the generative model
maintains consistency by providing a global context, which
is essential to handle situations such as occlusions of ob-
jects. However, it is not easy to combine low-level bottom-
up cues with variational frameworks in a principled man-
ner due to the requirement to keep the graphical model as
DAGs. In a later work [3] Jojic et al. propose the use of
switching variables to choose from alternative likelihood
and prior terms. Nonetheless, that framework is still lim-
ited to DAGs. Low-level cues are easily included through
Markov Random Fields (MRF). But MRFs have complex
intractable partition functions and cannot be handled in a
principled manner by the variational schemes described in
the above-mentioned papers [11, 2, 3].

The main contribution of this paper is a framework for
unsupervised motion segmentation of videos, where low-
level cues, in the form of MRFs, are fused with the top-
down generative model in a principled, probabilistically
meaningful manner. Pairwise potential functions link top-
level hidden variables with low-level variables. A scheme
based on expectation- propagation algorithm (EP) [6], is
used to perform inference in the fused model. The other
important contribution is the introduction of hierarchical
superpixel representation of image frames as an effective
tool for estimating local motion, which provides the low-
level cues. The effectiveness of the framework is demon-
strated by performing motion segmentation in two video
sequences. The rest of the paper is organized as follows.
Section 3 describes the formulation of the proposed frame-
work; section 4 derives the EP-based approximate inference
scheme. Section 5 details a number of experiments and we
conclude in section 6.

3. Proposed Framework

In this section,we first briefly describe a commonly used
top-down generative model framework used for motion seg-



mentation and illustrate the local-minima issues associated
with the top-down approaches. Secondly we introduce a hi-
erarchical, super-pixel based low-level motion segmentation
framework. Thirdly we fuse these two frameworks together
in a principled manner to avoid some of the shortcomings
of these two frameworks.

3.1. Top-down Generative model

Given the input video frames {xt}N
1 and the assumption

that there are K objects or layers in the video, we are inter-
ested in learning hidden variables of the generative model:
canonical appearances ({fk}K

k=1) and the shapes ({πk}K
k=1)

of the layers; their transformations from the canonical frame
to the individual frames ({T t

k}K,N
k=1,t=1);and the mask labels

for each pixel at each frame mt that indicates which layer
each pixel belongs to. Figure 1 illustrates the generative
model in the case of a video with three layers. Let Hg

be the set of all hidden variables from the above genera-
tive model. Posterior distribution over Hg is described by
p(Hg|{xt}) ∝ p({xt}|H0)p(Hg). The generative likeli-
hood term below, models video pixels as transformations of
the canonical appearances with additive noise.

p(xt|Hg) =
K∏

k=1

N (xt|T t
kfk, βt

k)δ(mt=k) (1)

Essentially, the equation (1) states that if any of the pix-
els xt belongs to kth layer, there are explained as gaussian
distributions with mean T t

kfk and precision βk. Here the
transformation T t

k transforms the canonical appearance of
the kth layer into the tth frame. Often the prior distribu-
tions over the hidden variables are used to model occlusion
ordering [1, 11].

p(Hg) =

{∏
t

po(m
t|{πk, T t

k})
} ∏

k

p(πk)p(βk)p(fk)) (2)

with,

po =
K∏

k=1

{(
T t

kπk

) k−1∏
j=1

(1 − T t
j πj)

}δ(mt=k)

(3)

In our case, equation (3) states that the Kth layer is not
occluded by any other layers; K − 1th layer is not oc-
cluded by any other layers except by the Kth layer, etc. The
terms p(πk) ,p(βk) and p(fk) are called non-informative
priors and complete a Bayesian setup for the generative
model. Furthermore, they can be used to break symmetry
during inference, through random initializations of its pa-
rameters. The transformations {T t

k} are limited to rotation
and translations for the video sequence described in this pa-
per. Translation are allowed to any whole pixel location
(altogether 76800). The rotation are discretisized at 10◦ in-
tervals from 0◦ to 360◦. Hence altogether there 76800× 36
candidates for each canonical transformation T t.
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Figure 2. Fusion of high-level model with low-level cues (a)
Illustrates how the superpixel motion τ constraints the transfor-
mations of the object from canonical frame into the video frames,
T t, T t+1. For clarity, only a single foreground object is shown
with some variables omitted from the model.

We implemented the variational approximation scheme
described in [11], which approximates the posterior dis-
tribution p(Hg|{xt}) by a tractable, fully factorized para-
metric distribution Q(Hg), which is simply a prod-
uct of the following distributions ; Gaussian distribu-
tions, {Q(fk)}; beta distributions, {Q(πk)}; Discrete
distributions {Q(mt)},{Q(Tt

k)}; and gamma distribu-
tions {Q(βk)}. The variational scheme obtains an opti-
mal Q(Hg) by minimizing the exclusive KL divergence
KL(Q(Hg)||p(Hg|{xt})) with respect to the parameters
of Q(Hg). The best results obtained (out of a number of
randomly initialized runs) are shown in the second row of
figure 4.

It is clear that the performing variational inference using
the generative model alone cannot guarantee convergence
to global minima even in simple videos with just two fore-
ground objects. This is a common problems in top-down
models with large number of hidden variables. The approx-
imate posterior distribution Q(Hg) has many simplifying
independence assumptions to make inference simpler (in
our case, we assume all hidden variables are independent of
each other). Often this leads to local minima convergence.
In the next sub-section, we take a different approach and de-
scribe a bottom-up motion segmentation framework, based
on detecting the motion of superpixels.



3.2. Super-pixel Motion Estimation

This subsection introduces a novel framework for clus-
tering superpixels into a number of coherently moving ob-
jects, based on their low-level motion cues. Superpixels
segmentation provide an over-segmentation of an image, by
clustering pixels into contiguous groups based on color, tex-
ture and edge boundary. Superpixels are preferable to indi-
vidual pixels or features for estimating local motion. Firstly,
it provides a more meaningful segmentation improving the
accuracy of estimated local motion; secondly small number
of superpixels are adequate to represent an image, reduc-
ing the computational cost of estimating the local motions;
and thirdly different levels of superpixel segmentation (see
figure 3) can be introduced in a coarse-to-fine manner to
improve the accuracy of the estimated motion. Superpix-
els have also been used in other vision tasks such as image
segmentation [5], bottom-up human pose estimation [7] and
finding object boundaries using motion cues [9].

We obtain superpixel segmentation for each frame inde-
pendently, using publicly available code provided with [5].
Likelihood values for a number of candidate motions are
calculated for each superpixel in each frame by matching it
with superpixels in neighboring frames (note that there are
no perfect matches, as superpixels’ shape, size and orien-
tation differ from frame to frame). Strong matches create
strong inter-frame links between the superpixels from dif-
ferent (but neighboring) frames. Similarly we create strong
intra-frame links between neighboring superpixels from the
same frame, if their motions are similar. Given these graph-
like links, our aim is to group the superpixels from all the
frames into a number of layers and estimate the layers’ local
motion throughout the video. This leads to two intertwined
MRFs on the graph structure, one over the layer labels and
the other over the motion of the superpixels. The rest of the
section details how Markov Random fields are formed from
the superpixels’ motions. For clarity we only describe the
equations related to a single level superpixel segmentation
and their motions into the next frame (t+1 th frame). MRFs
arising from (1) different levels of superpixel segmentation
and (2) motions into t + 2 frame are analogous to the ones
described below.

Given the superpixel segmentation at each frame, the
pixel data contained within the ith superpixel from frame
t is denoted by yt

i; it’s motion into the next frame is τ t
i

and it’s class label µt
i ∈ 1..K. These variables are illus-

trated in figure 2. To generate candidates for τ t
i , for each

superpixel in a frame we perform a fixed number of dis-
crete transformations into the next two frames and calculate
a corresponding cross-correlation value. Transformations
include 7 rotations around the centre of the superpixel (at
−30◦ − 20◦,−10◦, 0◦, 10◦, 20◦, 30◦ d) and 41 translations
in both x and y directions (from -20 to 20 ) as well as a
single transformation with a fixed likelihood value account-
ing for the occlusion of the superpixel in the next frames.
Hence altogether there are 11768 candidate transformations
for each superpixel. However, we did not calculate cross-

Figure 3. Hierarchical Superpixel Motion We use two levels
of superpixel segmentation for the walking sequence. Each frame
is segmented into 200-300 superpixels on the first level and 800-
900 superpixels in the second level. The images in the second
row show superpixels’ motion pattern into the next frame. Similar
color indicates similar motions. Only the motion with the highest
likelihood are shown for each superpixel ( see text).

correlations for all possible motions for each superpixel. In-
stead a coarse-to-fine strategy was used to identify the can-
didate motions with highest cross-correlations. Candidate
motions with low likelihoods were discarded to improve
computational efficiency. Additional transformations such
as scale change and shear can be easily included, but not
needed for the video sequences used in our experiments.
Let Hs = {µt, τ t}. A posterior over Hs is given by
p(Hs|{yt}) ∝ p({yt}|Hs)p(Hs). The likelihood of su-
perpixel yt

j from frame t overlapping the superpixel yt+1
k at

frame t + 1 through transformation τ t
j is given by

p({yt}N
t=1|Hs) =

∏
t

∏
j,k

∏
τt

j

pl

(
yt+1

k ,yt
j |τ t

j , µt+1
k , µt

j , βτ

)
(4)

where,

pl =

{
exp

{
βτΨ

(
yt+1

k , τ t
jy

t
j

)}
if µt+1

k = µt
j

ε otherwise
(5)

The function Ψ calculates the standard cross-correlation
between super pixel data yt+1

k and the transformed super-
pixel data τ t

jy
t
j , using the pixels from common locations

after the transformation. The precision value βτ and the
very-low probability ε was set to 10.0 and 10−10 in our ex-
periments. The prior p(Hs) contains two type of potential
functions. The first type of potential functions is formed
from the fact that the neighboring superpixels from a frame
should have the same motion if they belong to the same ob-
ject.

p(τ t
i , τ

t
j |µt

i, µ
t
j) =

{
exp

{−γτΦ(τ t
i , τ

t
j )

}
if µt

i = µt
j

ε otherwise
(6)



where the function Φ measures the difference between
two transformations. It is difficult to compare two transfor-
mation when the actual motion involved is small; a small
rotation and a translation of a superpixel can be easily ap-
proximated by another translation alone. Hence we com-
pare the transformations by the differences in the superpixel
locations z after the transformations. The second type of po-
tential functions in p(Hs) is a data-driven Ising prior which
requires that mask labels of neighboring superpixels should
be the same unless there is strong edge between them is de-
scribed by equation 7. The function Ω(yt

i,y
t
j) provides the

average edge strength along the border of the two superpix-
els.

p(µt
i, µ

t
j) =

{
1 if µt

i = µt
j

exp
{−γeΩ(yt

i,y
t
j)

}
otherwise

(7)

The hidden variables in these MRFs are all discrete and
hence, we used the belief propagation algorithm to approx-
imate p(Hs|{yt}). The results are shown in the third row
in figure 4. Since this low-level superpixel segmentation
schemes lacks any global appearance and shape models, it
cannot handle occlusion in a meaningful manner and the
method fails.

3.3. Fusion of Top-down and bottom-up Schemes

We now describe a novel framework where generative
framework (section 3.1) and the low-level superpixel mo-
tion segmentation scheme (section 3.2) are fused together to
overcome the shortcomings described in the previous sub-
sections. Let H = {Hs,Hg} be the set of all hidden vari-
ables. Posterior distribution over H is written as

p(H|{xt,yt}) ∝ p({xt}|H0)p({yt}|Hs)p(Hs|Hg)p(Hg)
(8)

Here, p({xt}N
t=1|Hg) and p(Hg) are the likelihood and

prior terms of the generative model described in section 3.1.
Similarly p({yt}N

t=1|Hs) is the likelihood term at the super-
pixel level described in section 3.2.The new term p(Hs|Hg)
contains potential functions described in p(Hs). In addi-
tion, it introduces the following fusion potential functions,
which play a pivotal role by connecting the hidden variables
of the generative model to the low-level superpixels. This
allows a continuous interchange of information between the
two levels throughout the evolution of the inference in the
fused framework. For example, the motion of a superpixel
(τ ) between the frames acts as a strong prior on the canoni-
cal transformations of the objects to those frames (T t

k, T t+1
k )

, (figure 2). This allows us to avoid the local minima prob-
lems described in section 3.1. The following potential func-
tions encapsulates these constraints.

p(τ t
i |Hg) =

K∏
k=1

{
exp

{−γΦ
(
τ t
i , T

t+1
k − T t

k

)}}δ(µt
i=k)

(9)

where, Φ is defined as

Φ(τ t
i , T

t+1
k − T t

k) = ||τ t
i z

t
i − T t+1

k (T t
k)−1zt

i|| (10)

Mask label of a pixel (mt) and the mask label of it’s par-
ent superpixel (µt) should be same. Occlusion is modeled
properly within the high-level model. Occlusion handling is
now propagated to the superpixel level through the follow-
ing constraints, which allow us to avoid the occlusion han-
dling problems encountered in using only the super-pixel
motion for motion segmentation (section 3.2).

p(µt
i|mt

j) =
{

1 if µt
i = mt

j

ε otherwise
(11)

It is important to realize that once the generative model
variables and the low-level variables are fused in the above
manner, there is no need to differentiate between them from
the inference algorithm’s point of view. This is one of the
main advantage of the proposed framework in that there is
an abstraction between building the model and performing
approximate inference. This allows one to easily add or re-
move functionalities and constraints within the model with-
out worrying its effects on the approximate inference algo-
rithm.

4. Approximate Inference in the fused frame-
work

The combined posterior distribution given in eqn. (8)
consists of both continuous and discrete variables. It is dif-
ficult to design a variational approximation scheme for this
distribution due to the intractable partition function Z. Be-
lief propagation (BP) algorithm can handle complex parti-
tion functions, but limited to discrete variables only. In-
stead, we use an approximation scheme based on expecta-
tion propagation (EP) algorithm [6], which generalises BP
to both continuous and discrete variables.

The posterior distribution can be considered as a prod-
uct of factors(e.g. Consider p(a, b, c) = p1(a, b)p2(b, c).
Here p1 and p2 are factors of p). EP approximates each
of these factors using simpler distributions, qj(Hj), and to-
gether they make up the global approximation, Q(H). This
is a crucial difference to variational approximation schemes,
where there is usually only a single approximate distribution
(Q(Hj)) for each variable (see section 3.1).

p(H|{x,y}) ∝
∏
j

pj(Hj) ≈

∏
j

qj(Hj) = Q(H) (12)

Here, Hj ⊆ H is subset of hidden variables involved in
the factor pj(Hj). Furthermore, we use a fully-factorized
approximation of the form

qj(Hj) =
∏

hk∈Hj

qj(hk) (13)

.



A global approximation for a particular variable hl can
be obtained by multiplying individual approximations of
that distribution from each of the factors.

Q(hl) ∝
∏
j

qj(hl) if hl ∈ Hj (14)

EP algorithm proceeds by updating each qj(hl), in turn.
As an example, consider the following approximation of a
posterior factor from eqn. (1).

pi(f1, T
t
1 ,mt) = {N (xt|T t

1f1, β)}δ(mt=1) (15)

≈ qi(f1)qi(T t
1)qi(mt) (16)

where, qi(f1) is a Gaussian distribution; qi(T t
1) and

qi(mt) are discrete distributions. An update for the approx-
imate factor qi(f1) is obtained by minimising the following
KL-divergence.

qnew
i (f1) = arg min

qi(f1)
KL

(
φi(f1)Q\i(f1)||qi(f1)Q\i(f1)

)
(17)

with

φi(f1) =
∑
T t

1

∑
mt

{pi(f1, T
t
1 ,mt)}Q\i(mt)Q\i(T t

1)

=
∑
T t

1

{
N (f1| (T t

1)−1 xt, β)
}

Q\i(mt = 1)Q\i(T t
1)

Here, the notation Q\i(f1) denotes the global approxi-
mate distribution of f1 without the contribution from qi(f1),
i.e.

Q\i(f1) =
∏
j �=i

qj(f1) (18)

It is clear from the above expression that φi(f1) is a mix-
ture of gaussian distribution. Both global approximation
Q(f1), and local approximation qi(f1), are single gaussian
distributions. Minimising the inclusive KL-divergence in
eqn. (17) is equivalent to matching the moments of the two
distributions

{
φi(f1)Q\i(f1)

}
and

{
qi(f1)Q\i(f1)

}
by ad-

justing the parameters of the local distribution qi(f1). This
procedure have a closed form solution and avoids any gradi-
ent descent-based optimisation of the parameters of qi(f1).
Similar closed-form update schemes are also derived for
qi(T t

1) and qi(mt). Note that the noise precision β is treated
as a parameter and an optimum value is obtained through
gradient-based optimisation after each iterative update of
qi(f1) , qi(T t

1) and qi(mt). We derive analogous update
schemes for all the posterior factors from both the genera-
tive model and low-level MRFs, described in the previous
section. Algorithm 1 provides a summary of the generic
update scheme. Table 1 lists the the type of distributions
used for each variable in the fused model. Note the notation
Hj\hk denotes ”every variables in set Hj except hk”. Like
BP, EP algorithm can be easily implemented using message

h Description Q(h) & q(h) φ(h)
f layer appearance gaussian mix. of gauss.
T t layer transform discrete discrete
mt pixel label discrete discrete
π shape beta mix. of beta
µ superpixel label discrete discrete
τ superpixel motion discrete discrete

Table 1. Types of approximate distributions used with EP al-
gorithm

passing routines. In theory there is no need to differentiate
between the variables while performing the appropriate in-
ference. In practice, however, we use the information from
the superpixel motions to limit the possible candidates for
the canonical transformations of the generative model. This
is done in order to reduce the computational effort needed
to perform the EP inference.

Algorithm 1 Expectation Propagation Update Scheme
1. Initialization
q(h) are initialised with large variance for continuous
variables and uniform distributions for discrete variables.
2. Repeat until convergence

a. For each posterior factor pj(Hj) in p(H|xt,yt)
For each hk ∈ Hj

φj(hk) =
∫
Hj\hk

pj(Hj)Q\j(Hj\hk)

qnew
j (hk) =

arg min
qj(hk)

KL
(
φj(hk)Q\j(Hj)||qj(hk)Q\j(hk)

)

b. For each hl ∈ H

Q(hl) =
∏
j

qj(hl)

5. Experiments

Jojic-Frey video: The proposed scheme was first tested
on 40 frames of Jojic-Frey video [2]( 15 Hz, resolution
320×240, jojic-input1.avi(videos are provided with the
supplementary material). The results are shown in figure 4.
Our implementation of the variational motion segmentation
scheme proposed by [11], did not converge satisfactorily to
the correct solution (second row), even after a number of
runs from different random initializations and limiting the
motion to translation only. This is no surprise as the vari-
ational inference on generative model alone , without the
benefit of low-level information, can easily fall into local
minima.



Similarly inference on the low-level MRFs alone, with
out the generative model, produced comparatively poor re-
sults (third row). This is expected as it is difficult to han-
dle occlusions without the generative model. The proposed
framework, which combines the generative model with the
low-level MRFs, converges correctly (fourth row, jojic-
mask1.avi). Only a single level of superpixel segmentation
was used for this sequence and the motions of the super-
pixels were estimated only to the next frame. We used the
learned appearances (f1, f2 and b) and the canonical trans-
formations for each frame (T t

1 , T t
2 to synthesise the frames

(fifth row, jojic-synth1.avi).
Temporal Super-resolution: Later, we sub-sampled the

input video to create lower frame rate input video (3.75Hz,
10frames, jojic-input4.avi). We still managed to learn the
appearances and the canonical transformations from just 10
frames. By interpolating the canonical transformations, we
then synthesised 30 intermediate frames along with the 10
original frames to create 40 frames 15Hz video. Some of
the synthesised frames are shown in the last row of figure 4
( jojic-synth4.avi).

Walking sequence: We also used the framework to per-
form motion segmentation of the walking sequence from
[8](15Hz 35 frames, walk-input.avi). By allowing five ob-
jects with the model, we were able to extract five body
parts (figure 6, which are performing independent rigid-
body motion approximately throughout the video. We in-
cluded two levels superpixels (figure 3 for this walking se-
quence. Furthermore, motion of the superpixel from one
frame is estimated for the next two frames (instead of just
the next frame as done for the previous sequence). The re-
sults are show in figure 5 (walk-mask.avi). We are able to
identify the motion of meaningful body parts without using
prior knowledge about the articulated structure of the hu-
man body. Note that we did not attempt to segment the mo-
tion of the hands, as they are very small and much finer su-
perpixel representation is needed to segment their motions.
This is left for future work. From the video it could be seen
the estimated motion of the body parts is not smooth. This
is mainly resulting from the smallest discritisation of the
rotation part of canonical transformations to 10◦. Allow-
ing smaller discritisation values will smooth the motion, but
will introduce additional computational cost.

Computation time: The cross-correlation values for the
candidate motions of the superpixels are calculated effi-
ciently using Fast Fourier Transform techniques (FFT) tech-
niques. This takes approximately 20 minutes in a computer
with 2.1GHz Duo Core Pentium processor and 2GB ram,
for all 35 frames in the sequence. Performing the infer-
ence with expectation propagation algorithm approximately
takes 4 hours, as we used a large number of iterations to
guarantee full convergence, but in practice few iterations
are adequate to obtain similar results (about 50 minutes).
This compares well with the recent state-of-the-art algo-
rithms which produces similar results such as Kumar et al
[4]( which takes more than 4 hours on the same sequences)
. We are also looking into FFT-type techniques to speed up

the calculations of the EP updates as fututre work. All our
code was implemented in c++.

6. Conclusion

This paper has introduced a framework for fusing high-
level generative model with low-level superpixel motion
segmentation in a principled manner for performing unsu-
pervised motion segmentation. Resulting model is complex
and contains a number of MRFs involving both discrete
and continuous variables. We derive a novel approximate
inference scheme based on expectation propagation algo-
rithm. The framework has several advantages over other
schemes for motion segmentation . It separates the tasks
of model building and performing appropriate inference, al-
lowing flexibility for adding or removing functionalities and
constraints within the model. It relies on continuous inter-
action between the high-level model and the low-level cues,
for guiding the inference to a correct convergence, avoiding
local minima solutions. The framework is demonstrated by
obtaining similar results to state of the art in unsupervised
motion segmentation.
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Figure 4. Results from Jojic-Frey sequence First row: Some of the input frames from the 40 frame sequence. Second row: Segmentation
results from using just the generative model without low-level superpixels motion information. We used the variational scheme proposed in
[11] to infer the hidden variables. Third row: Results from just using the low-level information without the generative model. Expectation
propagation was used to perform the inference. Fourth row: Results from the proposed fused model using the expectation propagation
inference scheme. Fifth row: Synthesised frames created using the the learned appearances and the canonical transformations. Sixth row:
Temporal super resolution results (see text)

Figure 5. Results from the walking sequence First row Some of the input frames from the 35 frame sequence. Second row Segmentation
results from the proposed fused model using the expectation propagation inference scheme (with five foreground objects). Third row
Synthesised frames created using the the learned appearances and the canonical transformations.

Figure 6. Appearances and Shapes of the objects learned from the walking sequence


