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Abstract

We propose an unsupervised method for evaluating im-
age segmentation. Common methods are typically based
on evaluating smoothness within segments and contrast be-
tween them, and the measure they provide is not explicitly
related to segmentation errors. The proposed approach dif-
fers from these methods on several important points and has
several advantages over them.

First, it provides a meaningful, quantitative assessment
of segmentation quality, in precision/recall terms, which
were applicable so far only for supervised evaluation. Sec-
ond, it builds on a new image model, which characterizes
the segments as a mixture of basic feature distributions. The
precision/recall estimates are then obtained by a nonnega-
tive matrix factorization (NMF) process. A third important
advantage is that the estimates, which are based on intrin-
sic properties of the specific image being evaluated and not
on a comparison to typical images (learning), are relatively
robust to context factors such as image quality or the pres-
ence of texture.

Experimental results demonstrate the accuracy of the
precision/recall estimates in comparison to ground truth
based on human judgment. Moreover, it is shown that tun-
ing a segmentation algorithm using the unsupervised mea-
sure improves the algorithm’s quality (as measured by a su-
pervised method).

1. Introduction

Image analysis of a typical complex scene is much sim-
pler if the image is partitioned into semantically meaning-
ful parts. Much effort has been dedicated to the develop-
ment of segmentation algorithms. The hardest and yet most
useful form of segmentation uses only the image itself and
does not rely on additional information. Segmentation al-
gorithms are usually based on characterizing every image
point using some local property and seeking a partition that
makes this property regular ( i.e., smooth or obeying some
model [3]) within the parts (segments) and irregular across

the boundaries between them.
Leading approaches for finding such partitions include

graph cut algorithms [7, 17], hierarchical segmentation [5]
and active contour algorithms [21]. See comparative evalu-
ation in [13]. This bottom up approach is limited, and better
results may be obtained using model based information [5]
or human interaction [7].

The quality of a segmentation result may be evaluated
by comparing it to ground truth segmentations (supervised
evaluation). Alternately, the evaluations may be done with-
out any reference segmentation at all (unsupervised evalu-
ation). We do not consider here task-dependent evaluation,
which is useful in the context of specific applications.

Supervised, or ground truth based, evaluation is com-
monly used for empirical comparison of algorithms. The
evaluated segmentation is compared to the reference seg-
mentations using some type of set difference (e.g., [1, 18,
25, 28]). Some methods focus on the boundaries between
the segments and compare them to the reference boundaries,
in statistical terms of miss and false positive, or precision
and recall [18]. The recently available large image data-
bases associated with manual segmentations [19] reveal the
inconsistency of human segmentations, but still allow the
quantitative comparison of different approaches on a com-
mon test bed [13]. The feedback from the supervised seg-
mentation evaluation, enables learning/optimization based
design of segmentation procedures [5, 18].

Unsupervised evaluation of segmentation does not use
ground truth and is based only on the information included
in the image itself. It is usually based on heuristic measures
of consistency, related to Gestalt laws, between the image
and the segmentation. Some examples are intra-region uni-
formity, inter-region contrast [6, 8], specific region shape
properties (e.g., convexity [14]), or combinations thereof
[27]. More accurate judgement is possible when a statis-
tical characterization of the underlying perceptual context
is available [1, 12].

Unsupervised evaluation is considered rather weak for
evaluating segmentation [28]. It is sensitive to texture and
context, lacks the very informative ground truth, and does
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not offer a clear interpretation: unsupervised evaluation al-
gorithms provide a measure which, supposedly, increases
monotonically with the perceptual quality of the segmenta-
tion. Yet, this measure is not explicitly related to the empir-
ical error probability provided by, say, precision/recall. Un-
supervised evaluation is rarely discussed as an end in itself;
see, however, [6, 8, 26, 20]. It is more commonly discussed
in the context of the numerous segmentation methods (see,
e.g., [21, 23]). In fact, every segmentation algorithm may
be interpreted as an optimization of an unsupervised qual-
ity measure. To make the resulting segmentation algorithm
efficient, such quality measures are often simplistic.

This paper proposes an unsupervised method for evalu-
ating image segmentation, which is very different from pre-
vious unsupervised approaches. First, it provides a mean-
ingful, quantitative assessment of segmentation quality, in
precision/recall terms, which were applicable so far only
for supervised evaluation. Second, it builds on a new image
model, which characterizes the segments as a mixture of ba-
sic feature distributions. The precision/recall estimates are
then obtained by a nonnegative matrix factorization (NMF)
process. A third important advantage is that the estimates,
which are based on intrinsic properties of the specific image
being evaluated and not on a comparison to typical images
(learning), are relatively robust to context factors such as
image quality or the presence of texture.

Several supervised approaches proposed the collection
of distributions characterizing the different objects, either
by learning them for a class of objects (e.g., [15]), or by
using interaction on a single image [7], and using these dis-
tributions to improve the segmentation. The use of distrib-
utions for characterizing the segments is related to the pro-
posed approach. The proposed approach is also (weakly)
related to the recent segmentation algorithm which alterna-
tively calculates the segmentation and the segment distrib-
utions [2]. Note, however, that this method focuses on the
actual segmentation and relies on the obtained (unique) seg-
mentation to get the distributions. Our method, on the other
hand, does not rely on any hard decision regarding the seg-
mentation and is therefore more robust.

Grouping quality was evaluated, in an unsupervised way,
relative to the consensus of several grouping algorithms
[26, 24]. This way, quantitatively meaningful evaluation
may be obtained. Like these methods, our also uses multi-
ple segmentations. Unlike the consensus approach, it relies
on an explicit model, is much less sensitive to texture and
edge detection errors, and does not require any consensus
between the segmentations. In fact, it would perform well
even if very few segments included in the input segmenta-
tions are reasonable.

The paper continues as follows: Section 2 introduces our
image model. A background on NMF and the details of our
implementation are given in section 3. Section 4 suggests
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Figure 1. Edge strength distributions on different regions of an im-
age. The regions are specified by manual (e.g. (a)) or automatic
segmentations. Distribution densities on the segments specified
by (several) manual segmentations (b). Each curve is associated
with a distribution of a single segment. Cumulative distributions
corresponding to manual segmentations (c). Cumulative distribu-
tions corresponding to incorrect segmentation of the same image
(d). The ”thick” curves are clustered thin curves.

an application framework for the proposed measure. Exper-
imental results, discussion and conclusions are presented in
sections 5 and 6.

2. Framework

We consider the evaluation of segmentations such as
those created by general purpose segmentation algorithms.
Thus, a segmentation is a partition of the image into dis-
joint regions, separated by thin boundaries. We refer to the
evaluated segmentation as the hypothesized or given seg-
mentation.

Every point in the image may be characterized by some
local properties, such as intensity, color, or texture, which
may be represented by some feature vector. In this paper
we used a boundary sensitive operator which provides a
rough scalar characterization of texture and edge presence.
(Actually, we use three operators, corresponding to texture,
brightness and color. See section 3.3).

Consider a good segmentation of some image (possibly
one out of several). Our basic model is that for every pixel
within a particular segment, the local characterization may
be regarded as an instance of a random variable, associated
with some (discrete) distribution. The distributions associ-
ated with different segments are not necessarily different.
The region around the boundary is considered as another
segment and is characterized by another distribution. Intu-
itively, for boundary sensitive operators, we expect this dis-
tribution to put higher weights on high values. Note how-



ever that due to texture, the other distributions are not ex-
pected to be disjoint from the boundary distribution.

As an example, consider the distributions associated with
several human segmentations of the same image (Fig. 1ab).
Note that the distributions are clustered into several types.
The clustering phenomenon is clearer in the less noisy cu-
mulative representation of these distributions (Fig. 1c). The
lower cumulative distribution curves, which rise only for
relatively high values, are those associated with the manu-
ally marked boundaries. It should be emphasized that these
distributions, characterizing the true segments and the true
boundary, are not only unknown but are not even uniquely
specified. We shall show, however, that estimating them
leads to a quantitative, meaningful and yet unsupervised
quality measure for a given segmentation.

Consider now an incorrect segmentation hypothesis.
Every incorrect segment contains parts from several true
segments. Therefore, we expect the incorrect segments to
be characterized by mixtures of the true distributions; see
Fig. 1d. The basic goal considered here is: Given a seg-
mentation (and no ground truth), estimate its correctness.
Specifically, we would like to estimate the accuracy of the
inter-segment boundaries in precision/recall terms [18].

To carry out this seemingly impossible task, we first con-
sider a simpler task. Assume that the number of true seg-
ments (including the boundary segment), k, as well as the
associated distributions are known. All the mixture distrib-
utions lie in a subspace spanned by these true distributions.
Therefore, given a particular hypothesized segment and its
distribution, the mixture coefficients associated with the hy-
pothesized segment may be obtained by solving an overcon-
strained system of linear equations. Then the precision and
the recall may be easily calculated; see below.

Consider now the more difficult task, where the true
distributions are not known. To find these true distribu-
tions, specify many (not necessarily correct) hypothesized
segments and find their distributions. The subspace span-
ning all the hypothesized distributions is of dimension k
and contains the true distributions. Note now, that for any
choice of the true distributions, the mixture coefficient as-
sociated with every hypothesized distribution must be pos-
itive. Therefore, finding the true (hidden) distributions as-
sociated with the true segments is a nonnegative matrix fac-
torization task.

Formally, let hi be the operator response distribution in
the i-th segment, represented as an n-bin histogram or col-
umn vector. Thus, H = (h1, h2, . . . , hk) ∈ Rn×k repre-
sents all the underlying (true) distributions on the image.
Consider now some segmentation containing m segments
(including the boundary). Let H∗ = (h∗

1, h
∗
2, . . . , h

∗
m) ∈

Rn×m be the matrix of the distributions associated with
these segments. Then, H∗ may be written as

H∗ = HW, (1)

where W ∈ Rk×m is a weight matrix. Practically, the num-
ber of true distributions is unknown and may be very large.
Moreover, the measured distributions may be noisy. The
factorization still holds as an approximation H∗ ≈ HW
for an effective value of k, which we estimate.

W.l.g. let h1 and h∗
1 be the histograms associated with

the boundaries in the true segmentation and in the hypothe-
sized one. Then, by definition,

Precision = w11 Recall =
α1w11∑
j αjw1j

, (2)

where αj is the size of the j-th segment.
Thus, the quality of a given hypothesized segmentation

may be found by decomposing its operator response his-
togram matrix into two matrices H and W , representing
the distributions associated with the true segments and the
mixture coefficients, respectively.

3. Finding true segmentation distributions us-
ing nonnegative factorization

3.1. Algorithms for nonnegative factorization

The decomposition of the measured histogram matrix
H∗ into a mixture of basic histograms is a nonnegative ma-
trix factorization task [16, 10, 4, 11]. This task is often for-
mulated as follows: Given a nonnegative matrix A ∈ Rn×m

and a positive integer k < min(m, n), find nonnegative ma-
trices H ∈ Rn×k and W ∈ Rk×m which minimize the
functional

f(H, W ) =
1
2
‖A − HW‖2

2. (3)

The matrix pair {H, W} is called a nonnegative matrix fac-
torization of A, although A is not necessarily exactly equal
to the product HW . Minimizing (3) is difficult for several
reasons, including the existence of local minima as a result
of the nonconvexity of f(H, W ) in both H and W , and,
perhaps more importantly, the nonuniqueness of the solu-
tion. Additional information is commonly used to direct the
algorithm to the desired solution [10].

The problem was introduced by Paatero [22] but got
much attention only after its information theoretic formu-
lation and the multiplicative update algorithm by Lee and
Seung [16]. See the survey in [4]. The factorization is com-
monly done by iterative algorithms: one matrix (e.g., W )
is treated as a constant, getting its value from the previous
iteration, while the other H is changed to reduce the cost
f(H, W ). Then the roles of the matrices are switched. The
algorithms differ mostly in the specific cost reducing itera-
tion, and in the use of additional information.

3.2. Factorizing the histogram matrix

To carry out the factorization (1), we used a variation
on the multiplicative update method [16] as well as several



supporting techniques.
Much data is needed for successful factorization. There-

fore, instead of factorizing the matrix H∗, associated with
a single segmentation, we consider a larger matrix associ-
ated with several segmentations (of the same image!). Such
segmentations are either available or may be created using
a segmentation algorithm with different sets of parameters.
H∗ is thus redefined as an n × M matrix whose columns
are the M histograms associated with all segments of all
segmentations.

H∗ =
(
h∗

1, h
∗
2, . . . , h

∗
m, h∗

m+1, . . . , h
∗
M

)
. (4)

The factorization (1) is now changed to H∗ = HW , where
H is an n × k matrix (unchanged) and W is a much larger
k × M weight matrix. Clearly, for successful factorization,
H∗ should contain different combinations of true H vec-
tors. Geometrically, the columns of H∗ are points in the
convex hull specified by the columns of H in Rn. To get a
stable reconstruction of the convex hull, at least some of the
points should be on its faces and preferably close to its ver-
tices. Empirically, we found that the reconstruction is stable
when a related condition holds: at least several of the seg-
mentations are not completely wrong. That is, a substantial
part (35% or more) of their hypothesized boundary overlaps
with the true boundary. This usually means that at least one
of the segments in the segmentation is correct.

For common segmentation sets, many segments are as-
sociated with very similar distributions. For an example,
see Fig. 1d, where the middle cluster of curves corresponds
to such similar distributions. Geometrically, this means that
the center of the convex hull is over-represented. Such un-
even representation leads to unstable and incorrect factor-
ization. Following [11] we make the representation of com-
binations of H distributions more even by a dilution process
which replaces every set of similar columns with a sin-
gle representative. (Technically, two distributions are con-
sidered similar if their inner product is larger than 0.999.)
Actually, some NMF algorithms, such as alternating least
squares (ALS) NMF [4] as well as the algorithm used here,
are not too sensitive to uneven representation. Yet, dilution
decreases the size of H∗ and much improves its compu-
tational efficiency. After the NMF is carried out, the full
weight matrix W is found by a single least squares itera-
tion.

Using constraints improves the accuracy of NMF tasks.
Note that every column of both H and W should sum to 1.
Moreover, we noticed that the many distributions associated
with true segments are roughly unimodal, which suggests a
parametric description. We found that approximating every
one of the basic distributions as a skewed Gaussian (h(x) =

(a + bx)e−
(x−µ)2

2σ2 ) made the factorization more stable.
The results described here were obtained using the fol-

lowing variation on the multiplicative update method [16],

Algorithm 1 Factorization
Input: Histogram matrix H∗, model complexity k.

1: Dilute H∗ to H ′ as described in 3.2.
2: Initialize H ∈ Rn×k with random columns from H ′.

Initialize W ∈ Rk×m with random values, and nor-
malize its columns to sum to 1.

3: Do W and H iterations until convergence. Each W
iteration repeats the basic W update and a column nor-
malization step several times. Each H iteration repeats
the basic H update and a normalized skewed Gaussian
fit to every column of H several times. The basic up-
dates are :

hij =
hij(H ′ · WT )ij

(H · W · WT )ij + ε
wij =

wij(HT · H ′)ij

(HT · H · W )ij + ε
(5)

where ε is a small constant.
4: Order columns of H by µ + 2σ.
5: Solve H∗ = HW for W with least squares algorithm

using the the obtained H .
6: Decompose W into segmentation specific coefficients

matrices Wi. Estimate the precisions (Pi) and the re-
calls (Ri) for each segmentation using Wi and (2).

Output: {Pi}, {Ri}.

which was nearly as accurate as the ALS algorithm [4] but
much faster. The algorithm, formally described in Algo-
rithm 1, makes several multiplicative update steps for each
matrix and thus gets closer to the solution at each iteration.
In this sense, it behaves similarly to ALS NMF algorithms.

Given H , we still need to identify the distribution (col-
umn of H) associated with the boundary. We choose the
distribution associated with highest µ + 2σ value.

3.3. Estimating model complexity using several
modalities

The factorization algorithm described above decom-
poses the available histograms to sums of k basic his-
tograms. We found, empirically, that assigning the correct
value to the model complexity k is critical to the algorithm’s
success: For example, a too-high value of k may lead to a
decomposition of the true boundary histogram into two or
more estimated basic histograms, and to precision errors.
The best value of k differs from image to image and de-
pends on the type of boundary-sensitive operator (modality)
as well.

We propose to use the consistency between modalities
to specify the model complexity. In principle, if we use
different boundary sensitive operators, we should still get
the same precision if they function properly. In particular,
we should get the same precision if the model complexities
were chosen properly.
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Figure 2. Choosing the model complexity: estimated basic his-
togram (brightness modality) with nonoptimal (a) and optimal (c)
choices of k1. The basic histograms are plotted in colored thick
lines. The corresponding distribution of the precisions associated
with different segmentations in the (δi, medj(p̂ij)) plane (b) and
(d).

This criterion is not sufficient: a choice of k = 1 for all
modalities would yield a uniform precision of 1 for them all,
which is consistent but incorrect. To enhance the criterion
we used the following observation: given a set of segmen-
tations (of the same image), we know that some of them
are correct while others are inaccurate. Therefore, their true
corresponding precisions should differ.

We use three modalities: brightness, color and tex-
ture. The NMF (Algorithm 1) was applied to each of them
separately, using three corresponding model complexities,
k1, k2, k3. Let p̂ij be the estimated precision associated
with the i-th segmentation and the j-th modality, and let δi

be the standard deviation of the three precisions associated
with the i-th segmentation. Let δ be the standard devia-
tion of the median precision {medj(p̂ij)}, calculated over
all segmentations. Then, one empirically selected way to
quantify the considerations discussed above is to minimize

c(k1, k2, k3) =
max(maxiδi, 0.2)

δ
. (6)

Note that the variance between modalities cannot dominate
this expression even if it is very small. Limiting the numer-
ator is necessary because, for some erroneous choices of
model complexities, the three modalities may be consistent,
leading to a very small c(k1, k2, k3). See Fig. 2.

3.4. Dealing with boundary inaccuracies

Typical segmentation algorithms distort the boundaries
and provide somewhat inaccurate locations. That is, even
for a segmentation providing roughly true segments, the

Algorithm 2 Evaluation
Input: A test image I and its segmentation(s) si, i ∈

1, . . . , M .
1: If needed, add additional segmentations using a seg-

mentation algorithm and different parameter sets.
2: Run three boundary sensitive operators (denoted differ-

ent modalities), and measure their distribution within
the segments. Construct three matrix H∗

1 , H∗
2 , H∗

3 .
3: For all combinations of k′

1, k
′
2, k

′
3 ∈ {2, 3, 4, 5} Factor-

ize every matrix H∗
j using the corresponding k′

j value,
by applying Algorithm 1, and obtain the precisions
{p̂i,k′

j
} and recalls {r̂i,k′

j
} of all segmentations. Choose

the (k1, k2, k3) triple minimizing c(k′
1, k

′
2, k

′
3) (6).

4: Calculate: Pi = median
(
p̂i,kj

)
Ri = median

(
r̂i,kj

)

Output: {Pi}, {Ri}

boundary locations are inaccurate. This problem is recog-
nized in supervised evaluation methods [18, 13], and some
small location error margin is allowed.

Naturally, the problem arises here as well: the distrib-
ution evaluated on the inaccurate boundary is not the one
characterizing the true boundary, and the distribution eval-
uated within a segment contains contributions from the
boundary. Thus, we do not use the distribution of the bound-
ary sensitive operator directly. Rather, to handle this dif-
ficulty, we replace the responses in the boundary points
with the highest responses in their circular neighborhood
(r = 5). Because we expect higher values on the boundary,
the pixel contributing the maximal value is indeed likely to
belong to the true boundary. The other segment distribu-
tions are calculated similarly, except that points which were
considered when the boundary distribution was calculated
are not considered this time.

A summary of the full factorization based evaluation al-
gorithm is described in Algorithm 2

4. Application: a tool for algorithm design

As discussed above, every segmentation algorithm may
be regarded as an optimization of an unsupervised segmen-
tation quality criterion. Usually both the criterion and the
optimization method depend on a set of parameters. Opti-
mizing them for an ensemble of images may not give good
segmentations for many images. The proposed unsuper-
vised evaluation method may act as an independent referee,
able to better choose a segmentation algorithm and its asso-
ciated parameters for every image.

This way, the segmentation process becomes hierarchi-
cal. The external part uses the proposed evaluation, to spec-
ify a particular internal algorithm and tune its parameters.
Any common algorithm may be used as the internal algo-
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Figure 3. Precision estimation for synthetically degraded segmen-
tations. (a) automatically found k values are used to estimate the
precision. (b) optimal k values are used to estimate the precision.

rithm. Below, we consider a simplified version of such a
hierarchical algorithm, where the internal algorithm itself is
specified and only its parameters are optimized by the exter-
nal part.In the section 5 we show that this approach indeed
improves the performance of a mean-shift based segmenta-
tion algorithm [9].

We choose to optimize the internal algorithm by maxi-
mizing the F-value, F = 2P∗R

P+R . The F-value is considered
to be a function of the parameter vector Ω = (ω1, ..., ωL),
associated with the segmentation process, s(Ω). To opti-
mize it we use a simple hierarchical gradient descent algo-
rithm:

1: Init: Choose some parameters set {Ωi}, find the cor-
responding segmentations {s(Ωi)}, and use the NMF
algorithm to evaluate the F values {F (s(Ωi)}

2: Ω = arg maxi F (s(Ωi)), δ = δ0

3: repeat
4: for all ωj do
5: ∂F

∂ωj
= F (Ω+δ·ω̂j)−F (Ω−δ·ω̂j)

2δ

6: end for
7: if F (s(Ω)) is not a local maximum on a δ−grid then
8: Ω = Ω + δ · ∇F (Ω)

‖∇F (Ω)‖
9: else

10: δ = δ/2
11: end if
12: until δ < ε

In our implementation, the initial parameter set {Ωi}
was specified on a grid, and δ0 is set as the grid spacing.
ε = δ0/100. It is important that the optimization be hierar-
chical, because F is nonconvex in the algorithm parameters.
Note that the NMF runs only once. The F values calculated
during the iterative process are calculated using the basic
histograms computed during initialization.

5. Experiments

In all the experiments the estimated precision and recall
values are obtained using Algorithm 2. Multiscale gradients
were used as boundary sensitive operators. The texture gra-
dient was based on Gabor filters. We expect, however, that
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Figure 4. Precision/recall unsupervised estimates for segmenta-
tions obtained by EDISON algorithm, compared with supervised
evaluation made with two types of ground truth: A typical good
fit (a) and a typical erroneous fit (b). Histograms of the difference
between the unsupervised estimates and the two supervised esti-
mates, as well as the difference between the supervised estimates
(c). The results are more accurate when the true precision is mod-
erately high for at least several segmentations of the image (0.35
or larger, thick lines (c); the plot for recall is similar). A histogram
of ∆(unsupervised, human) minus ∆(human, human) (d).

the other operators would give similar results.
The accuracy of the proposed method is estimated with

the help of the manual markings supplied as part of the
Berkeley database, which serves as ground truth, and are
considered below as “true”. Note that the manual markings
of different observers are different, and depend also on the
type of image (color vs. grey level) used [19]. These incon-
sistencies naturally limit the testing accuracy.

5.1. Precision estimates for degraded images

The first experiment uses a set of degraded true segmen-
tations, associated with known precision. Specifically, we
took a manual segmentation associated with an image of
the Berkeley database [18] and created 50 degraded ver-
sions of it by adding false boundary segments of random
locations and lengths. (This was repeated for many manual
segmentations of different images). Let Li and Lh be the
lengths of the i−th modified (degraded) boundary, and of
the true (manually specified) boundary, respectively. The
precision of the i-th segmentation hypothesis is therefore
pi = Li

Li−Lh
. This precision, denoted synthetic precision,

serves as a reference (ground truth).
The estimated precision was calculated and compared

with the synthetic precision. The graph in Fig. 3a shows
the estimated precision versus the synthetic one. Note that
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Figure 5. Mean shift segmentations for different parameter sets.
The first line corresponds to an example where the proposed
image-adaptive choice led to an improvement. Segmentation with
ensemble-optimized parameters (F = 0.55)(b), and the most sim-
ilar human segmentation (a). Segmentation with image adaptive
parameters (F = 0.87) (c), and the most similar human segmen-
tation (d). The second line shows the worst degradation caused by
our algorithm. Parameter optimization over an ensemble of im-
ages led to (f) and to F = 0.57. Image adaptive optimization led
to (c) and to F = 0.23. Note the high variability between the
manual segmentation (e) and (h).

in most cases the approximation is very good. We found
that the median of the relative error is 8.3%. Limiting our
attention to the more relevant segmentations where the pre-
cision is relatively high, (0.35 or larger here), we found that
the average precision error is 8.5%. This level of accuracy is
comparable to the typical accuracy of manual (human) seg-
mentation, as measured by comparing the segmentation of a
single individual to that of the group [18]. Note that choos-
ing a single human segmentation as ground truth makes the
synthetic precision a little noisy. Manually optimizing the
model complexities k1, k2, k3 yields, obviously, more accu-
rate precision estimates. See Fig. 3b. This improvement is
not large (median: 6.7%), implying a reasonable estimate
of the model complexities.

5.2. Estimating precision and recall from of auto-
matically generated segmentations

We now turn to testing the accuracy of our preci-
sion/recall estimates applied to segmentations made by a
common algorithm: the EDISON (mean shift) segmenta-
tion tool [9]. Each image was segmented 30 times using a
different parameter set. (EDISON’s parameters are spatial
bandwidth, range bandwidth, and minimum region area).

The precision/recall were estimated for all segmenta-
tions. The unsupervised estimates were often close to
those calculated using ground truth [18]. See Fig. 4a.
(Two ground truth values, corresponding to ”gray” and
”color” markings [18], are plotted.) Sometimes the esti-
mates are different but the unsupervised estimate is usually
still monotonic in the true one. See Fig. 4b.

We compiled statistics for more than 100 images. The
overall difference between the estimates and the ground
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Figure 6. Precision/recall performance of constant parameter sets
and the proposed algorithms on Berkeley images using EDISON.

truth precision is just a bit larger than the difference between
the supervised calculation based on the two sets of ground
truth. See Fig. 4c. Moreover, it seems that the larger errors
are correlated with those of the humans (Fig. 4d). Note that
a high histogram weight for a large value would imply that
our method errs while the human observers are consistent.
This does not happen frequently.

5.3. Application: optimizing EDISON

We now test the power of the proposed evaluation
method for unsupervised image-specific optimization of the
mean shift (EDISON) segmentation algorithm. 100 images
from the Berkeley database were used. First, as a refer-
ence, we used several parameter sets suggested in [13] (and
verified to be good indeed) and estimated the resulting pre-
cision/recall as described in [18]. See Fig. 6.

Then the segmentation quality was characterized, sepa-
rately for each image, by the unsupervised precision/recall
estimates, (not using any ground truth). This was done for
28 segmentations associated with different parameters in
the 3D (8, 16) × (1, 4, 7, 10, 13, 16, 19)× (100, 400) para-
meter grid (following [13]). The segmentation associated
with the best (unsupervised) F value was selected. Usually,
the best segmentations for the different images were not as-
sociated with the same parameters.

These best segmentations were evaluated using a su-
pervised method (as in [18]). The performance is similar
(slightly better) to that associated with the best non-image-
adaptive parameter set; see Fig.6. For some images the re-
sults were better and for others they were worse; see Fig.5.

Starting from the selected parameters, we further opti-
mized the algorithm using gradient descent, as described in
section 4. The algorithm is somewhat improved; see Fig. 6.

The error is now distributed more evenly between the
precision and the recall. This probably happens because,
in the grid based optimization, the third parameter (mini-
mal segment size) was chosen to be rather small (100 or
400 pixels) to prevent segmentation errors in many images
with small true segments. This often led, however, to over-
segmentation (low precision and high recall). The proposed



adaptive choice of parameters allows the minimal segment
size to be larger when necessary. This leads to more similar
precision and recall values when the optimization is applied,
and makes the overall segmentation better.

6. Conclusions

A fundamentally new approach to unsupervised estima-
tion of segmentation quality is proposed. The approach
builds on an intrinsic image model and a nonnegative matrix
factorization process, and is able the predict precision/recall
characterizations. Experiments, carried out on a large data-
base, demonstrate the accuracy of the estimates and their
application to tuning the segmentation process.

The segmentations optimized by the proposed measure
are often consistent with manual segmentation. Inconsisten-
cies often arise when the manual segmentations are them-
selves inconsistent. This seems to be the case when a lot of
semantic knowledge is used.

An important property of the proposed hierarchical seg-
mentation approach is the support of different segmentation
methods.The best algorithm for a particular image is cho-
sen, along with the optimal parameters. Diverse images
can thus be efficiently segmented by the most efficient al-
gorithm rather than by a complex general-purpose segmen-
tation algorithm
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