
High Resolution Motion Layer Decomposition
using Dual-space Graph Cuts ∗

IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2008, Anchorage, Alaska. ©IEEE.

Thomas Schoenemann and Daniel Cremers
Department of Computer Science

University of Bonn, Germany

Abstract

We introduce a novel energy minimization method to de-
compose a video into a set of super-resolved moving layers.
The proposed energy corresponds to the cost of coding the
sequence. It consists of a data term and two terms imposing
regularity of the geometry and the intensity of each layer.

In contrast to existing motion layer methods, we perform
graph cut optimization in the (dual) layer space to determine
which layer is visible at which video position. In particular,
we show how arising higher-order terms can be accounted
for by a generalization of alpha expansions. Moreover, our
model accurately captures long-term temporal consistency.
To the best of our knowledge, this is the first work which aims
at modeling details of the image formation process (such as
camera blur and downsampling) in the context of motion
layer decomposition. The experimental results demonstrate
that energy minimization leads to a reconstruction of a video
in terms of a superposition of multiple high-resolution mo-
tion layers.

1. Introduction

Related Work. The decomposition of videos into a super-
position of independently moving layers is of central im-
portance to scene interpretation, video coding and movie
compression. The idea dates back to the seminal paper of
Wang and Adelson [15], who used a two-step optimization
of two different functionals to alternatingly estimate motion
fields and layers. Subsequent methods [2, 5] were able to
produce similar motion segmentation results by minimiza-
tion of a single energy using either graph cuts or level sets
in alternation with parametric motion estimates.

Since motion segmentation is based on intensity com-
parisons of consecutive frames it typically suffers from two
limitations: Firstly, it does not exploit global temporal con-
sistency - the fact that the same intensity layer is deformed

∗Research supported by the German Research Foundation, grants #CR-
250/1-1 and CR-250/2-1.

Figure 1. The proposed method is able to remove the tree as
well as increase the resolution of the input video.

over the entire sequence is not taken into account. Secondly,
occlusion is either penalized heuristically or not modeled at
all. Although not resolving these drawbacks in a rigorous
manner, Dupont et al. [7] introduced a sophisticated layer
model into this framework.

The above drawbacks are resolved by layer decomposi-
tion approaches [1, 10, 16, 13]. Ayer and Sawhney [1], for
example, present a coding cost formulation where the layer
partitioning is obtained by thresholding soft decisions. No
spatial regularity is imposed.

Using Generalized Expectation Maximization, Jojic and
Frey [10] were able to produce very convincing reconstruc-
tions of the sequence as a real-valued superposition of layers.
Yet, their approach does not resolve the problem addressed in
this work, namely solving the hard decision of which video
pixel belongs to which layer and simultaneously estimating
spatially regularized coherently moving intensity layers.

More recently, Xiao and Shah [16] suggested to compare
each frame of the video to a reference frame. They intro-
duced the occlusion order constraint, penalized occlusions
by heuristic cost and optimized by a multi-step approach in-
volving a combination of graph cuts and level sets. As the
occlusion order constraint only holds for short sequences,
they need to decompose the sequence into smaller parts.

Kumar et al. [13] propose a sophisticated model includ-
ing motion blur and changes in lighting. They use a seven-
step optimization involving graph cuts and belief propaga-
tion. While this leads to good results on sequences con-

1

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

taining articulated motion, in this paper we show that on
sequences containing rigid body motion one can do better.

Contribution. In this paper, we introduce an algorithm to
decompose a video sequence into a set of moving, spatially
super-resolved layers. By minimizing an energy reflecting
the coding cost, we simultaneously estimate layer geome-
tries, super-resolved layer intensities, layer ordering and mo-
tion fields.

Our work aims at reconstructing sharp layer images as
demonstrated in Figure 1. To this end we introduce a realistic
model of the image formation process (also known as super-
resolution) into our framework.

Both super-resolution and coding cost formulation give
rise to regularization in the layer space. While optimization
with respect to the layer intensities leads to a variant of total
variation filtering [14, 17, 8], optimizing the layer geome-
tries is a major contribution of this paper: We show how to
convert the arising constrained optimization problem into an
unconstrained one and deal with arising high-order terms by
a generalization of expansion moves. Lastly we emphasize
that our method allows to model occlusions very naturally.

2. Motion Layer Decomposition by Minimizing
Coding Cost

In the following, we show that layer decomposition can
be seen as a problem of video coding, where the layers and
their motion in time are estimated by minimizing the coding
cost. The input video is given on a discrete set of spatio-
temporal pixels X:

I : X → IR

The task is to decompose the sequence into a set of N layers
(with pre-defined N) and their motion over time, both mod-
eled as continuous variablesLayers are modeled as functions

Ii : Ωi → IR, i = 1, . . . , N

defined on domains Ωi ⊂ IR2 which themselves are un-
knowns. These domains define the support of the layer.
They correspond to the shaded areas in Figure 2. In the
following we encode layer domains in terms of their char-
acteristic function:

li : IR2 → {0, 1}, li(x̂) =
{

1, if x̂ ∈ Ωi

0, else.
(1)

The motion of layer i over time is modeled by a motion field
which defines where a particular point of a layer appears in
the video at a given time in the sequence:

hi : Ωi × [0, T) → IR2,

We fix the coordinate system by enforcing that hi(x, 0) =
x for all i, i.e. at time 0 the layer i maps directly to the

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

����
����
����
����

����
����
����
����

���
���
���

���
���
���

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

ŷ ẑ

h1

h−1
1

h2h−1
2

(x, t)

layer 1 layer 2

video frame t

Figure 2. Illustration of layer order (here for N = 2 layers),
motion functions and labelings. White regions are not in the support
of the layer. The following equations hold: (x, t) = h1(ŷ, t) =
h2(ẑ, t) and ŷ = h−1

1 (h2(ẑ, t), t).

video, without distortion. For the present we assume that
the motion functions are invertible for given t, denoting the
inverse for t as h−1

i (x, t).
We impose a layer order: Layer i may temporarily oc-

clude parts of layer j only if j > i. Then, from given layer
domains Ωi one can infer which layer l(x, t) is visible at
which spatio-temporal position in the video:

l : X → {1, . . . , N}.
l(x, t) = min{i | h−1

i (x, t) ∈ Ωi} (2)

This function provides an accurate model of occlusions with-
out heursitic penalty terms. Enforcing this model (in the
context of hard decisions w.r.t. layer domains) is a major
contribution of this work.

Since the labeling l is induced by the domains Ωi, it
should not be optimized explicitly, as many state-of-the-art
layer approaches do. Instead we optimize the layer domains
directly. However, it has to be ensured that the entire in-
put video is explained (or coded), which is expressed as the
constraint:

∀(x, t) ∈ X : {i | h−1
i (x, t) ∈ Ωi} �= ∅ (3)

This constraint enforces that each video pixel be modeled
by at least one layer (or equivalently, that l as defined in (2)
is well-defined).

2.1. A Basic Coding Cost Formulation

To encode a video sequence by a set of layers, one needs
to encode the layer domains, layer appearance within the
domains, the motion of layers over time and finally noise
on the input video to allow perfect reconstructions. We de-
fer the choice of motion models until section 3.1. The cost
for encoding them are denoted as R(hi). To encode the

layer domains it suffices to encode their boundaries ∂Ωi.
The cost for encoding the layer appearance depends on the
compressibility of the intensity, which is well reflected as
the integral of the absolute intensity gradient – also known
as Total Variation. Assuming Gaussian noise on the in-
put sequence, we arrive at minimizing the coding cost:

Layer Decomposition

E({Ωi, Ii,hi}) =
∑
(x,t)

(
I(x, t) − Il(x,t)

(
h−1

l(x,t)(x, t)
))2

+
∑

i

R(hi) + ν
∑

i

∣∣∂Ωi

∣∣
+λ

∑
i

∫
Ωi

|∇Ii(x̂)| dx̂ (4)

subject to (2), (3)

2.2. Coding Cost for Combined Motion Layer De-
composition and Super Resolution

Minimizing (4) typically results in blurry layers. This
is partly due to imperfectly estimated motion models but
also due to a rather simple the image formation model: The
intensity of a pixel is assumed to reflect a single scene point.

To obtain sharp layer images we therefore integrate a
sensor model [17, 8] which accounts for camera blur and
the area averaging of sensor elements. For scenes generated
by a single layer, the intensity recorded in a sensor element
(or video pixel) is modeled as a convolution with a Gaussian
blurring kernel b followed by an integral over the area V[x,t]

of the sensor element:

Isyn(x, t) =
1∣∣∣V[x,t]

∣∣∣
∫

V[x,t]

b ∗ I1(h−1
1 (x′, t)) dx′

Without loss of generality we set the area of sensor elements
to |V[x,t]| = 1. To model the input sequence as a superposi-
tion of N layers we introduce a function expressing whether
a layer is visible at a given video pixel or not:

χi(x, t) = li(h−1
i (x, t)) ·

∏
j<i

(
1 − lj

(
h−1

j (x, t)
))

(5)

This expression is 1 if and only if layer i models the video
pixel and no layer with smaller order also models the pixel.
Now the image formation process is expressed as

Isyn(x, t) =
∫

V[x,t]

b ∗
[∑

i

χi(x′, t)Ii(h−1
i (x′, t))

]
dx′

≈
∫

V[x,t]

∑
i

χi(x′, t)
[
b ∗ Ii(h−1

i (x′, t))
]
dx′ (6)

where for computational simplicity we have neglected mo-
tion blur across layer boundaries. The corresponding coding
cost are

Superresolution Layer Decomposition

E({Ωi, Ii,hi}) =
∑
(x,t)

(
I(x, t) − Isyn(x, t)

)2

+
∑

i

R(hi) + ν
∑

i

∣∣∂Ωi

∣∣
+ λ

∑
i

∫
Ωi

|∇Ii(x̂)| dx̂ (7)

subject to (3), (5)

3. Optimization

Minimizing (7) – subject to (3) – is a difficult problem.
Our algorithm is based on two phases, each one using the
alternating minimization principle: In the first phase, we
minimize functional (4) using a multi-scale scheme. In the
second phase we include the more accurate sensor model
and minimize (7).

In either phase we alternatingly solve for the appearance
and support of the layers as well as their motion, keeping the
other quantities constant. We also optimize the layer order:
For two layers, we try both possible orders when updating
layer support. For N > 2 we assume that faster moving
layers are in front of slower moving ones. This assumption
includes - among others - all cases of a static scene with a
moving camera.

3.1. Choice and Update of the Motion Functions

So far we have left the motion models hi unspecified. For
the first phase we use a parametric model. For the second
phase this can optionally be augmented by a nonparametric
field.

3.1.1 Parametric Layer Motion

We use a parametric model of the form:

hi(x̂, t) = x̂ +
(

x̂t ŷt t t2 0 0 0 0
0 0 0 0 x̂t ŷt t t2

)
︸ ︷︷ ︸

S(x̂,t)

ϑi (8)

In particular this model includes affine motion. The costs
for coding the parameter vectors ϑi are negligible, so we set
R(hi) to 0.

These parameters are updated in phase 1, then kept fixed
for phase 2. In phase 1 we compute parameter increments

∆ϑi = M−1
i ·

(∑
x̂,t

χi(hi(x̂, t), t) ·(
Ii(x̂, t)−I(hi(x̂, t), t)

)
S(x̂, t)�∇I(hi(x̂, t), t)

)

with

Mi = λ I +
∑
x̂,t

[
χi(hi(x̂, t), t) ·

S(x̂, t)�∇I(hi(x̂, t), t)∇I(hi(x̂, t), t)�S(x̂, t)
]

Here I is the identity matrix. If the update results in a smaller
energy it is accepted and λ divided by 10, otherwise λ is
multiplied by 10 and the update discarded. This is the well-
known Levenberg-Marquardt algorithm.

3.1.2 Nonparametric Layer Motion

In the second phase optionally a nonparametric field is
added. Here we drop the requirement of the invertible mo-
tion model. Instead we only model the mapping of video
pixels to layer positions:

h̃−1
i (x, t) = h−1

i (x, t) + h−1
i,np(x, t) (9)

Coding the nonparametric fields h−1
i,np now invokes signifi-

cant cost, where the cost depends on the compressibility of
the motion fields. We choose

R(h−1
i,np) = α

∑
(x,t)∈X

∣∣∇h−1
i,np(x, t)

∣∣2
where ∇ denotes the spatial (2D) derivative. This is the
well-known regularization term of Horn and Schunck [9].

Updates of the nonparametric fields are computed by first
warping the layer to each video frame using the existing
motion model, then computing an increment between the
warped layer and the input frame with the method of Horn
and Schunck.

3.2. Update of the Layer Appearance

With respect to the layer intensities, functional (7) is con-
vex, so gradient descent leads to the globally optimal layer
appearance. The functional derivative in the direction η is
given as

∂E

∂Ii

∣∣∣∣
η

= lim
ε→0

1
ε

[
E(Ii + εη) − E(Ii)

]
A detailed calculation leads to the gradient descent

∂Ii

∂t
= −∂E

∂Ii

= 2
[∑

x,t

χi(x, t)
(
I(x, t) −

∫
V[x,t]

b ∗ Ii(h−1
i (x′))dx′

)

·
∫

V[x,t]

b(x′ − hi(ŷ)) dx′
] ∣∣∣∣dhi

dŷ

∣∣∣∣
+λ div

(∇Ii(ŷ)
|∇Ii(ŷ)|

)

This evolution equation can be interpreted as follows: The
first term drives the layer intensities (after blurring) towards
the observed intensities, whereas the second leads to a non-
linear, discontinuity preserving diffusion.

To deal with the rather large number of intensity variables
we resort to a GPU-based implementation. Each of the layers
in Figure 6 is then estimated in 30 seconds (30 input frames
of size 350 × 240, triple super-resolution).

In the first phase the integral and the convolution are re-
moved and the TV-term neglected. The layer intensities are
then given by averaging over input intensities.

3.3. Update of the Layer Support

When updating the layer support one has to keep in mind
that the functionals (4) and (7) are minimized subject to
the constraint (3) that they explain the whole video. The
following construction applies to both functionals, so we
just write E() for the energy. The key idea is to cast the
constrained optimization problem as an unconstrained one,
expressing the domains Ωi by their characteristic functions
li (1):

min
{li}

E({li}, {hi, Ii}) +γ
∑
x,t

N∏
i=1

(1−li(h−1
i (x, t))) (10)

The additional term is 0 exactly when the layer supports
explain (or code) the whole video. Hence the constraint is
fulfilled by choosing γ large enough. The resulting opti-
mization problem is a binary labeling problem, independent
of the number N of layers.

For minimization we distinguish two cases: For two lay-
ers we find the global optimum, whereas for more than two
layers an iterative scheme is used.

3.3.1 The Case of Two Layers

For the case of two layers (10) can be written as a sum of
unary and binary submodular terms. This can be minimized
globally using graph cuts [11].

Each layer position corresponds to a variable in the label-
ing problem. The spatial smoothness term (the third term in
(7)) is approximated by connecting every layer pixel with its
8 neighbors in the same layer (compare [3]). The TV-term
is approximated by unary terms, one for every layer pixel1.

The data terms and the constraint terms in (10) are
grouped together: For each video pixel (x, t) there is a bi-
nary term connecting the layer pixel h−1

1 (x, t) in layer 1 and
the layer pixel h−1

2 (x, t) in layer 2. By inverting the labeling
of layer 2, submodular terms are obtained. For functional
(4), the arising terms are given in table 1. For functional (7)
it suffices to change the data term.

1At the domain boundary of the layers this is only an approximation.

Eŷ,ẑ(0, 0)
[
I(x, t) − I2(h−1

2 (x, t))
]2

Eŷ,ẑ(0, 1) γ

Eŷ,ẑ(1, 0)
[
I(x, t) − I1(h−1

1 (x, t))
]2

Eŷ,ẑ(1, 1)
[
I(x, t) − I1(h−1

1 (x, t))
]2

Table 1. Binary term arising for a pixel ŷ in layer 1 and a pixel
ẑ in layer 2, mapping to the same video pixel (x, t) for time t (i.e.
h−1

1 (x, t) = ŷ and h−1
2 (x, t) = ẑ). For ŷ, a label 1 means that

ŷ ∈ Ω1, for ẑ label 0 means ẑ ∈ Ω2. Submodularity is given as
E(0, 0) + E(1, 1) ≤ E(0, 1) + E(1, 0) for γ large enough. For
the data terms, we use bilinear interpolation on the layer intensities.

3.3.2 The Multi-layer Case

For the N -layer case, functional (10) contains terms of order
N , two for every video pixel. One is the constraint term
introduced in (10). The other is the data term: It depends on
which layer is visible at the video pixel. Both terms depend
on the same set of layer positions (one in each layer).

As these terms are not submodular, the functional cannot
be optimized globally using graph cuts. Instead we adapt
the notion of expansion moves [4] to the binary labeling
problem (10). So far expansion moves are only defined for
multi-label problems.

In the expansion move for layer i a layer position in the
space of layer i can join the support of layer i. Simultane-
ously, positions in the space of layers j �= i are allowed to
leave the support of the respective layer. Starting from a set
of supports which explain the whole video, this constraint is
kept satisfied during the entire expansion move process.

With the help of an auxiliary variable for every video pixel
(x, t), the N -th order terms are decomposed into a sum of
N binary terms. For the new variables a binary labeling
function l̄(x, t) is introduced. This function encodes the
two possibilities concerning (x, t) in the expansion move of
layer i: Either the pixel becomes modeled by layer i or it
remains modeled by the previously indicated layer – say j:

l̄(x, t) =

{
1 if i is visible at (x, t)
0 if j is visible at (x, t)

The data term is now a sum of unary terms, depending only
on l̄(·). To ensure that l̄ is consistent with the layer supports
li, for each video position two terms are added. One penal-
izes the constellation where l̄(x, t) is 1 but h−1

i (x, t) is not in
the support of layer i, the other the case where l̄(x, t) is 0 but
h−1

j (x, t) is not in the support of layer i. Both are weighted
with γ. When combined with these terms, the labeling l̄(·)
ensures that the entire video is explained.

One issue remains to be encoded: The visibility must
respect the layer order. If a video pixel (x, t) becomes mod-
eled by i then no layer position in h−1

k (x, t) in the space of
a layer k < i can be in the support of the respective layer.
Likewise, if (x, t) remains modeled by j and j is smaller

Frames 90, 105 and 120 of the Pickup Sequence

Cremers, Soatto [6] with transl. graph cut-based motion
motion on frames 90 and 91. segmentation with affine models

Kumar et al. [13] proposed layer
run on frames 90–99. partitioning

high-resolution layer images

Figure 3. Comparison on the Pickup Sequence: With the proposed
method, the tightest boundaries are obtained.

than i, then h−1
i (x, t) cannot join the support of layer I . The

respective constellations are penalized by γ.
When representing li straight and lk inverted for k �= i,

the resulting terms are submodular. Spatial smoothness and
the TV terms are included as in the two-layer case.

4. Experiments

We demonstrate that the proposed method is able to de-
compose real image sequences into sets of sharp layers.
Without the physical details of the image formation pro-
cess, blurry layers are obtained. Moreover, the generated
partitionings compare favorably to those generated by state-
of-the-art methods in layer estimation and motion segmenta-
tion. We use a TV-weight of λ = 60 and a Gaussian blurring

→

initial segmentation generated partitioning

the flower bed layer

Figure 5. Starting from a generic initialization the algorithm
generates a partitioning as well as a set of super-resolved layers.

kernel with σ = 2.25 for the superresolution model.

4.1. Comparison to the State-of-the-art

Figure 3 presents results on 30 frames of the pickup se-
quence, using the parametric motion model (8). Compared
to motion segmentation, our method results in tighter layer
boundaries especially where layers become occluded. We
implemented Motion Competition [6] as well as a graph cuts-
based variant of Cremers’ and Soatto’s Space-Time Motion
Competition [5]. The latter additionally includes warping in
a multi-scale scheme.

In contrast to the method of Kumar et al. [13] our method
captures the entire foreground region in a single layer. As
their method includes intensity-based segmentation, it sepa-
rates the hand from the can and identifies a part of the finger
nail as background. For this experiment, only the first ten
frames were used: When run their method on the entire se-
quence, the rotation of the can caused substantial drift [12].

As demonstrated in Figure 4, our super-resolved layers
reveal much finer details than present in any of the input
frames. Such fine details are not obtained by the traditional
way of layer estimation.

4.2. Multiple Layers and Nonparametric Motion

The Figures 5 and 6 demonstrate that our method is able to
produce multi-layer decompositions: The proposed method
was run with 4 layers, one of which vanished during opti-
mization. Three of the input frames are shown in Figure 1
on page 1. Figure 5 demonstrates that starting from a very
simple initialization our method produces a layer partition-
ing close to human perception. The Figure also shows the
flower bed layer.

The tree layer and the layer containing the houses are
shown in Figure 6. Here objects of different depths are
grouped together in the same layers: The twigs of the tree
have higher depth than the stem. Also the lantern is closer
to the camera than the houses. Here the use of nonpara-
metric motion fields is sensible. As shown in Figure 6 the
mentioned objects become much sharper with this model.
Experimentally we found that the smoothness weight α for
the motion fields does not much influence results. We used
a value of 500.

5. Conclusion

We propose an energy minimization method to decom-
pose a video sequence into a superposition of high-resolution
moving layers. In contrast to existing approaches to layer
decomposition, we provide a consistent model of occlusion
and incorporate details of the image formation process. This
gives rise to layers which are sharper than individual input
images. The proposed energy is minimized by combining
discrete and continuous optimization: Layer geometry is es-
timated by graph cuts in the (dual) layer space which allows
to impose regularity and consistency of the layers, while
layer motion and intensity are estimated by optic flow meth-
ods and total variation deblurring respectively.

References

[1] S. Ayer and H. Sawhney. Layered representation of motion
video using robust maximum likelihood estimation of mixture
models and MDL encoding. In IEEE Int. Conf. on Comp.
Vision, pages 777–784, Boston, USA, 1995.

[2] S. Birchfield and C. Tomasi. Multiway cut for stereo and
motion with slanted surfaces. In IEEE Int. Conf. on Comp.
Vision, pages 489–495, 1999.

[3] Y. Boykov and V. Kolmogorov. Computing geodesics and
minimal surfaces via graph cuts. In IEEE Int. Conf. on Comp.
Vision, volume 1, pages 26–33, Nice, France, 2003.

[4] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy
minimization via graph cuts. IEEE Trans. on Patt. Anal. and
Mach. Intell., 23(11):1222–1239, 2001.

[5] D. Cremers and S. Soatto. Variational space-time motion
segmentation. In B. Triggs and A. Zisserman, editors, IEEE
Int. Conf. on Comp. Vision, volume 2, pages 886–892, Nice,
Oct. 2003.

[6] D. Cremers and S. Soatto. Motion Competition: A Variational
Framework for Piecewise Parametric Motion Segmentation.
Int. J. of Comp. Vision, 62(3):249–265, May 2005.

[7] R. Dupont, O. Juan, and R. Keriven. Robust segmentation
of hidden layers in video sequences. In Int. Conf. on Pattern
Recognition, Hong Kong, 2006.

[8] S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar. Fast and
robust multiframe super resolution. IEEE Trans. on Image
Processing, 13(10):1327–1344, 2004.

close-up of input frame close-up of normal layer close-up of super-resolved layer

Figure 4. Close-up on Figure 3: While the normal layer is smooth and blurry due to averaging along the trajectories, the super-resolved
layer recovers details that are not visible in any input frame.

without super resolution super resolution with parametric motion super resolution with nonparametric motion

without super resolution super resolution with parametric motion super resolution with nonparametric motion

Figure 6. Effect of the choice of motion models: By combining super-resolution and nonparametric motion estimation, scene details such
as the stem and the twigs of the tree as well as the lantern become sharper.

[9] B. Horn and B. Schunck. Determining optical flow. A.I.,
17:185–203, 1981.

[10] N. Jojic and B. Frey. Learning flexible sprites in video layers.
In IEEE Int. Conf. on Comp. Vision and Patt. Recog., Maui,
Hawaii, 2001.

[11] V. Kolmogorov and R. Zabih. What energy functions can be
minimized via graph cuts? IEEE Trans. on Patt. Anal. and
Mach. Intell., 24(5):657–673, 2004.

[12] M. P. Kumar and P. H. S. Torr. Personal correspondence,
2007.

[13] M. P. Kumar, P. H. S. Torr, and A. Zisserman. Learning lay-
ered motion segmentations of video. Int. J. of Comp. Vision,
2007. To appear.

[14] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total varia-
tion based noise removal algorithms. Physica D, 60:259–268,
1992.

[15] J. Wang and E. Adelson. Representing moving images with
layers. IEEE Trans. on Image Processing, 3(5):625–638,
1994.

[16] J. Xiao and M. Shah. Motion layer extraction in the presence
of occlusion using graph cuts. IEEE Trans. on Patt. Anal. and
Mach. Intell., 27(10):1644–1659, 2005.

[17] Y. You and M. Kaveh. A regularization approach to joint blur
identification and image restoration. IEEE Trans. on Image
Processing, 5:416–428, 1996.

