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Abstract

In this work, we introduce a novel implicit representation
of shape which is based on assigning to each pixel a prob-
ability that this pixel is inside the shape. This probabilis-
tic representation of shape resolves two important draw-
backs of alternative implicit shape representations such as
the level set method: Firstly, the space of shapes is convex
in the sense that arbitrary convex combinations of a set of
shapes again correspond to a valid shape. Secondly, we
prove that the introduction of shape priors into variational
image segmentation leads to functionals which are convex
with respect to shape deformations.

For a large class of commonly considered (spatially con-
tinuous) functionals, we prove that – under mild regular-
ity assumptions – segmentation and tracking with statistical
shape priors can be performed in a globally optimal man-
ner. In experiments on tracking a walking person through
a cluttered scene we demonstrate the advantage of global
versus local optimality.

1. Introduction
Related Work. The computation of image segmentations
by minimization of appropriate functionals on continuous
space goes back to the late 80’s [10, 13]. To cope with miss-
ing or misleading low-level information (due to background
clutter, partial occlusions or noise), numerous researchers
have advocated the introduction of statistical shape priors
on a variational level (cf. [6, 15, 19]). Most recent work on
continuous image segmentation has been focused on level
set representation in which a shape is defined as the bound-
ary given by the zero level set of an embedding function
φ : Rd → R:

C = {x ∈ Rd | φ(x) = 0}. (1)

Shape priors can be defined on the space of embedding
functions [19, 16, 5]. To guarantee a unique correspon-
dence between silhouettes and embedding functions, one

Figure 1. A relaxed notion of shape. In this paper, we introduce a
novel definition of shape as a function q : Rd → [0, 1] specifying
the probability that a pixel x∈Rd is part of the shape (left). In con-
trast to the commonly used signed distance representation (right),
the resulting image segmentation with statistical shape priors cor-
responds to the minimization of convex functionals over convex
domains.

typically constrains all analysis (statistical shape learning
and segmentation) to the space of signed distance functions
– see Figure 1, right side. The main advantages of the level
set formulation (over parametric boundary representations)
are that one is independent of a specific choice of parame-
terization and one can handle topological changes such as
splitting and merging of boundaries during the optimization
process.

Although the above approaches allow to reliable segment
and track familiar shapes in challenging image sequences,
they all suffer from two well-known limitations:

• The space of signed distance functions is not a lin-
ear space. As a consequence, linear combinations of
shapes (i.e. signed distance functions) no longer cor-
respond to valid shapes. The construction of statisti-
cal distributions (means and covariance matrices) gives
rise to challenging optimization problems [15].

• The resulting cost functionals are generally not con-
vex. As a consequence, respective optimization by gra-
dient descent merely leads to locally optimal solutions
with very little insight as to how far computed solu-
tions are from the globally optimal ones [5].
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More recently, continuous image segmentation has been
formulated on the basis of convex functional minimization
[4, 3]. In a spatially discrete setting related approaches can
be minimized using graph cuts [8, 1]. While shape priors
have recently been introduced in globally optimal image
segmentation [18], the present formulation is fundamentally
different from [18] because it applies to continuous space,
to arbitrary spatial dimension (including shape priors for
volumetric segmentation), and to a larger class of cost func-
tionals and statistical shape priors.

Contribution. In this work, we introduce a relaxed def-
inition of the term shape which is based on assigning to
each point in the spatial domain a probability that it is in-
side a given shape. Subsequently we propose a variational
formulation to compute a segmentation of the image plane
which is statistically consistent with a set of training shapes.
The proposed formulation resolves the above limitations of
existing approaches: Firstly, we prove that the space of
shapes forms a convex set. Secondly, we prove that the op-
timization with respect to shape deformations amounts to
the minimization of a convex functional. The class of op-
timizable functionals includes edge-based and region-based
data terms as well as statistical and dynamical shape priors.
Thirdly, reverting to the theory of Lipschitz functionals, we
prove that both shape deformations and transformations can
be optimized globally in continuous space. Experimental
results on tracking walking people trough clutter and occlu-
sion demonstrate the advantages of global over local opti-
mality.

2. A Probabilistic Definition of Shape

Definition 1 (Shape). In the following, we define as a shape
in Rd a function

q : Rd → [0, 1],

which assigns to any pixel x ∈ Rd a probability q(x) that x
is part of the object – see Figure 1, left side. The space of
all shapes will be denoted byQ. While all statements in this
paper directly apply to shapes and segmentation in arbitrary
dimension d, we will for simplicity only consider the case
of planar shapes (d = 2).

In contrast to explicit (parametric) representations of
shape such as polygons or splines, the above implicit rep-
resentation does not depend on a specific choice of pa-
rameterization. Shape alignment therefore does not require
the estimation of point correspondences and propagation of
shape does not require control point regridding. In contrast
to alternative implicit representations of shape such as the
signed distance function or alternative representations [7],
the value of q has a clear probabilistic interpretation.

The above notion of shape fundamentally differs from
classical definitions of shape in that we replace the hard de-
cision of “a point is part of the shape” or “a point lies on
the boundary of a shape” by a relaxed probability associ-
ated with each point. The key contribution of this paper is
to show that this relaxation in the definition of shape gives
rise to a number of advantages in the context of shape mod-
eling and shape inference, most prominently it enables us to
compute image segmentations with shape priors in a glob-
ally optimal manner.

3. Convex Shape Spaces
In this section, we show that the above probabilistic def-

inition of shape has an important consequence for statistical
shape modeling and shape inference as the space of shapes
and any linear subspace form convex spaces.

Proposition 1. The space Q of all shapes (as defined
above) forms a convex set.

Proof. Let q1 : R2 → [0, 1] and q2 : R2 → [0, 1] be two
elements of Q. Then for any convex combination qγ =
γq1 + (1− γ)q2 of these shapes, we have qγ ∈ Q:

0 ≤ qγ(x) ≤ 1 ∀x ∈ R2, γ ∈ [0, 1].

This property of the shape spaceQ implies that any con-
vex combination of a set

χ = {q1, . . . , qN} (2)

of training shapes will correspond to a valid shape. In par-
ticular, the mean

µ =
1
N

N∑
i=1

qi(x)

is a function which assigns to each point x ∈ R2 the aver-
age of all probabilities. Similarly, statistical notions such as
covariance matrices and eigenmodes can be easily defined.

Let us consider the subspace spanned by the first n ≤ N
eigenmodes {ψ1, . . . , ψn} of the set χ:

χn :=

{
qα = µ+

n∑
i=1

αiψi

∣∣∣ qα(x) ∈ [0, 1]

}
. (3)

Lemma 1. The set χn in (3) is convex.

Proof. For any n ≤ N , the set χn is the intersection of a
linear space (spanned by the first n eigenmodes of χ) with
the convex space Q, therefore it is also a convex space.



The set of training shapes χ can thus be approximated
by nested low-dimensional spaces χn. Elements in these
spaces are compactly represented by vectors α ∈ Rn of
eigencoefficients, modeling the shape qα = q0 + α>Ψ.

Lemma 2. The setAn := {α ∈ Rn|qα ∈ Q} of all feasible
α is convex.

Proof. Let α1, α2 be two elements of An and γ ∈ [0; 1].
Then we have to prove that the shape representing vector
α := γα1 + (1− γ)α2 is also feasible, i.e. α ∈ An:

qα = q0 + α>Ψ =γ
(
q0 + α>1 Ψ

)
+ (1− γ)

(
q0 + α>2 Ψ

)
=γqα1 + (1− γ)qα2 ∈ Q.

4. Convex Functionals on a Convex Domain
In the following, we propose to compute image seg-

mentations by minimizing cost functionals of the following
(very general) form:

E(α) = Ei(qα) + γEs(α) (4)

In particular, we consider image energies of the form

Ei(q) =
∫
f(x) q(x) dx+

∫
g(x) (1− q(x)) dx

+
∫
h(x) |∇q(x)| dx, (5)

where f and g are arbitrary functions and h ≥ 0. Note
that for traditional (deterministic) representations of shape
by binary functions q : R2 → {0, 1}, the first two terms cor-
respond to integrals of f and g over the inside and outside
of the shape, while the last term corresponds to an integral
of h along the boundary of the shape. The last term is often
referred to as the weighted Total Variation norm [17]. In
this sense, the above functional is an extension of classical
segmentation schemes [13, 2, 11] from the traditional shape
space to the space Q. Meaningful choices of f , g and h for
image segmentation are given by:

f = − log pob(I), g = − log pbg(I), h =
1

1 + |∇I|
, (6)

where pob and pbg represent the color histograms (probabil-
ities) of object and background [14], while h acts as an edge
indicator.

For the shape energyEs in (4), we consider the following
statistical shape priors.

1. Static uniform shape priors: The distribution of train-
ing shapes is assumed to be uniform within the eigen-
mode spaceAn. Such a model was introduced for level
set functions in [19], it corresponds to setting γ = 0 in
(4).

2. Static Gaussian shape priors: The distribution of
training shapes is assumed to be Gaussian, leading to
a Mahalanobis type energy of the form:

Es(α) = α>Σ−1 α, (7)

A related model was proposed for level set functions
in [16].

3. Dynamical shape priors: The evolution of shape vec-
tors α is modeled by a linear dynamical system, giving
rise to the following shape energy for the segmentation
of an image at time t:

Es(α) = (α− vt)>Σ−1 (α− vt), (8)

where vt =
∑

iAiα̂t−i is the prediction by
the Markov chain based on shape estimates
α̂t−1, . . . , α̂t−k obtained for the last k images.
A related model for level set functions was introduced
in [5].

Proposition 2. The image segmentation with statistical
shape priors according to (4) amounts to the minimization
of a convex functional over a convex set.

Proof. Due to Lemma 2 we know that the optimization do-
mainAn of feasible α values is a convex set. Therefore, we
need to prove that the functional (4) is convex in α ∈ An

for any choice of data term and shape prior discussed above.
The statistical priors (7) and (8) introduced above for Es

are both quadratic in α with the positive definite Hessian
Σ−1 and therefore convex. The functional (5) is convex in
q, the first two terms being linear in q and the weighted TV
norm being convex. Since qα is linear in α – see equation
(3) – the image energy (5) is a composition of a convex and
a linear function and thus convex in α.

Optimization by Iterated Projections

Since the energy E is convex, a gradient descent ap-
proach would always lead to the global optimum α0. If this
α0 is within the domain An of feasible α, we have thus
found a way to compute Ê := minα∈An

E(α). But prob-
lems may occur if α0 is outside of this convex set An. In
this case, we will perform an iterative projection scheme
that will define a sequence (αk)k∈N of α values outside of
An which will converge towards an α value α′ ∈ An (cf.
Figure 2). At first, we project the given shape function qαk

onto Q which amounts to setting all values to 1 or 0 which
are above or below these levels respectively. By projecting
this function onto Rn, we receive the next α-value of our se-
quence. Combining this iterated projecting with a gradient
descent approach in respect to α, we are able to calculate
the minimum Ê of the energy functional within An itself.
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Figure 2. Iterated Projections. The intersection of the convex
shape set Q with Rn results in the convex set An. Starting with
αk 6∈ An, a solution in An is obtained by iterated projections.

5. Lipschitz Optimization for Transformations
In addition to the deformations modeled by linear combi-

nations of eigenmodes, meaningful shape priors should al-
low for transformations of shapes such as translation and ro-
tation. To this end, we define an energy functional E(α, θ)
that depends on shape parameters α ∈ An and transforma-
tion parameters θ ∈ SE(2) modeling rigid body motion:

E(α, θ) = Ei(qα(θx)) + γEs(α) (9)

We assume that every shape of χ is registered with respect
to rigid body transformation. Then every shape lies within
a radius of ρ near the origin, and all shapes are bounded by
a function qsupp:

∀α ∈ An : qα(x) ≤ qsupp(x) =
{

1, if |x| ≤ ρ
0, else (10)

While the functional E(α, θ) is convex in the deformation
parameters α, it is generally not convex in θ. Nevertheless,
we will show that under mild regularity assumptions, the
function

Ê(θ) := min
α∈An

E(α, θ), (11)

can be globally optimized on SE(2) using the idea of Lips-
chitz continuity (cf. [9, 12]).

The key idea is that we can efficiently compute Ê(θ) for
a given θ by performing the proposed method of iterated
projections introduced above. To find the global optimum
of Ê(θ), we iteratively subdivide the θ-domain into multi-
ple smaller domains – see Figure 3. For every sub-domain
D ⊂ SE(2), we calculate the energy at one chosen sam-
ple θ0 which provides an upper bound for the global min-
imum. Provided that the gradient of Ê(θ) is bounded, a
lower bound for each sub-domain D can be determined.
By performing a branch-and-bound method, we subdivide
the sub-domains with the most promising lower bounds. In
doing so, we iteratively find tighter lower bounds and ter-
minate once sufficient accuracy is obtained. To determine
the lower bound for a sub-domain, we assume that the func-
tional does not oscillate too rapidly. In other words, we need
to assume that the following Lipschitz condition holds:

E(θ)

θ

Figure 3. Lipschitz approach. If E (solid line) is Lipschitz con-
tinuous (cf. Definition 2), then one can globally minimize it in a
continuous sense by iteratively finding lower bounds.

Definition 2 (Lipschitz). A functional E : SE(2) → R is
called Lipschitz continuous if there exists a uniform L ∈ R
such that for all θ1, θ2 ∈ SE(2) the following inequality is
fulfilled:

|E(θ1)− E(θ2)| ≤ Ldist(θ1, θ2)

For differentiable functionals E this definition is equivalent
to the property that the derivative dE

dθ is bounded by L.

In order to prove that Ê(θ) is Lipschitz continuous, we
proceed as follows: First, we will estimate a Lipschitz con-
stant L for the functional E(α, θ). Afterwards, we will
show in Proposition 3 that the same constant L is also a
Lipschitz constant for Ê itself. For simplicity, we assume
that the h ≡ 0 in (6). Yet, the Lipschitz approach is easily
extended to functionals that include an edge indicator h.

Lemma 3. If all functions of the training set χ are Lipschitz
continuous with constant Lχ, then E(α, θ) is Lipschitz con-
tinuous.

Proof. Any transformation θ ∈ SE(2) can be written as
θx = R(x+ t), with a rotationR ∈ SO(2) and a translation
t ∈ R2.∣∣∣∣dEi

dR

∣∣∣∣ =
∣∣∣∣∫ (f − g)(x)

d
dR

q(θx)dx
∣∣∣∣

=
∣∣∣∣∫ (f − g)(x) det (x+ t,∇q(θx)) dx

∣∣∣∣
≤Lχρ

∫
|(f − g)(x)| dx∣∣∣∣dEi

dt

∣∣∣∣ =
∣∣∣∣∫ (∇g(x− t)−∇f(x− t)) q(Rx)dx

∣∣∣∣
≤

∫
|(∇g(x− t)−∇f(x− t))| qsupp(x)dx

≤
[∫

|∇f(x)−∇g(x)|2 dx
]1/2√

πρ

with qsupp defined in (10). Since
∣∣dE

dθ

∣∣2 =
∣∣dEi

dR

∣∣2 +
∣∣dEi

dt

∣∣2,
we have found a uniform upper bound for ∇E that does
not depend on (θ, α) ∈ SE(2) × An. Thus, E is Lipschitz
continuous.



Proposition 3. Under the above regularity as-
sumptions on the training shapes, the segmentation
argmin(α,θ)∈An×SE(2)E(α, θ) can be determined in a
globally optimal manner.

Proof. It suffices to prove that Ê(θ) is Lipschitz continu-
ous. Let L the Lipschitz constant of E(α, θ) and θ1, θ2
two different transformations of SE(2). Then, there are two
elements α1, α2 ∈ An fulfilling Ê(θ1) = E(α1, θ1) and
Ê(θ2) = E(α2, θ2) resp., i.e.:

E(α1, θ1) ≤ E(α2, θ1) ∧ E(α2, θ2) ≤ E(α1, θ2)

Using the first inequality, we obtain

Ê(θ2)− Ê(θ1) ≥E(α2, θ2)− E(α2, θ1) ≥ −Ldist(θ1, θ2),

while the second one gives:

Ê(θ2)− Ê(θ1) ≤E(α1, θ2)− E(α1, θ1) ≤ Ldist(θ1, θ2)

Thus, Ê is Lipschitz continuous with Lipschitz constant L.

6. Experimental Results
We introduced an algorithm which allows to compute

globally optimal image segmentations with statistical shape
priors. This algorithm is based on convex minimization of
deformation parameters interlaced with Lipschitz optimiza-
tion of transformation variables.

To clarify the effect of the Lipschitz approach, we will
show a comparison of the algorithm run without and with
the Lipschitz optimization for a sequence showing a person
walking in a cluttered scene.1

To this end, we construct a dynamical shape prior by
hand-segmenting a different sequence (showing a different
person walking at a different pace). By box-filtering these
binary functions, we receive probabilistic shape functions
that are Lipschitz continuous according to definitions 1 and
2. After dimension reduction via PCA, we train an autore-
gressive model on the parameter space A6.

As image energy, we use the approach (6) where f(x)
and g(x) are the negative log probability for the observed
intensity given that the pixel x is part of the foreground or
the background respectively. Neglecting the edge indicator
term h in (5), we receive the following energy functional:

E(α, θ) :=
∫
Rd

log
(
pbg(I)
pob(I)

)
qα(θx)dx + γ |α− vt|2Σ−1 ,

1While more accurate results may be obtained with a user-specified
stick-figure model, one should keep in mind that the proposed method does
not require any user interaction in the model building. In can directly be
applied to arbitrary (binary) shapes in arbitrary dimension.

where |α− vt|2Σ−1 := (α− vt)>Σ−1(α− vt) describes the
energy of the dynamic shape prior – see equation (8).

During our experiments, we compare a pure gradient de-
scent on α and θ with the proposed Lipschitz approach. Fig-
ure 4, top row, shows that the pure gradient descent works
well in the presence of partial occlusions such as the ta-
ble. Yet, it fails to cope with larger occlusions where the
local optimization gets stuck in a local minimum with re-
spect to θ. In addition, the gradient descent approach ob-
viously requires an appropriate initialization. Both of these
drawbacks are resolved by the proposed global optimiza-
tion based on the combination of convexity and Lipschitz
optimization – see Figure 4, second row.

In Figure 5, we show that our algorithm provides a re-
liable criterion to determine whether a computed result is
consistent with data or not: Reliable segmentations corre-
spond to low (negative) energy, while unreliable ones (full
occlusion) correspond to high (positive) energy.

7. Conclusion
In this paper, we proposed an algorithm which computes

globally optimal image segmentations with statistical shape
priors in a continuous setting. To this end, we proposed a
relaxed definition of shape where each point is associated
with a probability that it is part of the shape. We proved
that this definition leads to convex segmentation function-
als optimized on convex shape spaces. Using Lipschitz the-
ory, we proved that a large class of segmentation functionals
with geometric, static or dynamical statistical shape priors
can be globally minimized. Experimental comparison on
tracking a walking person demonstrates that a person can
be reliably tracked through clutter and occlusions without
the need to (re)initialize.

Acknowledgments
This work was supported by the German Research Foun-

dation (DFG), grants number CR250/1-2 and CR250/4-1.

References
[1] Y. Boykov and M.-P. Jolly. Interactive organ segmentation

using graph cuts. In MICCAI, volume 1935 of LNCS, pages
276–286. Springer, 2000.

[2] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active con-
tours. In Proc. IEEE Intl. Conf. on Comp. Vis., pages 694–
699, Boston, USA, 1995.

[3] A. Chambolle. Total variation minimization and a class of
binary mrf models. In Int. Conf. on Energy Minimization
Methods for Computer Vision and Pattern Recognition, num-
ber 3757 in LNCS, pages 136–152. Springer, 2005.

[4] T. Chan, S. Esedoḡlu, and M. Nikolova. Algorithms for
finding global minimizers of image segmentation and de-



Figure 4. Local versus global optimality. Image segmentation with a dynamical shape prior, implemented by gradient descent (top
row) and by Lipschitz optimization (bottom row). While gradient descent can handle partial occlusion by the table, it fails to handle
total occlusion (4th image). The proposed Lipschitz optimization, on the other hand, guarantees the globally optimal solution and therefore
reliably tracks the person upon reappearing from behind the white board.

Figure 5. Detection of inconsistent solutions. The plot on the left shows the image energy Ei as a function of the frame number. Red
crosses indicate the four frames shown on the right. Incorrect segmentation results due to a total occlusion of the object of interest can be
automatically identified and suppressed (2nd and 3rd frame).

noising models. SIAM Journal on Applied Mathematics,
66(5):1632–1648, 2006.

[5] D. Cremers. Dynamical statistical shape priors for level set
based tracking. IEEE Trans. on Patt. Anal. and Mach. Intell.,
28(8):1262–1273, August 2006.
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