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Abstract

We present an approach for unsupervised segmentation
of natural and textural images based on active contour,
differential geometry and information theoretical concept.
More precisely, we propose a new texture descriptor which
intrinsically defines the geometry of textural regions using
the shape operator borrowed from differential geometry.
Then, we use the popular Kullback-Leibler distance to de-
fine an active contour model which distinguishes the back-
ground and textural objects of interest represented by the
probability density functions of our new texture descriptor.
We prove the existence of a solution to the proposed segmen-
tation model. Finally, a fast and easy to implement texture
segmentation algorithm is introduced to extract meaning-
ful objects. We present promising synthetic and real-world
results and compare our algorithm to other state-of-the-art
techniques.

1. Introduction

In recent years, the request of image segmentation meth-
ods has been increased because of e.g the development of
medical or satellite imaging. The objective of segmenta-
tion methods is to determine a partition of an image into
a finite number of semantically important regions such as
medical structures. Many approaches have been proposed
to solve the image segmentation problem and their review
is out of the scope of this paper. Here, we propose to use
the successful model of active contour to carry out the seg-
mentation process. However, our objective is to segment
challenging images, i.e. texture images. So far, most active
contour-based models have not dealt with complex textural
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objects. Most efforts have been done for piecewise constant
or smooth images. Since it is obvious that the gray level fea-
ture is inadequate for textural segmentation, we will define
new image feature to deal with complex textures. Besides,
algorithms that perform texture segmentation usually em-
ploy many image features such as wavelet features to carry
out the segmentation process. We would like to develop a
fast and easy to implement algorithm to perform the texture
segmentation. This algorithm will be based on the active
contour model.

Active contours or snakes have been introduced by Kass
et al. in [17]. In this image segmentation method, an ini-
tial contour is subject to a deformation field which drives
the contour toward the boundary of the object to be seg-
mented. The deformation field is determined by the min-
imization of an energy functional composed of a contour
smoothing term and an attraction term of the contour to-
ward the object boundaries. Based on the method proposed
by Kass et al., Caselles et al. and Kichenassamy et al. in
[5, 18] proposed the geometrically intrinsic model of geo-
desic/geometric active contours where the evolution curve
is handled by the level set method introduced by Osher and
Sethian in [23]. Models [17, 5, 18] have been based on
edge/boundary detection and define the first generation of
active contours. However, boundary-based segmentation is
often too restrictive in many applications such as in medical
image segmentation where fuzzy contours can be encoun-
tered or natural images with textures where edges do not
usually represent regions of interest. Besides, edge-based
active contours are very sensitive to noise and bad initial
position. To deal with these problems, segmentation models
based on region statistics such as mean, variance, probabil-
ity density function (pdf) have been developed. Chan and
Vese proposed in [9] a 2-phase segmentation method based
on the mean descriptor where the active contour evolves in
such a way that the difference between the inside (resp. out-
side) gray level value and the inside (resp. outside) mean
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value is minimized. Other statistical moments such as the
variance descriptor can be used to carry out the segmenta-
tion task (see e.g [16]) but the pdf looks so far to be one of
the most efficient region descriptors to solve the segmenta-
tion problem. Zhu and Yuille in [33] and Paragios, Rousson
and Deriche in [24, 27] approximated the pdf of the given
image by a mixture of Gaussians, each one representing a
homogeneous intensity region to be segmented. More re-
cently, Aubert, Barlaud, Faugeras, Jehan-Besson and Her-
bulot in [1, 16, 14] proposed to update the pdf of the object
and the background during the segmentation object until the
optimal partition is reached. This idea makes a lot of sense
because segmentation and estimation of features such as
pdfs of regions of interest are basically related to each other.
Besides, this approach does not need a pre-processing step
to estimate the optimal features. We will apply this idea in
our paper.

In most papers on image segmentation using the active
contour model [9, 16, 33, 24, 27, 1, 14], the gray level fea-
ture is considered. However, we will see that the gray level
feature is far too weak to deal with challenging images such
as textures borrowed from the Brodatz data set [4] or the
popular Berkeley data base [21]. The definition of new effi-
cient texture descriptor is thus essential to segment complex
textural regions. Recently, some authors [8, 28, 26] have
proposed to tackle the segmentation of complex textures.
Authors in [8, 28] used a collection of wavelet features com-
ing from the decomposition of the given textural image into
the space of Gabor functions. Chan et al in [8] extend the
Chan-Vese model [9] to vectorial images in order to carry
out the segmentation of textures. This model uses many fea-
tures at the same time, which makes it slow. Rousson et al
in [26] used the structure tensor, which corresponds to the
tensor product of the gradient intensity, as a texture feature.
However, their texture segmentation model is a two-step
model because they first need to apply an anisotropic dif-
fusion process before performing the segmentation. Savig
et al in [28] used the Beltrami framework [30], that we will
introduce in the next section, to represent the textures. They
defined a new edge detector for textural regions and inte-
grated it in the geodesic active contour model [5]. Finally,
they coupled it with the vectorial Chan-Vese model [8] to
segment textural regions. In this work, we will define a
region-based texture feature. We will use the shape opera-
tor, which will intrinsically define the geometry of textural
regions. Besides, our region-based texture feature will not
need to project the given image into the basis of Gabor func-
tions unlike [8, 28], which will speed up the pre-processing
step and will avoid the arbitrary choice of scale and orienta-
tion parameters. We will also show that our model does not
need to use many image features during the contour evolu-
tion unlike [8, 28, 26] to carry out the segmentation, only
one feature will be used to segment complex textural im-

ages. This is an important advantage of our model.
Furthermore, we will also develop a fast and easy to im-

plement algorithm to drive the active contour toward the
minimum of the proposed energy model. The proposed
model will be based on the popular Kullback-Leibler (KL)
divergence, which basically measures the difference be-
tween two pdfs. In our work, the pdf will represent the pdf
of a feature image based on the shape operator. We will
maximize the KL using the algorithm introduced by Bres-
son et al in [3] in order to find two optimal textural (dis-
tinct) regions. Bresson et al in [3] determined the global
minimum of active contour problems and defined a fast al-
gorithm based on the dual formulation of the Total Variation
(TV) norm as proposed by Chambolle in [6]. In this paper,
we will adapt the algorithm [3] to our texture segmentation
model to extract the minimizing solution in a fast way.

The outline of our paper is as follows. Firstly, we in-
troduce the intrinsic texture descriptor. Then, we define
the active contour model based on the KL distance. We
prove the existence of a minimizer. We then present the fast
algorithm to determine the minimizing solution. Finally,
we show some promising experimental results and compare
with state-of-the-art techniques.

2. Intrinsic Texture Descriptor

In this section, we define a new texture descriptor based
on the shape operator defined in differential geometry. In
a general way, textures are difficult to define and no pre-
cise mathematical definition has been found so far. How-
ever, it is consensually admitted that textures are fine scale-
details, usually with some periodicity and oscillatory nature
[2]. Besides, textures raises the problem of non-existence
of significants edges and the non-homogeneity of intensity
distributions lying in images. The difficulty of having a
mathematical definition for textures has induced different
choice of texture representation. In this work, we are partic-
ularly interested in the Beltrami representation introduced
by Sochen, Kimmel and Malladi in [30]. Sochen et al pro-
posed a new efficient representation of images by consider-
ing images as a Riemannian manifold embedded in a higher
dimensional space. For instance, a standard 2 dimensional
gray value image I : R

2 → R+ can be viewed as a sur-
face Σ with local coordinates (x, y) embedded in R

3 by a
smooth mapping X : (x, y) → (X1 = x, X2 = y, X3 =
I(x, y)). This manifold-based representation of images of-
fers two main advantages. Firstly, it allows to use efficient
tools borrowed from differential geometry to perform dif-
ferent image processing tasks such as denoising or segmen-
tation as we will do in this paper. The second main advan-
tage is the ability to work with arbitrary N dimensional im-
ages. For example, a color image can also be represented in
a 5 dimensional space by the mapping X : (x, y) → (X1 =
x, X2 = y, X3 = R(x, y), X4 = G(x, y), X5 = B(x, y)),



where R,G,B stands for red, green and blue. Sagiv, Sochen
and Zeevi in [28] used the Beltrami framework to represent
the texture image as a 2-D dimensional manifold embedded
in a space of N + 2 dimensions, where N is the number
of Gabor responses. They used the first fundamental form
[19], also called metric tensor, of the texture manifold to
define an intrinsic edge detector like in [29]. The idea of
using the metric tensor to intrinsically define the edges be-
tween different homogeneous texture regions is efficient in
the context of differential geometry. Indeed, the first fun-
damental form describes the distortion or rate of change of
the manifold and so can detect boundary between different
parts of the manifold corresponding to different homoge-
neous textures. More precisely Sagiv et al used the geo-
desic active contour model [5] to drive the evolving contour
toward the boundaries between two different texture regions
by considering the edge detector function or stopping func-
tion as the inverse of the determinant of the metric tensor.
This can be explained in the following way. If we consider
the definition of the first fundamental form:

gµν =
(

<
∂X

∂µ
,
∂X

∂ν
>

)
,

where µ, ν = x, y in the (x, y)-basis, we have in the case
of gray scale images, X := (x, y, I) and gxx = 1 + I2

x ,
gxy = IxIy and gyy = 1 + I2

y , which implies that
1/det(gµν) = 1/(1 + |∇I|2). The previous function ex-
actly corresponds to the edge detector function used in the
standard model [5]. Thus, Sagiv et al used the metric ten-
sor of texture images to define an efficient edge detector for
textural images. Nevertheless, as we said earlier, the edge
detector function is not robust enough to segment a wide
range of images and a region-based term, coming from the
vectorial Chan-Vese model [8], was coupled with their in-
trinsic edge detector function to perform the segmentation
of complex textures. This coupling is necessary because
edge-based active contours are too sensitive to noise, bad
contrast and initial position.

Hence, one of the goals of this paper is to define a region
descriptor/feature, instead of a boundary descriptor, for tex-
tural regions. Like [28], we also wish to develop an intrinsic
descriptor based on the geometrical shape of the manifold
representing the texture region. We thus propose to use the
shape operator and more specifically the eigenvalues of the
shape operator to describe the geometry of the textures of
interest. The shape operator is a linear operator which cal-
culates the bending of a surface in different directions [13].
The eigenvalues of the shape operator correspond to the ex-
tremal of bending of the surface, they are called principal
curvatures and they are known to represent the geometry of
the considered smooth manifold. Indeed, in the simple case
of a curve in the space, the curvature κ of this curve is the
inverse of the radius ρ of the best fitting circle to the curve,
i.e κ = 1

ρ . It is then intuitive to say that the curvature κ

describes the local shape of the curve and by extension the
principal curvatures describe the manifold.

In this work, we choose to represent the texture manifold
by the simplest Beltrami representation, i.e. X = (x, y, I).
We also investigated the representation of Gabor functions
but experimental results gave same solutions. Since texture
images are seen as a 2-D manifold, two principal curvatures
can be computed in this representation, namely (κ1, κ2).
The couple of principal curvatures (κ1, κ2) defines an in-
trinsic and efficient descriptor to segment complex textural
regions. More precisely, we believe that for a given texture
pattern, a distribution/pdf of couples (κ1, κ2) is repeated
inside the texture region. This distribution will be automat-
ically estimated through the segmentation process.

Let us introduce the mathematical definition of the shape
operator that we call S. The shape operator measures the
shape of the manifold in a given region by estimating how
the normalNΣ to the surface Σ changes from point to point.

Definition 1. [13] Let Σ be a regular surface, and let NΣ

be a surface normal to Σ defined in a neighborhood of a
point p ∈ Σ. For a tangent vector vp to Σ at p, the shape
operator is defined as:

S(vp) = −DvpNΣ, (1)

where DvpNΣ is the derivative of the surface normal NΣ
in direction vp.

Definition 2. [13] The eigenvalues of the shape operator S
of a regular surface Σ at p ∈ Σ are precisely the principal
curvature of Σ at p. The corresponding unit eigenvectors
are unit principal vectors, and vice versa.

In our situation:
Lemma 1. [19] The principal curvatures κ1, κ2 of the 2-D
manifold are the roots of the following equation:

κ2 − bµνgµνκ +
b

g
= 0, (2)

where gµν is the inverse metric of gµν , g, h are the deter-
minant of gµν , bµν and bµν is the second fundamental form
defined by:

bµν =
(

<
∂2X

∂µ∂ν
,NΣ >

)
,

where µ, ν = x, y in the (x, y)-basis, and the Einstein
summation convention is used in (2), which means that
elements with identical subscripts and superscripts are
summed over.

Let I be the original gray level image. The mapping
X is equal to (x, y) → (x, y, I(x, y)) and the first funda-

mental form is thus given by gµν =
(

1 + I2
x IxIy

IxIy 1 + I2
y

)
,



where the suffixes stands for partial derivatives. The nor-
mal to the manifold is given by NΣ = 1

Z (−Ix,−Iy, 1),

Z =
√

1 + I2
x + I2

y , which yields us to the calculus of the

second fundamental form bµν = 1
Z

(
Ixx Ixy

Ixy Iyy

)
. Using

Lemma 1, the values of the principal curvatures are given
by

κ1,2 = (−β ±
√

β2 − 4αγ)/2α,

where α = (1 + I2
x)2 − IxIy , −β = 1

Z

[
Ixx(1 + I2

y ) +
Iyy(1 + I2

x) − Ixy(IxIy)
]

and γ = 1
Z2

[
IxxIyy − (Ixy)2

]
.

The first principal curvature κ1(κ1 ≥ κ2) corresponds to
the maximal change of the normal to the surface and κ2

corresponds to the minimum change. For sake of simplic-
ity, and in order to use the information provided by the two
principal curvatures, we consider to work with the norm of
k1 + k2, where vector k1 (resp. k2) has a norm κ1 (resp.
κ2) and is oriented by the associated unit principal vector
(see Definition 2). Since k1 and k2 are orthogonal, this
leads to:

κt :=
√

κ2
1 + κ2

2, (3)

where κt : Ω0 → R+ defines the texture descriptor that
we will use to segment regions with different texture pat-
terns and Ω0 corresponds to the image domain. In the next
section, this new feature will be used in the active contour
model to define a texture segmentation model.

3. Active Contour based on the Kullback-
Leibler Divergence

Previously, we have defined a texture descriptor that we
will use in this section to define an image segmentation
model of textural images. As we said earlier, we want to
carry out an unsupervised image segmentation process by
estimating the pdf of textures at the same time as the seg-
mentation process. We chose to use the active contour seg-
mentation model to make a 2-phase partition of the image
into the background and objects of interest. In this con-
text, the natural way is to use the region competition ap-
proach introduced by Zhu and Yuille in [33]. It means that
we want to find two regions with two pdfs of texture fea-
ture as disjoint as possible. A popular tool to measure the
similarity/dissimilarity between two pdfs is the KL diver-
gence measure [20], also called relative entropy in informa-
tion theory. The KL metric is obviously not the only dis-
tance measure between two pdfs, we can cite the chi-square
metric, the earth mover’s distance, the Bhattacharyya mea-
sure, etc. However, the KL distance presents strong math-
ematical properties such as parameter invariance and can
be justified in the context of information theory. Besides,
the KL divergence has already been successfully applied in
computer vision field in various ways. For instance, Freed-
man and Zhang in [12] used the KL divergence for object

tracking. For the particular case of DT-MRI data, Wang and
Vemuri [32] redefined the KL divergence for a positive defi-
nite 2-tensor probability density. The segmentation process
is done by minimizing the KL divergence between an inside
average tensor and tensors inside the active contour and an
outside average tensor and the tensors outside de active con-
tour. In this paper, we will use the KL distance to achieve
a region competition between the background and textural
objects. Besides, unlike [12, 32], we will maximize the KL
distance using the shape derivative tool proposed by Delfour
and Zolesio in [11] and used in image processing by Jehan-
Besson, Barlaud, Faugeras and Aubert in [16, 1]. Authors
in [16] showed that the shape derivative tool defines a more
rigorous and easier way to minimize a functional depending
on evolving regions.

Thus, we wish to maximize the KL distance between the
probability density functions of the regions inside and out-
side the evolving (closed) active contour, which represent
textural objects of interest and the background. Let pin be
the inside pdf, pout the outside pdf, Ω := Ωin be the evolv-
ing region and Ω0 \ Ω := Ωout its complementary in the
image domain Ω0. In this approach, the random variable of
the pdf is the intensity texture feature κt. The set of possi-
ble outcomes of κt is R+ and the pdfs pin and pout associ-
ated with an observation κt for a fixed region Ω at a given
moment are defined by the standard Parzen model [25] as
follows:{

pin(κt, Ω) = 1
|Ω|

∫
Ω G(κt − κt(x))dx,

pout(κt, Ω) = 1
|Ω0\Ω|

∫
Ω0\Ω G(κt − κt(x))dx,

(4)

where |.| is the area of the given region and G(.) is the 1-
D Gaussian kernel with 0-mean and variance σ2. We re-
mind that the KL divergence or relative entropy is a dis-
tance measure between the pdfs pin and pout defined as
RE(pin, pout) =

∫
pin log pin

pout
. However, since the rela-

tive entropy is not a true metric because it does not satisfy
the symmetric property of distance function, a symmetric
extension has been defined as follows:

KL(pin(Ω), pout(Ω)) =
∫

R+

(
pin(κt, Ω) − pout(κt, Ω)

) ·
(
log pin(κt, Ω) − log pout(κt, Ω)

)
dκt. (5)

We want to maximize Functional (5) in order to produce
two regions, the object Ω and the background Ω0 \ Ω, with
two pdfs as disjoint as possible. Maximizing (5) w.r.t the
evolving domain Ω(τ), where τ is an artificial time, is done
with the shape derivative tool, see [16, 1] for details. Thus,
the Eulerian derivative of (5) in the direction ξ is as follows:

<
∂KL(Ω(τ))

∂τ
, ξ >=

∫
∂Ω

VKL < ξ(s),NC(s) > ds,



where

VKL :=
∫

R+

1
|Ω|

(
1 − pout(κt, Ω)

pin(κt, Ω)
+ log

pin(κt, Ω)
pout(κt, Ω)

)
· (6)

(
G(κt − κt(s)) − pin(κt, Ω)

)
dκt

+
∫

R+

1
|Ω0 \ Ω| (1 − pin(κt, Ω)

pout(κt, Ω)
+ log

pout(κt, Ω)
pin(κt, Ω)

) ·
(
− G(κt − κt(s)) + pout(κt, Ω)

)
dκt,

where NC is the exterior unit normal vector to the bound-
ary C := ∂Ω of the region Ω, < ξ,NC > is the Euclid-
ean scalar product and s is the arc length parametrization.
According to the Cauchy-Schwartz inequality, the fastest
way to increase KL(Ω(τ)) in (5) is obtained with the flow
∂C
∂τ = VKL NC . If we now consider the following func-
tional F (Ω) := −λKL(Ω) + L(Ω), where λ > 0, L(Ω)
is the length of the boundary of Ω and acts like a regular-
ization process in the curve evolution, then the minimizing
flow of F is given by:

∂C

∂τ
=

( − λVKL + κ
) N , (7)

We notice that our segmentation model is mathematically
well-posed because a minimizing solution exists. Indeed,
if we consider the characteristic function of Ω, namely χΩ,
we can re-write KL, L, pin, pout and so F with χΩ. Then,
we have:

Theorem 1. Our minimization problem

min
χΩ∈BV (Ω0)

{
− λKL(χΩ) + L(χΩ)

}
, λ > 0, (8)

has a solution in the space of functions with bounded vari-
ation, BV (Ω0).

Proof. Because of the lack of space, we refer the reader to
[10, 31] where the proofs are similar (up to small changes).

The image segmentation flow defined in (7) is able to
discriminate a specific textural object from the background
as we will in the experimental section. We would like here
to point out that our texture feature defined in (3) is essen-
tial to segment complex textures such as Brodatz textures
or real-world texture images in e.g. the Berkeley data base.
Indeed, if we replace the texture feature κt by the gray level
intensity I in the KL metric presented in this section. The
segmentation model will be able to segment simple textures
such as the zebra on Figure 1 but the gray level intensity
feature will not be able to deal with complex textures such
as Brodatz textures on Figure 2(a). This justifies the defini-
tion and use of a new intrinsic texture descriptor in Section
2.

Figure 1. Segmentation using the gray level feature.

4. Fast Numerical Minimization Scheme

4.1. New Convex Functional

In the previous section, we have defined an energy func-
tional that we want to minimize as fast as possible. In most
papers regarding active contours, the Euler-Lagrange equa-
tion of the variational model is discritized using an explicit
scheme, which produces a slow segmentation process. Be-
sides, most active contour evolutions are handled by the
level set method [23], which needs to use a signed distance
function which is re-computed regularly during the evolu-
tion process to avoid numerical instabilities. In this section,
we propose to redefine the energy functional F to develop
a fast numerical minimization scheme, which does not need
to re-compute the signed distance function regularly. This
numerical scheme is based on the work of Bresson, Ese-
doglu, Vandergheynst, Thiran and Osher in [3], who pro-
posed to compute a global minimum to the active contour
energy in order to be independent of the initial contour po-
sition. The pioneer work was done by Chan, Esedoglu and
Nikolova in [7] in order to unify image denoising and im-
age segmentation through the Chan-Vese model [9]. Bres-
son et al developed further this idea in the case of geo-
desic active contour [5] and segmentation based on the gen-
eral Mumford-Shah energy. Bresson et al also proposed a
fast and easy to implement numerical minimization scheme
based on the dual formulation of the TV norm as proposed
in [6, 2]. Finally, this algorithm has shown it efficiency on
medical image as in [22].

We follow [3] to develop a convex variational model
from our segmentation model developed in Section 3. (7)
can be written in the level set formulation as follows:

∂φ

∂τ
= (−λVKL + ∇ · ∇φ

|∇φ| )|∇φ| (9)

where VKL is the speed provided by Kullback-Leibler dis-
tance 6. Since |∇φ| > 0, the steady state of (10) is the same
as:

∂φ

∂τ
= −λVKL + ∇ · ∇φ

|∇φ| . (10)

Then φ in (10) is solution of the variational model:

min
φ∈[0,1]

F (φ) =
∫

Ω0

−λVKLφ + |∇φ|. (11)



To avoid any confusion with the level set function φ, the
notation is changed and we are seeking the minimum of the
functional F (u) such that:

min
u∈[0,1]

F (u) =
∫

Ω0

−λVKLu +
∫

Ω0

|∇u|, (12)

where
∫
Ω0

|∇u| =: TV (u) is the total variation norm of the
function u.

Theorem 2. Suppose that VKL ∈ C1(Ω0) and λ ∈ R+, if
u� is any minimizer of F (.), then for almost every µ ∈ [0, 1]
we have that the characteristic function

1ΩC(µ)={x:u(x)>µ} (x),

where C is the boundary of the set ΩC , is a global mini-
mizer of F (., λ).

Proof. See [7, 3]. �
We want to emphasize that VKL :=

VKL(x, pin(x), pout(x)) in Theorem 2 is fixed since
the pdfs pin, pout are also fixed. It means that the convexity
of the functional F is considered w.r.t. the function u
but not w.r.t. pin, pout which will be updated during the
minimization process.

4.2. Fast Algorithm based on Dual Formulation

The variational model (12) can be quickly minimized us-
ing a dual approach of the TV norm as in [3, 6, 2]. We use
a convex regularization of the variational model (12) as fol-
lows:

min
v∈[0,1], u

F (u, v) =
∫

Ω0

|∇u|−λVKLv+
1
2θ

(u−v)2, (13)

where θ > 0. Since the functional F is convex w.r.t. u, v,
its minimizer can be computed by minimizing F w.r.t. u, v
separately, and iterating until convergence as in the refer-
ences mentioned above. Thus, the following minimization
problems are considered:

v being fixed, min
u

{
TV (u) +

1
2θ

‖ u − v ‖2
L2

}
,(14)

u being fixed, min
v∈[0,1]

{∫
Ω0

−λVKLv +
1
2θ

(u − v)2
}

,(15)

• The solution of (14) is given by [6]: u = v − θ∇ · p,
where p = (p1, p2) is given by

pn+1 =
pn + δt∇(∇ · pn) − v/θ

1 + δt|∇(∇ · pn) − v/θ| , n ∈ N

• and the solution of (15) is given by [3]:

v = min{max{u + θλVKL, 0}, 1}. (16)
The two iteration schemes are straightforward to imple-
ment. We refer the interested reader to [6, 3] for details. Fi-
nally, we update at each iteration pin, pout using the Parzen
method given in (4).

5. Experimental Results

We applied our segmentation algorithm to a set of chal-
lenging synthetic and real-world textural images. The syn-
thetic textural image with the zebra shape, Figure 2(a),
was generated with the Brodatz data set [4]. The natural
textural images, Figures 2(d),2(g),2(j),2(m),2(p),2(s),2(v)
were taken in the Berkeley segmentation data set [21]. As a
comparison with the state-of-the-art techniques, we decided
to implement the efficient texture segmentation model of
Savig et al [28], which uses the vectorial Chan-Vese model
[8] and an edge detector function based on Gabor responses
as explained in Section 2. We modified their original model
by implementing a dual formulation of their energy func-
tional as done in Section 4. Besides, the selected Gabor
features are chosen with a simple selection criteria defined
in [15] in order to have the most relevant collection of Ga-
bor features. Figure 2 presents the results obtained with our
method on the center column and the model of Sagiv et al
in the right column. We notice that our segmentation model
needs three parameters, θ, λ as explained in Section 4 and
σ, the Parzen parameter in Section 3. The mean comput-
ing time for the segmentation is around a minute. Finally,
the method based on Gabor filtering gives comparable re-
sults for ordered textures (Figure 2(a)), but our method sig-
nificantly improved the results for disordered textures as in
natural images. It is particularly clear on the images of the
herd of zebras and the sea star, Figures 2(s) and 2(v).

6. Conclusion

In this paper, we have introduced an active contour
model for unsupervised segmentation of natural and tex-
tural images. We have proposed a new intrinsic textural
feature descriptor based on the shape operator of the tex-
ture manifold. We have also developed a fast and easy to
implement numerical segmentation scheme based on a dual
approach. We have obtained promising results on non trivial
textures taken from the Brodatz and the Berkeley data base.
We have also compared our algorithm with related texture
segmentation techniques. We have seen that our algorithm
does not need a wavelet/Gabor decomposition to achieve
better results and it only uses one feature unlike state-of-
the-art models [8, 28, 26] which needs N >= 4 texture
features. Future work is focused on dealing with piecewise
smooth images because our model is currently designed to
work with textures. Indeed, our model needs at least one
textural region. If we consider a piecewise constant image
then the value of our textural feature κt would be the same,
equal to zero, on the whole image domain. An easy way
to solve this issue is to introduce in the energy functional
the KL measure with the gray level feature as a new term.
Finally, the extension from the proposed 2-phase segmen-
tation algorithm to multi-phase segmentation could also be
considered with the Four Color Theorem.
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Figure 2. Segmentation of synthetic and real-world textural images. Left column: original images. Center column: our segmentation result.
Right column: results based on the method [28].


