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Abstract

Pairwise constraints specify whether or not two samples

should be in one cluster. Although it has been success-

ful to incorporate them into traditional clustering methods,

such as K-means, little progress has been made in com-

bining them with spectral clustering. The major challenge

in designing an effective constrained spectral clustering is

a sensible combination of the scarce pairwise constraints

with the original affinity matrix. We propose to combine

the two sources of affinity by propagating the pairwise con-

straints information over the original affinity matrix. Our

method has a Gaussian process interpretation and results

in a closed-form expression for the new affinity matrix. Ex-

periments show it outperforms state-of-the-art constrained

clustering methods in getting good clusterings with fewer

constraints, and yields good image segmentation with user-

specified pairwise constraints.

There is an emerging interest in incorporating pairwise

constraints into clustering algorithms in the machine learn-

ing and data mining communities. In addition to the data

values, we assume there are a number of instance-level con-

straints on cluster assignment. More specifically, we con-

sider the following two types of pairwise constraints: must-

link constraints, which specify that two samples should be

assigned to the same cluster; and cannot-link constraints,

which specify that two samples should be assigned to dif-

ferent clusters. Pairwise constraints may arise from knowl-

edge of domain experts [15], perceived similarity (or dis-

similarity) [11], or even common sense [12]. There are

generally two categories of methods using pairwise con-

straints in clustering. The first category adapts the tradi-

tional centroid-based clustering methods, such as k-means
[15, 1] or Gaussian mixtures [12, 11] to follow the pair-

wise constraints. The second category tries to learn a Maha-

lanobis distance that minimizes the distance between must-

linked samples and maximizes the distance between cannot-

linked samples; this can be done in the original vector space

[16] or in kernel feature space [2]. After the metric learn-

ing, a clustering method such as k-means is used to get the

final clustering result.

In this paper, we try to adapt to using pairwise constraints

another popular clustering method, spectral clustering, on

which only some preliminary effort [10] is known to us.

The major difficulty is that pairwise constraints specify a

highly informative affinity measure, but that is only avail-

able for a small number of pairs. For the rest, we have

to rely on the abundant but less informative affinity mea-

sure derived from the feature vectors (or provided for each

pair). Prior to this paper, there is no natural way to blend

the two affinity measures. The method of [10] simply uses

the Gaussian kernel as the affinity but replacing entries for

must-linked pairs with 1 and for cannot-linked pairs with 0.

Not surprisingly, this method generally does not work very

well since the effect of the pairwise constraints is limited

to a small number of entries in the affinity matrix. To deal

with this difficulty we propose a way to propagate, in a way

consistent with the given affinities, the pairwise constraints

from a few specified sample pairs to the rest of the entries in

the affinity matrix, thus increasing the effect of the pairwise

constraints. The paper is organized as follows: section 1 in-

troduces the basic idea of affinity propagation (with appen-

dix A giving an alternative interpretation), section 2 gives

clustering algorithms, section 3 gives experimental results

and section 4 discusses related work.

1. Affinity Propagation

Let us interpret the original affinity matrixK ≻ 0 as the
covariance matrix of a zero-mean Gaussian process f :

P (f) = |2πK|−N/2
e−

1

2
f

T
K
−1

f (1)

where f = (f(x1), f(x2), . . . , f(xN ))T at the data points.

Viewing f(xi) ∈ R as a continuous label of xi (f > 0:
label 1, f < 0: label 2), we find that E {f(xi)f(xj)} =
cov {f(xi), f(xj)} = Kij provides a natural measurement

of the similarity between xi and xj (namely, how often xi

and xj are co-labelled). We now treat the given pairwise

constraints as a kind of observation:

(M) If we know xi and xj are must-linked, we assume it is

observed that f(xi) − f(xj) ∼ N (0, ǫ2m)
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(C) If we know xi and xj are cannot-linked, we assume it

is observed that f(xi) + f(xj) ∼ N (0, ǫ2c)

where ǫm and ǫc soften the constraints. Call Ω the observa-
tion described above andM and C the set of all must-links
and cannot-links, respectively. The likelihood P (Ω|f) of Ω
given f is then proportional to

exp

(

−
∑

ij∈M

(f(xi) − f(xj))
2

2ǫ2m
−

∑

ij∈C

(f(xi) + f(xj))
2

2ǫ2c

)

.

From Bayes’ rule, the posterior probability of f given Ω is:

P (f |Ω) ∝ exp
(

−
1

2
f
T
K

−1
f

)

×

exp

(

−
∑

ij∈M

(f(xi) − f(xj))
2

2ǫ2m
−

∑

ij∈C

(f(xi) + f(xj))
2

2ǫ2c

)

.

We propose to use Kij ≡ E {f(xi)f(xj)|Ω} as the new
affinity between xi and xj . Since f |Ω is still a Gaussian
and E {f |Ω} = 0, we have the following key result:

K = (K−1 + M)−1 = K − K(I + MK)−1
MK (2)

Mij =























mi

ǫ2m
+ ci

ǫ2c
if i = j

− 1
ǫ2m

(i, j) ∈ M
1
ǫ2c

(i, j) ∈ C

0 otherwise

(3)

where we assume xi is must-linked to mi samples and

cannot-linked to ci samples, and the N × N matrixM en-

capsulates the constraint information. When ǫm (ǫc) → 0,
we get hard must-links (cannot-links) and when ǫm (ǫc)→
∞ we get no constraint. ClearlyK = (K−1 + M)−1 ≻ 0,
but unlike an affinity matrix from the Gaussian kernel, it

may contain negative entries. ComputingK adds almost no

overhead since it requires inverting a small matrix of dimen-

sionO(mi+ci) (see below). P (f |Ω) can also be seen as the
distribution that minimises the divergence to P (f) (eq. (1))
while satisfying certain constraints (see appendix).

Analysis: equivalent kernels Here we work out in closed

form the new affinity K when there is only one constraint

(must-link or cannot-link). We show that K can be rep-

resented by an equivalent kernel which gives an intuition

about the propagation of affinity. Assume a given symmet-

ric affinity matrix K of N × N satisfying Kii = 1 and
0 ≤ Kij < 1 ∀i 6= j (e.g. Gaussian affinities). We place a
single link between points 1 and 2. Write

K =

(

K11 K12 K13 ···

K21 K22 K23 ···

K31 K32 K3··· ···

)

u
− = K•1 − K•2

u
+ = K•1 + K•2

(4)

whereK3 is a block of (N −2)× (N −2) andK•1 denotes

column 1 of K, so u
+ and u

− are sum and difference col-

umn vectors of N × 1. Using the same block structure, the
M matrix is

Mm =
1

2ǫ2m

(

1 −1 0

−1 1 0

0
T

0
T

0

)

Mc =
1

2ǫ2c

(

1 1 0
1 1 0

0
T

0
T

0

)

(5)

for must-links and cannot-links, respectively. From (2) we

need the inverse of (I + MK). This exists if Kii > Kij

∀i, j and can be computed in closed form using
(

A B

0 I

)

−1 =
(

A
−1

−A
−1

B

0 I

)

−1. (When there are L > 1 links, only a
small matrixA of 2L× 2L need be inverted, so computing
K in practice is fast since L ≪ N .)
Applying (2) we find that the new affinity matrix K is

the weighted average of the original affinity matrixK and a

link affinityK
′ matrix caused by the link:

Km =
1

ǫ2m + 1 − K12
(ǫ2mK + (1 − K12)K

′
m) (6)

Kc =
1

ǫ2c + 1 + K12
(ǫ2cK + (1 + K12)K

′
c). (7)

The weight is controlled by ǫ, so that for a hard constraint
we obtain limǫ→0 K = K

′ (i.e., the effect is given purely

by K
′) and for no constraint limǫ→∞ K = K (i.e., no ef-

fect). When K12 → 1 we have Kc → K but Km 9 K;

thus, a must-link between identical points has no effect,

but a cannot-link between identical points does have an ef-

fect. Let us now focus on the hard constraint case (ǫ = 0,
K = K

′). The link affinityK′
m (resp.K

′
c) is symmetric and

independent of ǫm (resp. ǫc). It has columns 1 and 2 both

equal to 1
2u

+ for must-link (i.e., an average affinity) and

equal to 1
2u

− and − 1
2u

−, respectively, for cannot-link (i.e.,

an average affinity difference). Columns 1, 2 give the affin-

ity between the link sites (1, 2) and the remaining points
(3, 4, . . . ). We can see that the must-link equalises points
1, 2while the cannot-link polarises them with opposite sign.
Now consider the 3:N × 3:N block ofK′, which gives the

affinities for the remaining points 3, 4, . . . It is given by:

Km,3 −
u
−

3:N (u−

3:N )T

2(1 − K12)
Kc,3 −

u
+
3:N (u+

3:N )T

2(1 + K12)
(8)

so the affinities undergo a negative rank–1 update. We can

interpret them by means of an equivalent kernelK ′
ij :

must-link:K ′
ij = Kij −

(Ki1 − Ki2)(Kj1 − Kj2)

2(1 − K12)

cannot-link:K ′
ij = Kij −

(Ki1 + Ki2)(Kj1 + Kj2)

2(1 + K12)
.

By substituting the original affinity kernel (e.g. Gaussian

Kij) we obtain the form of K
′
ij . The effect of the affinity

propagation in the problem with constraints is the same as



must-link cannot-link

i, j close i, j far i, j close i, j far

1, 2 close
(K12 ≈ 1)

i
1 2

j

K ′
ij ≈ Kij

i
1
2 j

same as must-link

(1, 2 close; i, j close)

i
1 2

j

K ′
ij ≈ Kij − Ki1Kj1

i
1
2 j

same as must-link

(1, 2 close; i, j close)

1, 2 far
(K12 ≈ 0)

i

1 2
j

K ′
ij ≈ Kij −

1
2Ki1Kj1

i 1 j

i

1
2

j

K ′
ij ≈ 1

2Ki1Kj2

i1 2 j

same as must-link

(1, 2 far; i, j close)

i

1
2

j

K ′
ij ≈ − 1

2Ki1Kj2

i1
2 j

Table 1. Equivalent kernels for a single must-link or cannot-link for relevant arrangements (illustrated by a diagram) of the link sites (1, 2)
and the point pair (i, j) under consideration. The plot shows the original affinity kernelKij = k(xi,xj) (dashed black, assumed Gaussian)
and the new, equivalent one k′(xi,xj) (red), as a function of j (X axis) for fixed i. The point locations are labelled as 1, 2, i, j.

having a problem without constraints with affinities given

by the equivalent kernel. It is instructive to consider the

equivalent kernel in specific cases for i, j. Firstly note that
for point pairs (i, j) where both i, j are far (in the sense
of K) from 1, 2, the affinities are practically unchanged
(K ′

ij ≈ Kij) since Ki1,Ki2,Kj1,Kj2 ≈ 0. For pairs i, j
where both i and j are near at least one of 1, 2, table 1 sum-
marises the results. When must-link links faraway points

(row “1, 2 far”), e.g. if 1, 2 are in different clusters, then the
affinity of a pair i, j: (a) increases if i, j are each near a dif-
ferent link site (column “i, j far”), i.e., affinity propagates
through the link to nearby points, creating a focus of posi-

tive affinity across clusters; and (b) decreases if i, j are both
near the same link site (column “i, j close”, within-cluster),
possibly becoming slightly negative, note the negative lobe

of the equivalent kernel. Thus, we get an affinity decrease

around a must-link site and an affinity increase across must-

linked sites. For cannot-links, the affinity always decreases.

When i, j are close to a link site, the effect is similar to a
must-link around a site; when i, j are close to different link
sites, a focus of negative affinity arises that is propagated

through the link. Fig. 1 shows the 3 types of equivalent

kernels we can obtain: asymmetric with a negative lobe k′
a,

symmetric positive k′
s and symmetric negative −k′

s.

In summary, the effect of eq. (2) is that each link creates

a wormhole between the link sites through which positive

or negative affinity propagates to points near the sites, dif-

fusing over a distance according to the manifold structure

of the data. Importantly, a single link can have an effect of a

largemagnitude onmany affinities. Must-links make points

more similar even across clusters, while cannot-links make

points more dissimilar even within a cluster. The new affin-

ity can be described with an equivalent kernel derived from

the original affinity kernel and the constraint type.

A limitation of our model Our way of calculating the

affinity matrixK has a limitation deeply related to its mean-

ing as the covariance matrix of a Gaussian process. Gener-

ally, K is a sensible measure of affinity only when there

are two classes, as illustrated next. Suppose both xi and

xj are cannot-linked to xk, then we have from (C) that

f(xi) ≈ −f(xk) ≈ f(xj), which is equivalent to putting a
must-link between xi and xj ; hence, we will getKij signif-

icantly greater than 0 even ifKij ≈ 0. This interaction be-
tween cannot-links creates a false affinity between xi and

xj when we have more than two classes. On the other hand,

equation (2) is still conceptually correct for multiclass situ-

ations when there are no more than one cannot-link.

The simple one-versus-the-others strategy does not work

σ=0.5

σ=0.75
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k
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k
′ s
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σ=1

σ=1.5
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−
k
′ s

x2
xj

xi x1

k′
a

x2

k′
s

x2

−k′
s

Figure 1. Graph of the equivalent kernel K′

ij assuming an origi-

nally Gaussian affinity kernel Kij = exp (− 1

2
‖(xi − xj)/σ‖2)

with scale σ. Above: in 1D (xi ∈ R) for several scales σ. The
asymmetric kernel k′

a is a difference of offset Gaussians, while the

symmetric ±k′

s are positive/negative Gaussians. Compare k′

a with

must-link (1, 2 far; i, j close) in table 1, k′

s with must-link (1, 2
far; i, j far) and −k′

s with cannot-link (1, 2 far; i, j far). Below: in
2D (xi ∈ R

2) for σ = 1. All σ values are relative to ‖xi − x1‖.
Note for the 2D k′

a the right contours are negative.



here. One possible way to generalize the model to the mul-

ticlass situation is to consider more than one latent Gaussian

process. However, we cannot capture the posterior distribu-

tion of all latent processes with only oneK as the posterior

covariance. The Gaussian process classifier-based method

of [4], after proper modification, is a potential candidate,

although rather complicated. In this paper, we propose a

simple modification of equation (2) to avoid the interaction

between cannot-links, which we discuss below.

2. Constrained Clustering Algorithms

To do constrained clustering, we can run a standard clus-

tering algorithm using the new, propagated affinities instead

of the original ones K (Gaussian, heat kernel, etc.). In

this paper we use spectral clustering, specifically the nor-

malised cut [13]. However, we cannot use K from (2) as

affinity matrix directly, since some affinities are now nega-

tive (mostly due to cannot-links, since cannot-linked sam-

ples are forced to have opposite-sign affinities), and some

samples can have a negative degree
∑

j Kij . (A negative

degree prevents computing a normalised graph Laplacian

and means that splitting any node with negative degree from

others has a negative cost in a graph cut and thus would be

highly favoured by the algorithm.) We found that adding a

constant bias to all Kij did not work well in practice. An

approach that we found much more effective is to set to 0
all negative entries in K. Note we still take advantage of

cannot-links since our algorithm will greatly decrease (to

near-zero) some originally strong affinities.

Algorithm A (for two classes) GivenK ≻ 0:

1. Compose the matrixM according to equation (3) based on

all constraints and letK = (K−1 + M)−1.

2. LetAij = max (0,Kij) ∀i, j.

3. Do spectral clustering withA as the affinity matrix.

Algorithm B described below is a generalization of Algo-

rithm A for multiclass situations. The basic idea is to avoid

the interaction (false affinity) between cannot-links by en-

forcing them separately and getting many versions of K.

Since the main effect of cannot-links is to weaken the affini-

ties between some samples, for any entry between xi and xj

we always use the smallest (most weakened) among all the

different versions.

Algorithm B (for more than two classes) GivenK ≻ 0:

1a. Compose the matrixMm according to equation (3) based on

only must-links and letKm = (K−1 + M
m)−1.

1b. Suppose we have nc cannot-links. Compose the matrix

M
c,k, k = {1, 2, . . . , nc} according to equation (3) based

on the ith cannot-link and letKc,k = ((Km)−1 +M
c,k)−1.

2. LetAij = max
`

0, min (Kc,1
ij , . . . ,Kc,nc

ij )
´

∀i, j.

3. Do spectral clustering withA as the affinity matrix.

Illustrative examples We provide three 1D examples to

demonstrate the mechanics of our algorithm. In all them we

use the Gaussian kernel for the original affinity K. Figure

2 shows how one must-link merges two clusters into one.

Row A shows a 3–cluster dataset and one must-link across

two clusters. As shown in row B, the affinity matrixK and

the eigenvalues and eigenvectors of the normalised graph

Laplacian with K as the affinity matrix suggest three clus-

ters. After enforcing the must-link with Algorithm A, we

get the affinity matrixK in row C that clearly shows many

new affinities between the first two clusters. Those affinities

are centred at the entry corresponding to the must-linked

pair and diffuse to other entries isotropically, as predicted

by the equivalent kernel. Equally salient are the changes

of the eigenvalues and eigenvectors in row C. The second

eigenvector suggests to group the first two clusters into one

and keep the third cluster separate (contrary to the distribu-

tion of the data but consistent with the must-link constraint).

Figure 3 illustrates how one cannot-link breaks a con-

tinuum into two clusters. As one can see by compar-

ing the affinity matrix before and after the constraint, the

cannot-link (enforced with Algorithm A) greatly weakens

the affinities between data around the cannot-linked sam-

ples. As a result, the eigenvalues and eigenvectors sug-

gest a two-cluster structure with the boundary between the

two cannot-linked samples. Fig. 4 shows how algorithm B

avoids false affinities created by multiple cannot-links.

3. Experiments

Artificial and real-world data (fig. 5–6)We compared our

algorithm with constrained K-means (CKmeans) [15], con-

strained Gaussian mixture model [11], and a preliminary

implementation of constrained spectral clustering (KKM)

[10] on a variety of data sets with varying numbers of pair-

wise constraints. For all clustering algorithms, the number

of clusters is always set as the number of classes, and we use

hard constraints (ǫ = 10−5). We used Algorithm A when

there are only two classes and Algorithm B otherwise. For

the four artificial data sets (fig. 5) and three UCI data sets

(fig. 6 left) we used Gaussian affinitiesK of suitable width,

while for the 20–newsgroups (fig. 6 right) we used a heat

diffusion kernelK = exp(−20∆), where ∆ is the normal-
ized graph Laplacian on a 10–nearest-neighbour graph (to

cope with the highly sparse distribution of the feature vec-

tors). The three clustering tasks on the 20–newsgroups are

chosen to represent different levels of difficulty. For all 10

clustering tasks, the clustering accuracy is measured with

the Rand index and the reported clustering accuracy is aver-

aged over 100 random realisations of pairwise constraints.

Our algorithm is superior to competing methods in that it

can achieve a considerable improvement of clustering accu-

racy with a relatively small number of pairwise constraints.

Semi-supervised image segmentation (fig. 7) The user is
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Figure 2. One must-link merges two clusters. A: 1D data plotted as circles (the small numbers represent indices, not coordinates), and one

must-link between the 5th and 20th samples. B: affinity matrix K using a Gaussian kernel, associated eigenvalues and eigenvectors e2,

e3 of the normalised graph Laplacian (nearly piecewise constant over the clusters; e1 = 1 not shown); the eigenspace (e2, e3) shows 3
clusters. C: the new affinity matrix after incorporating the must-link using Algorithm A; the eigenspace (e2, e3) shows 2 clusters.
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Figure 3. One cannot-link splits data into two clusters. A: 1D continuous dataset plotted as circles, and one cannot-link between the 5th and
15th samples. B, C: as in fig. 2, before and after incorporating the cannot-link. e2 changes from continuous to almost piecewise constant

with a split around the 10th sample; the eigenspace (e2, e3) changes from one continuous cluster to two clusters.

shown an image and asked to specify several pairwise con-

straints to guide the segmentation. As original affinities we

use the Gaussian kernel with one feature vector xi ∈ R
3

per pixel consisting of location and intensity. Fig. 7A–C

consist of a 16 × 16 image of an occluder to be segmented
from an irregular background [3]; fig. 7D is a 43× 43 noisy
image with 3 objects on a background [7]. All cases are dif-

ficult for unsupervised spectral clustering because the ob-

ject boundaries are ill defined and contain smooth intensity

gradients. The results show the segmented image and the

leading eigenvalues and eigenvectors (e2, e3, e4) of the nor-

malised graph Laplacian, without constraints (upper row)

and with constraints (lower row). Adding a few constraints

(e.g. across an ill-defined boundary) helps to separate the

objects; note the improvement in the eigenvectors.

4. Related Models

Besides the connection to the metric learning model of

[5], our model is related to several other semi-supervised

learning models. We have compared our model empiri-

cally with the preliminary constrained clustering method in

[10], a variant of which has been proposed in [17] with

a slightly different treatment of eigenvectors. Hoi et al.

[9] learn a nonparametric kernel matrix from the pairwise

constraints by incorporating the original affinity through a

graph-Laplacian regulariser; consequently the learned ker-

nel does not naturally degenerate to the original one even
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Figure 5. Synthetic datasets (each one has 2 classes and 200 points in each class): with our method, the clustering accuracy increases very

quickly with the number of pairwise constraints. Errorbars over 100 random realisations of pairwise constraints.
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Figure 4. False affinity generated by multiple cannot-links. The

data and the first cannot-link is the same as in figure 3. The second

cannot-link is between the 16th and 35th samples. Note the false
affinity generated between the 5th and 35th samples when using
Algorithm A to enforce the two cannot-links, and compare it to

the affinity matrix generated using Algorithm B.

if no constraints are specified. In [8] and [14], the idea of

distorting the RKHS space is close to our way of modifying

the affinity matrix. However, their modification of kernel

entries is mainly based on incorporating a graph prior, and

in [8] the pairwise relations are used as an aid to the la-

beled samples in a conventional semi-supervised learning

scenario. Most constrained image segmentation approaches

[11, 7, 6] enforce the constraints on a instance level, and

thus often make inefficient use of the constraints. The con-

strained image segmentation algorithm of [18] can also be

viewed as a kind of affinity propagation that is implemented

by forcing a constrained pixel to be in the same cluster as

its neighbors in a vicinity specified by user; thus, the affin-

ity propagation is controlled by the user in a rather ad hoc

way and does not naturally generalize to non-image data.

Ionosphere (351,19,2) Newsgroups: easy
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Figure 6. Results on three UCI datasets (left column) (points, fea-

tures, classes) and three 20–newsgroup tasks (right column), all

datasets with 1 000 samples evenly distributed in the classes. Easy:
alt.atheism, rec.sport.baseball,sci.space; Medium: Windows,

Macintosh; Difficult: talk.politics.misc, talk.politics.guns,

talk.politics.mideast.

5. Conclusion

Our method proposes a natural way (based on a Gauss-

ian process formulation) to propagate affinity information



through pairwise constraints; the latter act as wormholes

that connect space regions that are faraway (low affinity)

for must-links, or disconnect nearby regions for cannot-

links. The new affinity matrix has a closed-form expression

(eq. 2–3) that can be obtained by inverting a small matrix,

at a neglibible overhead over spectral clustering. This new

affinity can be represented by a new kernel function derived

from the original one. Experimentally, our method needs

very few constraints to achieve good clusterings as com-

pared with other methods. Two areas of further research

are: (1) how to profit more effectively from the negative

affinities generated by the method, and (2) a more natural

extension to the multiclass case.

A. Minimum divergence formulation

We give an interpretation of our affinity propagation

model based on the min-divergence principle. Again, sup-

pose the original affinity matrix K ≻ 0 is the covariance
matrix of a zero-mean Gaussian distribution P (f), eq. (1).
Now we want to find a probability distribution P (f) that is
closest to P (f) while satisfying must-link (α) and cannot-
link (β) constraints. This is the variational problem:

min
P

D
(

P (f)‖P (f)
)

s.t. EP

{

(f(xi) − f(xj))
2
}

≤ αij , (i, j) ∈ M

EP

{

(f(xi) + f(xj))
2
}

≤ βij , (i, j) ∈ C

where EP {·} =
∫∫

(·)P (f(xi), f(xj)) df(xi) df(xj) and
D (p‖q) =

∫

p log (p/q). Applying calculus of variations
we find that the optimal P (f) takes the following form:

P (f) ∝ P (f) × exp
(

−
∑

(i,j)∈M

λij(f(xi) − f(xj))
2

−
∑

(i,j)∈C

λij(f(xi) + f(xj))
2
)

, (9)

with Lagrange multipliers λij ≥ 0 (Karush-Kuhn-Tucker
conditions). Thus P (f) is also Gaussian, with covariance
matrixK = (K−1 + M)−1, whereM ∈ R

N×N

Mij =



















2
∑

k: (i,k)∈M∪C
λik, i = j

−2λij , (i, j) ∈ M

2λij , (i, j) ∈ C

0, otherwise

(10)

has the same form as (3). This means that, given the con-

straint setsM and C, we can derive the new affinity ma-
trix K either by defining the constraints softly in terms of

“scales” ǫm, ǫc and applying eqs. (2)–(3) (which is easy);

or by defining the constraints as hard bounds α, β and solv-
ing the optimisation problem for λij and so forM and K

(which is computationally difficult).

Since the previous variational problem is optimised by a

Gaussian, we could write an optimisation problem directly

over the covariance matrixK of P as follows:

min
K

log (|K| / |K|) + tr
(

K
−1

K
)

s.t. K ≻ 0

Kii + Kjj − 2Kij ≤ αij , (i, j) ∈ M

Kii + Kjj + 2Kij ≤ βij , (i, j) ∈ C.

We lately learned (I. Dhillon, pers. comm.) that this is simi-

lar to the information-theoretic metric learning of [5], which

tries to find a Mahalanobis distance that is closest to the

Euclidean distance while satisfying all the pairwise con-

straints expressed as a distance between constrained pairs.

This shows an interesting connection between our Bayesian

perspective (using Gaussian processes) and the perspective

of metric learning by divergence minimisation in a Hilbert

space [5]. Also, the approach in [5] expresses cannot-links

differently from us and lacks a closed-form solution (unlike

our (2)), so numerical optimisation is required.

References

[1] S. Basu, M. Bilenko, and R. Mooney. A probabilistic frame-

work for semi-supervised clustering. In KDD, 2004.

[2] H. Chang and D. Yeung. Semi-supervised metric learning

by kernel matrix adaptation. In Int. Conf. Machine Learning

and Cybernetics (ICMLC’05), 2005.

[3] C. Chennubhotla and A. Jepson. EigenCuts: Half lives of

eigenflows for spectral clustering. In NIPS, 2003.

[4] W. Chu, V. Sindhwani, Z. Ghahramani, and S. Keerthi. Re-

lational learning with Gaussian processes. In NIPS, 2007.

[5] J. Davis, B. Kulis, P. Jain, S. Sra, and I. Dhillon. Information-

theoretic metric learning. In ICML, 2006.

[6] A. Eriksson, C. Olsson, and F. Kahl. Normalized cuts revis-

ited: A reformulation for segmentation with linear grouping

constraints. In ICCV, 2007.

[7] M. Figueiredo, D. Seon, and V. Murino. Clustering under

prior knowledge with application to image segmentation. In

NIPS, 2007.

[8] A. Goldberg, X. Zhu, and S. Wright. Dissimilarity in graph-

based semi-supervised classification. In AISTATS, 2007.

[9] S. Hoi, R. Jin, and M. Lyu. Learning nonparametric kernel

matrices from pairwise constraints. In ICML, 2007.

[10] S. Kamvar, D. Klein, and C. Manning. Spectral learning. In

IJCAI, 2003.

[11] Z. Lu and T. Leen. Penalized probabilistic clustering. Neural

Computation, 19, 2007.

[12] N. Shental, A. Bar-Hillel, T. Hertz, and D. Weinshall. Com-

puting Gaussian mixture models with EM using equivalence

constraints. In NIPS, 2003.

[13] J. Shi and J. Malik. Normalized cut and image segmentation.

IEEE Trans. PAMI, 22(8), 2000.



A

Image Clustering Result First 10 Eigenvalues e2 e3 e4

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

B
1 2 3 4 5 6 7 8 9 10

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

C
1 2 3 4 5 6 7 8 9 10

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

D
1 2 3 4 5 6 7 8 9 10

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 7. Image segmentation (in all 4 images A–B, the number of clusters in spectral clustering is set to 4). The must-links (cannot-links)

are visualised as the green (red) lines connecting pixel pairs. Upper/lower row: results without/with constraints.
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