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Abstract

We present a novel building segmentation system for
densely built areas, containing thousands of buildings
per square kilometer. We employ solely sparse LIDAR
(Light/Laser Detection & Ranging) 3D data, captured from
an aerial platform, with resolution less than one point per
square meter. The goal of our work is to create segmented
and delineated buildings as well as structures on top of
buildings without requiring scanning for the sides of build-
ings. Building segmentation is a critical component in many
applications such as 3D visualization, robot navigation and
cartography. LIDAR has emerged in recent years as a more
robust alternative to 2D imagery because it acquires 3D
structure directly, without the shortcomings of stereo in un-
textured regions and at depth discontinuities.

Our main technical contributions in this paper are: (i) a
ground segmentation algorithm which can handle both ru-
ral regions, and heavily urbanized areas, where the ground
is 20% or less of the data. (ii) a building segmentation
technique, which is robust to buildings in close proximity
to each other, sparse measurements and nearby structured
vegetation clutter, and (iii) an algorithm for estimating the
orientation of a boundary contour of a building, based on
minimizing the number of vertices in a rectilinear approxi-
mation to the building outline, which can cope with signifi-
cant quantization noise in the outline measurements.

We have applied the proposed building segmentation sys-
tem to several urban regions with areas of hundreds of
square kilometers each, obtaining average segmentation
speeds of less than three minutes per km2 on a standard
Pentium processor. Extensive qualitative results obtained
by overlaying the 3D segmented regions onto 2D imagery
indicate accurate performance of our system.

1. Introduction
Building modeling has numerous applications in a wide

variety of tasks such as urban planning, cartography, 3D
visualization for virtual city tours and autonomous robot
navigation. In many practical situations, it is desired to
obtain 3D models for areas of hundreds and thousands of
square kilometers within days and with minimal manual in-
teraction. Automating building segmentation is a critical

Figure 1. Top: Example of a 1 km
2 urban region containing more

than 1.4 million points that are rendered with pseudo-color as a
function of the height above ground. Red points represent higher
heights than green. Bottom: Rendering of 3D buildings segmented
and delineated by our proposed algorithm, and extruded with the
height of the respective strcutures. The area enclosed by the rect-
angle in the top figure is depicted with aerial co-registered 2D im-
agery used as texture map. Note the lack of structure and texture
on the sides of the buildings.

component in any 3D modeling system because it provides
3D regions (segments) with little or no manual interaction.
These regions can be refined by fitting simple parametric
3D shapes (primitives) that require significantly less stor-
age compared to using polygonal meshes computed over the
raw data and allow real-time online rendering.

Traditionally, building modeling has employed data col-
lected either from the ground, or from the air. Ground-based
data provides high details on façades of buildings, but lacks
information on tops of buildings. Aerial data can yield very
accurate building footprints and can facilitate the fusion of
multiple images through ortho-rectification to cover large
geographical areas [10], however it lacks side information.
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Most of the research on building modeling has employed
2D imagery, which is very inexpensive to acquire, but poses
inherent difficulties in the automatic 3D modeling due to
known limitations of stereo algorithms to recover the 3D
structure from multiple views, especially in untextured ar-
eas and at depth discontinuities [7]. Because of these limi-
tations, most image-based modeling systems proposed were
either manual, or semi-automatic and required a long time
for producing 3D models [4, 13, 18].

LIDAR (Light Detection & Ranging) has emerged in the
last years as a viable and cost-effective alternative to using
solely 2D imagery, because it can directly produce precise
and accurate range information and can significantly allevi-
ate the task of automatic building segmentation [14, 19, 22].
See [3] for an excellent review of various LIDAR sensors.

Aerial LIDAR collections can acquire data over entire
cities very rapidly, however due to constraints imposed by
the operating conditions on the altitude and speed of the air-
borne platform, the resolution of the data is typically less
than one point per square meter. LIDAR measurements
from multiple views are typically co-registered together in
the same global coordinate system by tracking the pose of
the LIDAR sensor as it acquires the data, using GPS and
inertial measurement units (IMU). Errors in the GPS can
lead to local registration errors which need to be addressed
during building segmentation.

We present a novel method for automatic building seg-
mentation in very crowded urban areas, using solely aerial
LIDAR data. We have assumed that a building is uniquely
determined by its roof, which has a distinct orientation com-
pared to surrounding objects, hence we use roof and build-
ing interchangeably in this paper. Graph methods such
as [21] can be used to group roofs into unique buildings
with more complicated structures.

This paper makes the following technical contributions:
(i) a ground segmentation algorithm which can handle both
rural regions and heavily urbanized areas, where the ground
is 20% or less of the data, (ii) a building segmentation tech-
nique, which is robust to buildings in very close proximity
to each other, sparse measurements and nearby structured
vegetation clutter, and (iii) a minimum description length
algorithm for finding the orientation of a building segment
based on minimizing the number of vertices in a rectilinear
approximation to the building outline.

Our building segmentation system can handle regions,
containing more than several thousand buildings per km2,
using sparse LIDAR data with resolution less than one point
per square meter. It can process, on average 1.5 million
points per km2 in less than three minutes on a Pentium
machine. A quantitative analysis of the 3D models ob-
tained from range data alone is very difficult in practice and
the performance of the 3D models produced is usually as-
sessed using 2D data which provides textures for visualiza-

tion [14]. We will use a similar approach for our perfor-
mance evaluation.

A block diagram of the building segmentation system is
presented in Figure 2. An example of the building seg-
ments produced using aerial LIDAR data is given in Fig-
ure 1. Note the complexity of the area handled and the
quality of the building models obtained. The three main
computational blocks in our system are described in the
technical sections. In Section 2 we present related work
in computer vision and photogrammetry for building seg-
mentation and modeling. Ground segmentation and terrain
modeling is discussed in Section 3. In Section 4 we intro-
duce the building segmentation algorithm. The Minimum
Description Length based building orientation algorithm is
described in Section 5, while Section 6 presents the experi-
mental results.

2. Related Work
In several LIDAR based building segmentation algo-

rithms, the 3D points are classified in three classes: ter-
rain, clutter and building. First, the 3D measurements are
classified as ground and non-ground, and subsequently the
non-ground points are divided into clutter and building re-
gions [14, 19, 22].

Kraus and Pfeifer [11] presented an iterative method for
terrain modeling based on removing at each step the 3D
measurements with residuals to the current terrain surface
larger than a threshold and re-estimating the terrain surface
using the remaining data. Because the initialization of the
terrain used all the data, the method may not converge for
densely built regions.

Morphological opening operators are used to create a
digital terrain model (DTM) which is subtracted from the
input data. These filters, inspired from image processing
may fail to produce good ground segmentation, especially
for nonflat terrain [14]. In [21], the authors segmented the
ground and the buildings in one step by computing local
planar patches (surfels) using Total Least Squares (TLS)
and connecting the consistent neighboring surfels into re-
gions using bottom-up region growing. The largest region
was selected as ground, while the rest of the regions were
classified as individual buildings.

Rottensteiner et al. [15] present a method for the auto-
matic delineation of roof planes using local plane estima-
tion and grouping the local planes into larger regions start-
ing from local seed locations. Over-segmented regions are
merged together using co-planarity constraints. Points that
do not belong to any surface are labeled as clutter.

Belief propagation (BP) is applied for segmentation
tasks with a similar formulation as ours. For example,
Sun et al. [17] used a max-product BP algorithm for stereo
matching to enforce constraints that neighboring pixels with
the same intensity values are assigned the same depth.

Guo et al. [8] employed a rectilinear approximation to



Figure 2. Diagram of the building segmentation method proposed.

outlines of buildings in their image based building detection
system. The orientation of each rectilinear fit was deter-
mined by finding the maximum in a histogram of local im-
age gradients approximating tangent directions to the con-
tour. Their method assumes that errors of the contour points
are relatively small.

3. Ground Classification and Terrain Modeling
In the first stage of our system, each 3D point is classified

into ground G and non-ground N . Let xm, xM , ym, yM ,
zm and zM be the minimum and maximum bounds of the
3D points along the X , Y , Z axes. Denote by (i, j, k) =
Υ(p, vg) the voxelization transformation which maps a 3D
point p into a voxel of a 3D grid, with vg being the length
of the voxel side.

LIDAR sensors do not penetrate solid surfaces, hence
ground points must have the minimum height in the vicin-
ity of buildings. We employ this constraint to remove 3D
measurements that cannot be part of the ground. We cal-
culate an image A ∈ R

Nx×Ny containing at each pixel the
minimum z value of all the points that project into it, where
Nx = ⌈(xM − xm)/vg⌉, Ny = ⌈(yM − ym)/vg⌉ and ⌈x⌉
is ceiling function representing the smallest integer larger
than x. We run a 2D minimum filter with radius ⌈Lmax/vg⌉
over A to produce an image B containing at a pixel Bi,j

the ground minimum within a local neighborhood. The
constant Lmax is chosen function of the largest distance
between the projections onto the XY plane of any point
pa ∈ N and its closest ground point pb ∈ G (the Hausdorff
distance). An upper bound on the height difference between
pa and pb is Hmax = Lmax| tan(φmax| where φmax is the
maximum slope of the ground and we have used the mono-
tonicity of the tan() function.

Denote by Γ the set of voxels containing at least one
point pu obeying pz

u ≤ Bi,j + Hmax + 6σν , (i, j, ·) =
Υ(pu, vg), where σν is the standard deviation of the noise,
assumed known from the operating conditions. We have
employed σν = 0.15 m. At each voxel (i, j, k) ∈ Γ, we
fit a local planar model at several scales ρ1 < . . . < ρS

using the Total Least Squares (TLS) algorithm. For each
scale ρs we compute the centroid c̃(ρs) and the normalized
scatter matrix C(ρs), of the points within radius ρs from the
voxel center qi,j,k. A plane (surfel) estimate π = (n,o) is
represented by the normal n, ‖n‖ = 1, and the origin o.
The TLS plane estimate is obtained by computing the sin-
gular value decomposition (SVD) of the matrix C(ρs) and
selecting n = θ3, the smallest singular vector of C(ρs) and
o = c̃(ρs). The plane estimate is kept only if the singu-
lar values σs

3 ≤ σs
2 ≤ σs

1 satisfy the planarity constraints
σs

3/σ
s
2 < τp, σs

2/σ
s
1 > τκ. We have used ρS = 3 m,

τp = 0.1 and τκ = 0.05.
The surfel defined at the scale ρs0

which yields the min-
imum normalized estimation error σs0

3 is retained and as-
signed to voxel Υ(o, vg). Note that due to noise it is pos-
sible to have (i, j, k) 6= Υ(o, vg). If a voxel is assigned
more than one surfel, the one with the smallest error σ3 is
retained. We remove surfels with normals orthogonal to the
vertical direction, because aerial data has very few points
sampled from vertical surfaces (e.g., walls, fences).

We did not employ a robust surfel estimation using
RANSAC because of the prohibitive extra computation re-
quired for the amount of data handled. For example, for
only 1 km2 area we need to estimate millions of surfels and
we would have to employ at least few hundred trials for
each surfel estimate, given the ratio of outliers caused by
nearby structures. A RANSAC trial requires an SVD de-
composition and likelihood evaluation, which would have
to be carried out hundreds of millions of times for 1 km2,
rendering the ground extraction impractical.

Let Γ1 ⊆ Γ be the subset of putative ground voxels
containing surfels, and let Γ2 ⊆ Γ1 be the subset of Γ1

that contains voxels having at least one point pu satisfying
pz

u ≤ Bi,j+h0, h0 < Hmax+6σν . We have used h0 = 4 m.
For each voxel (i, j, k) ∈ Γ1 we compute a histogramHi,j,k

of normal coherence measures |n⊤
i′,j′,k′ni,j,k| for all voxels

(i′, j′, k′) ∈ Γ1, ‖qi′,j′,k′ − qi,j,k‖ ≤ R, with R = 10 m.
The entropy of the histogram Hi,j,k yields a planarity mea-



sure at a 3D location.
We select a set of seed voxels Γ3 ⊆ Γ2 by sorting the

voxels in Γ2 in the increasing value of the entropy measures
and utilize a greedy strategy to select voxels, followed by
non maxima suppression to ensure spatial separation. Start-
ing at each seed voxel from Γ3 we perform a 26-connected-
component region growing by recursively adding new vox-
els from Γ1 that have consistent normals with their imme-
diate neighbors. A voxel can be assigned to at most one
ground region Γgi

. The resulting ground voxel set is Γg =
{Γgi

| |Γgi
| > Amin/v

2
g}, with |Γgi

| denoting the number
of voxels in Γgi

. We have used Amin = 500 m2 based on
experimentation. Γg provides only a coarse ground esti-
mate because: (i) the voxel size vg used may be larger than
the noise σν ; (ii) there may be ground points which belong
to voxels without surfels (e.g., near buildings); (iii) Some
ground regions (courtyards), may have areas less thanAmin.

We compute a digital terrain model (DTM), which is rep-
resented as an an image T containing at each pixel Ti,j the
sampled ground height. The size of the pixel, w, is chosen
small enough to ensure that constant ground height is a valid
approximation. We initialize the DTM using height values
sampled from Γg and apply kernel smoothing [9, p.174] to
smooth out the surfel estimates and to interpolate ground at
missing locations.

Some entries in the matrix T may still be undefined,
for example underneath buildings. To estimate the miss-
ing ground locations, we group them into holes based on
eight-connected-component neighboring constraints. For
each hole region we determine the surrounding pixels from
T containing valid height estimates and use them to extrap-
olate the height within the hole.

A point pu is classified as nonground, pu ∈ N , if

pz
u ≥ Ti,j + hb , (i, j) = Υ([px

u, p
y
u]⊤, w) , (1)

where hb is the minimum height of a building, specified by
the user. In our system we have used hb = 2 m.

4. Building Segmentation and Clutter Removal
To initialize the building segmentation, we estimate sur-

fels at voxel locations containing nonground points pu ∈ N
using a similar adaptive estimation as shown in Section 3.
Building segmentation requires a smaller voxel size vb < vg

compared to ground classification. We use vb = 1 m, since
the data handled has typically a distance between samples
of 1 m or more. Formally, let Φ denote the set of non-
ground voxels and Φ1 ⊆ Φ denote the subset of voxels
from Φ which contains surfels. Similar to [15] we employ a
bottom-up grouping of neighboring voxels that contain con-
sistent surfels into larger, nonparametric regions Ri. Two
voxels (i0, j0, k0), (i1, j1, k1) ∈ Φ1 are considered consis-
tent if

‖qi0,j0,k0
− qi1,j1,k1

‖ ≤ δ, |n⊤
i0,j0,k0

ni1,j1,k1
| ≥ κ1 , (2)

|n⊤
i0,j0,k0

d0,1| ≤ κ2, |n
⊤
i1,j1,k1

d0,1| ≤ κ2 , (3)

with d0,1
def
= (oi0,j0,k0

− oi1,j1,k1
)/‖oi0,j0,k0

− oi1,j1,k1
‖

and κ1, κ2 are two thresholds and δ is the maximum dis-
tance between the closest two 3D points that belong to the
same surface. We choose δ to be at least the sampling size.
We have used δ = 2 m, κ1 = cos(10◦) and κ2 = cos(85◦).

The regions Ri with areas larger than a threshold are
classified as buildings. The measurements which are not
assigned to any valid region Ri are classified as clutter.

4.1. Parametric Surface Refinement with EM
Bottom-up region growing offers a versatile way of

grouping surfels into larger, nonparametric regions, how-
ever it suffers from several shortcomings: (i) surfel esti-
mates have a relatively high covariance because of the small
scale used for their estimation, requiring the thresholds κ1

and κ2 to be loose enough to guarantee that those surfels
belonging to the same surface are joined. However, this
may lead to region under-segmentation; (ii) buildings have
flat or quadric surfaces with much less degrees of freedom
compared to a connected-component region. Enforcing a
parametric model globally is desirable because it improves
the stability of the surface parameter estimates and can mit-
igate the under-segmentation occurring.

We will assume in the following that buildings have
flat (planar) roofs. A second-order model (quadric) can
be used in the same framework to model vaults. Let Ri,
i = 1, . . . , N be the coarse regions produced in Section 4.
For clarity of presentation we will drop in the following the
region index i. In each region R we will fit planar mod-
els robustly using MLESAC [20]. The number of planes
within R is unknown and has to be also estimated. Let
πj , j = 1, . . . , P denote the surfels from region R. We
sample without replacement a number B < P surfels from
the set {πj , j = 1, . . . , P} and obtain a set ∆ = {π∗

b , b =
1, . . . , B}. We apply the algorithm from Table 1 to segment
out a number of planar regions Π = {Π1, . . . ,ΠF }. The set
Π is refined using the expectation-maximization algorithm
from Table 2.

4.2. Building Segmentation Using BP
The points assigned to any of the planes from the set Π

are not guaranteed to form a contiguous region because lo-
cal neighborhood constraints were not taken into account
during the EM estimation. To enforce neighborhood con-
straints and ensure sharp boundaries between regions, we
will use a loopy belief propagation (BP) framework. BP
was used for solving computer vision problems with a for-
mulation similar to ours [17]. In stereo we need to assign
to each pixel in an image a label from a known set, cor-
responding to discrete depth levels, such that neighboring
pixels with same color are assigned same labels.

We project all coarse regions onto the ground plane XY
and extract neighborhood relationships between them. For
each region Ri, i = 1, . . . , N we determine all the regions
Rj that are within a distanceD = 5 m from Ri. The neigh-



Table 1. Planar segmentation algorithm using MLESAC.

1. Initialize the set Π = {} and the current set of mea-
surements U = {pu |pu ∈ R}. Let F = 1.

2. Calculate the MLESAC cost

L∗
b =

∑

pu∈U

d2(pu, π
∗
b ), π∗

b ∈ ∆, where (4)

d2(pu, π
∗
b ) = min

(

D2
max, |n

∗⊤
b (pu − o∗b)|

2
)

and Dmax is the inlier distance. We have used
Dmax = 3σν .

3. Select the hypothesis ΠF
def
= π∗

bF
∈ ∆ yielding the

smallest cost (4). Assign the points pu ∈ U to the
plane ΠF = (nF ,oF ) if |n⊤

F (pu − oF )| ≤ Dmax.
Remove the points assigned to plane ΠF from U .

4. Refine the plane hypothesis ΠF using the mea-
surements pu assigned to it. Insert ΠF to the set
Π. Remove from the hypothesis list ∆ all surfels
which are consistent with ΠF . Two planes (surfels)
π1 = (n1,o1) and π2 = (n2,o2) are considered
consistent when |n⊤

i (o1 − o2)| ≤ Dmax, i = 1, 2.

5. If the number of measurements in U , |U|, satisfies
|U| ≤ 3, or the number of hypotheses |∆| = 0,
STOP. Otherwise, set F = F + 1 and go to Step 2.

borhood relationships between regions form a graph. We
assume that the neighborhood relationships are transitive,
i.e. if Ri ↔ Rj and Rj ↔ Rk, we have Ri ↔ Rk. We
extract cliques of regions forming disjoint sets. Clique ex-
traction from graphs is an NP-complete problem so we use
a sub-optimal approach based on greedy assignment.

Denote by B, one of the cliques resulted. Because each
clique is independent of each other, the segmentation task
can be distributed to be processed in parallel. Let xBm, xBM ,
yBm, yBM be the bounding box of the regions in B projected
onto horizontal plane. We assign to B all the points pu hav-
ing the x and y components withing the bounding box of B.
Let fpu

be the label of pu, with fpu
6= 0, if it is assigned to a

plane region Πfpu
assigned to a region from B and fpu

= 0
otherwise.

We initialize a set Ψ = {Ψ1, . . . ,ΨJ} and Ψm = {pu ∈
B | ∀pv ∈ Ψm, ‖pu−pv‖ ≤ δ, fpu

= fpv
},m = 1, . . . , J ,

using greedy recursive grouping. This initial partition-
ing provides an estimate on the number of labels (regions)
within B. The choice of δ was discussed in (2). A point
pu ∈ B is assigned to at most one region Ψmpu

.

Define V ∈ R
nx×ny , nx =

⌈

(xBM − xBm)/vb

⌉

, ny =
⌈

(yBM − yBm))/vb

⌉

and assign all pu ∈ B to V. To simplify
notations we represent a cell Vi,j using one index, Vq . Due
to visibility constraints, all the points belonging to Vq will
share the same label with Vq .

Table 2. Top-down region refinement using the EM algorithm.

1. Initialize t = 0 and Π0
f = Πf , f = 1, . . . , F .

2. Expectation: For all pu ∈ R compute the proba-
bility (weight) of assigning pu to Πt

f = (nt
f ,o

t
f )

ξ(pu,Π
t
f ) =

[

1 −
( (pu − ot

f )⊤nt
f

Dmax

)2]2

,

if |(pu − ot
f )⊤nt

f | ≤ Dmax, and ξ(pu,Π
t
f ) = 0,

otherwise. As in Table 1, Dmax = 3σν .

3. Maximization: Reestimate the planes Πt+1
f , using

a close-form variant of the HEIV algorithm [12], in
which each constraint is weighted by ξ(pu,Π

t
f ). If

changes occur, set t = t+ 1 and go to Step 2.

4. Assign pu ∈ R to the plane Πt
f0

f0 = arg min
f=1,...,F

|(pu − ot
f )⊤nt

f |, (5)

if |(pu − ot
f0

)⊤nt
f0
| ≤ Dmax.

5. Repeat: merge any two planes Πt
f1

, Πt
f2

if

(βf1
− βf2

)⊤C
†
Πf1,2

(βf1
− βf2

) ≤ χ2
5,0.95,

where β⊤
fi

= [n⊤
fi
,o⊤fi

], CΠfi
∈ R

6×6,is the rank
five covariance matrix of the plane estimates Πt

fi
,

i = 1, 2, estimated as in [12], C
† is the pseudo-

inverse of C and χ2
p,1−α is a quantile of a χ2 dis-

tribution with p degrees of freedom and coverage
1 − α. Reestimate the merged plane and update
F = F − 1.

At Vq , we associate the belief vectorλq ∈ R
J containing

the probability that Vq belongs to each of the J regions. We
calculate the set of labels ζq = {mpu′

|mpu′
= 1, . . . , J},

|ζq| ≤ J of all the points pu′ within a small neighborhood
of pu having mpu′

6= 0.
At a cell Vq we compute the data term νq ∈ R

J

νq(m) =

{

exp
(

−
d2(p

u
,Πm)

2σ2
ν

)

, if d(pu,Πm) ≤ 3σν

exp(−9/2), otherwise
,

d(pu,Πm) = min
pu∈Vq

|(pu − om
p )⊤nm

p | .

We employ a Potts model to model the interaction between
4-connected neighboring cells cells Vq and Vr

ωq,r(mq,mr) =

{

Ppotts, if mq 6= mr

1, otherwise
, (6)

because it reduces the complexity of BP from quadratic to
linear [5]. We have used Ppotts = 0.01.



Figure 3. Example of rectilinear fit for a 2D closed contour.
We apply a max-product algorithm which maximizes the

joint probability of label assignment over all cells [2]. The
message from Vq to Vr is calculated as

ψt
q→r(m) = max (µq(m), a · Ppotts) , (7)

with µq = νq

∏

s∈N(q)\r ψ
t−1
s→q , a

def
= maxm µq(m) and

N(q) is the neighborhood of q. The belief at node Vq is

bq = νq

∏

s∈N(q)

ψT
s→q , (8)

where T is the last iteration of (7). The final label assigned
to Vq is mq = arg maxm=1,...,J bq(m).

5. Building Orientation Estimation
In this Section we describe a novel method for finding

the orientation of building segments which allows us to ini-
tialize the fitting of 3D polyhedral objects to the building
segments extracted. These 3D objects allow the render-
ing of the buildings using standard graphics languages such
as OpenGL and can be exported into Geographic Informa-
tion Systems (GIS) for further manipulation and refinement.
They can also be integrated with other mapping products,
such as road networks or utility maps. The extraction of 3D
models and their fitting is beyond the scope of the paper.

Most buildings have normals to their roofs very close to
the vertical direction Z, hence finding the orientation αz of
the building regions around theZ should be addressed first.
The orientations around the X and Y directions, αx, αy

can be easily determined from the knowledge of the normal
n to the surface region, if αz is known. We will discuss in
the following the estimation of αz for a building segment.

For each building segment R we compute the 3D bound-
ary (outline) using the ball pivoting algorithm [1] and
project it onto the horizontal plane. The outlines typically
have a significant quantization noise due to sparseness of
the data acquired from the air. Finding the orientation of
the contour by computing the maximum of the histogram of
local tangent directions to the curve as in [8] did not work
in our case because of the contour noise which renders the
local tangent estimates too noisy leading to orientation his-
tograms without any clearly defined peaks. Attempts based
on finding salient points on the contour using the adaptive
method of Fischler and Wolf [6] did not yield good results
either. The main shortcoming of local methods in estimat-
ing the global orientation of an outline is caused by the dif-
ficulty in finding an adaptive scale at each contour location,

(a) (b) (c) (d)

Figure 4. (a) We rotate a closed contour (outline) at orientations
sampled from 0

◦ to 90
◦ and fit rectilinear structures to each orien-

tation. (b), (c) Illustration of rectilinear fits depending on a specific
orientation. Note that in (b) the number of vertices required to ap-
proximate the curve is much smaller than in (c). (d) Chain code
utilized to represent the direction of an edge. In a rectilinear poly-
gon, the edges can have only directions encoded by even numbers.

which yields enough support to compensate for the noise,
yet is robust to big jumps in orientation.

To cope with the local contour noise we employ a rec-
tilinear polygon representation to a building outline, which
approximates well a large class of buildings encountered. A
rectilinear polygon has the angle between any consecutive
sides equal to ±90◦ and an even number of vertices. A rect-
angle, for example, is a particular case of rectilinear poly-
gon. The rectilinear polygons can approximate any closed
contour. An example of such fit is shown in Figure 3. The
2D orientation of any polygon can be uniquely specified by
an angle between 0◦ and 180◦. In the case of the rectilin-
ear polygon, due to the fact that the angles between any two
sides are a multiple of 90◦, the orientation of the rectilinear
shape can be specified uniquely using αz ∈ [0◦; 90◦]. The
rectilinear fit procedure is very simple and requires very lit-
tle computations. The points from the outline are assumed
ordered in a counter-clockwise order and can be quantized
in an image having length of the pixel wc. We select wc

based on the typical edge of a building. We have employed
wc = 5 m.

Based on the order of traversal of the contour points we
determine the pixel traversal order. We determine the upper-
left occupied contour pixel and begin to traverse the con-
tour, pixels however at every step we can move only along
the horizontal and vertical direction. To represent the direc-
tion of a side in the rectilinear polygon we employ the chain
code from Figure 4(d). Let (ik, jk) be the current pixel and
(ik+1, jk+1) the next pixel on the contour. The direction
γk+1 is found from the offset (ik+1−ik, jk+1−jk). If γk+1

is an even number we introduce a corner if γk+1 6= γk. If
γk+1 is an odd number we need to introduce an extra corner
and approximate the direction with two edges along the X
and Y directions.

From Figure 4 it can be seen that the number of ver-
tices in the rectilinear outline approximation varies signifi-
cantly with the change in orientation. Similar to the Mini-
mum Description Length (MDL) criterion we seek to min-
imize the number of vertices in the rectilinear representa-
tion of the curve. For each angle αk sampled uniformly



Figure 5. (Top) Example of rectilinear fits for several contours.
Contours are represented by continuous lines. The rectilinear fits
are represented by curves with ’+’ markers. (Bottom left) Pro-
posed log-likelihood dependency on the orientation for contour
422 from (a). (Bottom right) Same as (Bottom left), but for con-
tour 423. There is a higher degree of uncertainty resulting in mul-
tiple peaks denoted by circles caused by the smaller outline and
the more complex outline.

from 0◦ to 90◦ we fit a rectilinear polygon and retain the
number of vertices Λαk

. We compute the log-likelihood
log(L(αk)) = Λ − Λαk

, where Λ = maxαk
Λαk

, thus we
seek to find the angleαk which maximizes log(L(αk)). Ob-
serve in Figure 5 the discriminability yielded by the likeli-
hood method proposed.

In most urban layouts the buildings within a city block
have the same orientation (facing the street). To enforce this
constraint, we employ the cliques of neighboring buildings
extracted in Section 4.2. For each outline we extract the
modes of log-likelihood using mean-shift and retain only
the modes which have a likelihood ratio higher than 0.8
compared to the best peak. We determine the neighboring
outlines (regions) which have consistent orientation (i.e.,
they have peaks within 10◦ of each other). For all the neigh-
boring outlines with consistent orientation we add the indi-
vidual log-likelihoods and determine the angle correspond-
ing to the maximum. If α is the final angle estimate for a
contour, we compute the interval of the 2D projection of the
contour along the direction corresponding to α and α+90◦

and retain the angle leading to the largest interval.

6. Experimental Results
We have applied the building segmentation method pre-

sented in this paper to a very large number of data sets cov-
ering urban areas of hundreds of square kilometers with
various terrain and urban density. Typically, the regions
were very densely built with thousands of buildings per km2

and very little spatial separation between them. The LI-
DAR measurements from multiple views were registered to
a common coordinate system resulting in data with reso-
lution up to 1 point/m2. However, in areas of little over-
lap between views, the resolution can be worse than 0.25
points/m2. Together with LIDAR data we have available
2D imagery acquired at the same time with the LIDAR.
For each image we have available the intrinsic and extrinsic
parameters (rotation and translation) of the camera in the
global coordinate of the LIDAR. The extrinsic parameters
give only an initialization and have to be refined by image
to image and image to LIDAR alignment. We rely on SIFT
matching to align the 2D imagery with each other using an
affine model. The image to image 2D poses and image to
LIDAR 3D poses are fed into an optimization process simi-
lar to the local-to-global framework from [16]. After image
and LIDAR registration we ortho-rectify the input 2D im-
agery using the available LIDAR 3D data to render them
from nadir viewpoint.

We partition the 3D data into square tiles with 0.6 km
sides and to eliminate boundary effects we use a padding of
200 m around each side of the tile resulting in overlapping
tiles with 1 km edges, which are fed to the building seg-
mentation system. For all the experiments carried out we
have employed the same parameters, selected to ensure that
no buildings are missed at building segmentation stage. For
each tile, we follow the diagram from Figure 2 to first elimi-
nate the ground, then extract building segments and remove
clutter, and finally obtain the orientation for each contour.

A quantitative analysis of the building segmentation al-
gorithm is very hard over an extended area, due to difficul-
ties in extracting ground truth. We follow [14] to rely on
2D imagery in assessing the accuracy of the building seg-
ments proposed. We fit 3D objects which are water-tight to
each building segment extracted using the initialization of
the orientation obtained as in Section 5. The 3D objects are
texture-mapped using the ortho-rectified 2D imagery and
can be rendered in graphics hardware. The textured-mapped
3D objects are fed into a visualization system and the qual-
ity of the buildings assessed visually by comparing the con-
sistency of the 3D shapes with the edges of buildings in an
image.

We have run the proposed building segmentation on var-
ious data sets, with the largest one having 800 km2. The
algorithm was used without tuning parameters for each tile
processed. On average, we processed a tile in three minutes
per km2 tile using a 3.6 GHz CPU and 2 GBytes of RAM.
The texture mapping and additional model fitting (not dis-
cussed in the paper) required seven more minutes per km2

tile. Because the processing is highly parallelizable we have
employed several machines, requiring about two days to
produce 3D models for the whole area.

In Figure 6 we show the output of our building segmen-



tation method proposed over a 1 km2 tile. 3D objects were
extruded to the ground plane using the rectilinear fit cor-
responding to the orientation of the segment, estimated as
in Section 6. There is no texture on the sides because we
don’t have imagery collected from the ground to cover the
façades. In Figure 6, top we show the building segments,
each building being shown in a distinct color, while in the
middle and bottom we show the 3D texture objects cre-
ated together with the outlines. More detailed results can
be found in the supplemental material attached.
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Figure 6. Top: Building segmentation result for a 1 km2 area.
Each color denotes a distinct building. Middle: Visualization of
the building segments and their orientation using 3D models ob-
tained by extruding the rectilinear outlines corresponding to the
segment orientation to the ground and texture mapping them with
2D imagery, co-registered with the LIDAR. Rectilinear contours
are shown in black. Bottom: snapshot from a different viewpoint.
Rectilinear contours are shown in yellow.


