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Abstract

We propose a hybrid body representation that represents
each typical pose by both template-like view information
and part-based structural information. Specifically, each
body part as well as the whole body are represented by an
off-line learned shape model where both region-based and
edge-based priors are combined in a coupled shape repre-
sentation. Part-based spatial priors are represented by a
“star” graphical model. This hybrid body representation
can synergistically integrate pose recognition, localization
and segmentation into one computational flow. Moreover,
as an important step for feature extraction and model in-
ference, segmentation is involved in the low-level, mid-level
and high-level vision stages, where top-down prior knowl-
edge and bottom-up data processing is well integrated via
the proposed hybrid body representation.

1. Introduction

We consider pose recognition, localization and segmen-
tation of the whole body as well as body parts in a single im-
age. This research is a fundamental step toward video-based
human motion analysis that have been intensively studied
recently. Pose recognition, localization and segmentation
in a still image are challenging problems due to the vari-
ability of human body shapes and poses as well as the in-
herent ambiguity in the observed image. Our goal is to de-
velop a hybrid human representation and the correspond-
ing processing to assemble three tasks into one integrated
framework. We propose a hybrid body representation, as
shown in Fig. 1, where the four images show the input im-
age represented by watershed cells, the part-based body
representation, the online learned whole shape prior, and
the part/whole segmentation results respectively. Particu-
larly, the segmentation process that has been found useful
for object recognition and localization is involved for learn-
ing and inference in this work.

Figure 1. The input image represented by watershed cells, the part-
based body representation, the online learned whole shape prior,
and the part-whole segmentation results (from left to right).

The proposed research is deeply inspired and motivated
by shape representation theories in cognitive psychology
where there are two prevailing theories, i.e., the structural
description-based and the view-based representations [10].
The former one suggests that a complex object is repre-
sented by a collection of simpler elements with specific
inter-relationships. The latter one postulates a very simple
template-like representation in which an objects is holisti-
cally represented by a simple vector or matrix feature with-
out an intermediate representational step. Current cogni-
tive studies indicate that none of these two representation
schemes alone can provide a complete characterization of
the human vision system for object recognition [7].

Similarly, existing shape representations in computer vi-
sion can be roughly grouped into two categories. One is
template-like or silhouette-based methods, which are suit-
able for shape prior-based segmentation. The other is the
part-based methods, which can capture the intra-class vari-
ability. The main idea of our research is to integrate both
view-based and structural description-based models into
a hybrid body representation to support integrated pose
recognition, localization, and segmentation. Particularly,
it can facilitate shape prior guided segmentation, by which
bottom-up features can be extracted to drive the top-down
inference in a cascade fashion. Additionally, both off-
line and online learning are involved to learn general and
subject-specific knowledge respectively, including the col-
ors, shapes and spatial structure.
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2. Related work

Existing pose recognition, localization, and segmenta-
tion methods can be broadly grouped into three major cat-
egories according to the way how the body is represented:
the representation-free methods, the view-based methods,
and the structural descriptions-based methods.

The first category mainly contains some bottom-up ap-
proaches, in which there is no explicit shape prior represen-
tation, [15] and [19]. All the information used is a series of
region grouping rules established according to physical con-
straints such as the body part proximity. In general, these
approaches focus on exploiting bottom-up cues.

The second category includes all silhouette-based pose
analysis methods. In [1], a specific view-based approach
was proposed where pose information is implicitly embod-
ied into a classifier learned from SIFT-like features. In gen-
eral, no intermediate feature or color is used in these ap-
proaches. All view-based approaches normally aim at de-
tecting particular body pose without extracting body parts.
Thus it cannot recover anthropometric information.

The pictorial structure model proposed [5] is a typical
approach belonging to the third category, in which the hu-
man body is described by several parts with their appear-
ances and spatial relationships. This kind of approach usu-
ally requires a robust part detector. The edge histogram [3]
and other SIFT-like features are widely used to represent
parts. Very recently, a region-based deformable model is
used to represent parts [17] where segmentation was used to
verify the object hypothesis. The method in [17] is similar
in spirit to the part-level inference proposed here. However,
in our approach, where an image is represented by small
building blocks (watershed cells), the coupled shape model
is involved in a hypothesis-and-test paradigm where the re-
gion prior forms a segmentation given a position hypothesis
and the edge prior evaluates the formed segmentation.

As the name suggests, the hybrid human body represen-
tation proposed here absorbs recent multifaceted advances
in the field. The proposed representation involves shape
prior guided segmentation and inference in a multi-stage
fashion. Unlike previous methods, we use segmentation
to extract bottom-up features to drive the top-down infer-
ence. Our contributions in this work include: (1) a hybrid
human body representation that supports the online color
model learning and involves an online learned deformable
shape model to segment the whole body and parts, (2) an
effective hypothesis-and-test paradigm for the part-level in-
ference that involves the coupled region-edge shape priors,
(3) a three-stage cascade computational flow to integrate
pose recognition, localization and segmentation into a “bio-
logically plausible” framework, and (4) a new watershed-
based Graphic-cut segmentation where both region and
edge shape priors are used for optimal segmentation.

3. Overview of our approach

The proposed hybrid body representation synergistically
integrates pose recognition, localization and segmentation
of the whole body as well as body parts in an image, as
shown in Fig. 2. Several key issues are addressed.
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Figure 2. Overview of our approach.

Off-line and online learning: Off-line and online learn-
ing are used to obtain both general and subject-specific in-
formation, respectively. The former one acquires the gen-
eral shape and spatial priors for both body parts and the
whole body, and the latter one captures the subject specific
information, including colors and shapes.

Part-whole organization: Parts and the whole are two
complementary components for object representation. The
part-level inference produces the map images that are as-
sembled to localize the whole body as well as body parts.

Coupled region-edge shape model: The coupled
region-edge shape representation supports a hypothesis-
and-test paradigm, where the region-based prior is used to
form a segmentation and the edge-based prior is used to
evaluate the formed segmentation. After the online learning
of the whole body, both priors are used in a new Graph-cut
segmentation framework for an optimal segmentation.

Integration of bottom-up and top-down: Both the
data-driven bottom-up and knowledge-driven top-down
flows are integrated at low-level vision (watershed seg-
mentation), mid-level (part-level inference/segmentation)
and high-level (whole-level inference/segmentation). Po-
tentially, this work can lead to a dynamic computational
framework by incorporating two feedback flows (from high-
level vision to mid-level and low-level vision).



4. Hybrid human body representation

Consider a walking cycle with K typical poses W =
{W (k)|k = 1, ...,K}, We model each pose W (k) by
both part-based and whole-based statistical representations
W (k) = {V (k)

1:d ,L(k), SW
(k)
off}, where V

(k)
1:d are shape pri-

ors of d part, L(k) is a set of statistical parameters that en-
code the spatial relationships between parts in a star graphi-
cal model, and SW

(k)
off is the off-line learned shape prior of

the whole body. The shape prior of each part V
(k)
i is rep-

resented by the region-based shape prior SP
(k)
i , the edge-

based shape prior M(k)
i , and the average orientation θ̄

(k)
i ,

i.e., V
(k)
i = {SP

(k)
i ,M(k)

i , θ̄
(k)
i }. Moreover, during the

inference processes, the part-based and whole-based color
models as well as the subject specific whole shape model
will be online learned as part of the hybrid body represen-
tation. For clearness, we may omit the pose index (k), in
some places below.

4.1. Part-based shape prior

Inspired by the MetaMorphs model in [9], we develop
an implicit shape model for each part where both region-
based and edge-based shape priors are holistically repre-
sented. The learning process is similar to the one in [13].

Figure 3. The top row shows the training images without align-
ment. The bottom row show the aligned training images, the
learned shape prior, and the extracted edge-based shape prior.

For each part, we have obtained a set of training images
(pre-segmented binary images with a fixed window size and
the measured orientation). Let θ̄i be the average orientation
of part Vi. All training images have been aligned to the
average orientation first. Let {Ωi(p)|j = 1, ..., Q} denote
the aligned training images, where p = (x, y) is the loca-
tion of one pixel in the window where the shape prior is
defined. The shape prior SPi(p) can be obtained by adding
all aligned training images as shown in Fig. 3,

SPi(p) =
1
Q

Q∑
j=1

Ωi(p).

SPi(p) and 1−SPi(p) reflect the the probability of pixel p

belonging to the object and background respectively. Given
a threshold ε, an average object boundary Mi can be ex-
tracted from the learned region-based shape prior SPi(p)
by a level-set like method,

Mi = {p|SPi(p) = ε}. (1)

Since both the region-based and edge-based priors are
embedded in Vi, the two priors can be learned simultane-
ously in the training process. More importantly, this cou-
pled representation allows a hypothesis-and-test paradigm
for the inference at the part-level where the region prior in-
duces a segmentation given a position hypothesis and the
edge prior is used to validate the segmentation, resulting
part-based possibility maps for whole-based inference.

4.2. Part-based spatial prior

We use the spatial prior model proposed in [3] to charac-
terize the variability of spatial configuration of body parts.
For pose k, we define the part-based spatial prior by a start
graphical model as shown in the second figure of Fig. 1 that
is parameterized by L(k) = {µ(k)

i ,Σ(k)
i |i = 1, ...., d, i �=

r}. Specifically, {µ(k)
i ,Σ(k)

i |i �= r} denote the Gaussian
priors for the relative locations between the non-reference
part i and the reference part r. These statistical parameters
can be obtained by a maximum-likelihood estimator (MLE)
from labeled training data. Given a particular spatial config-
uration of d parts, L = (l1, ..., ld), the joint distribution of d
parts with respect to pose k can be written as the following:

pL(k)(L) = pL(k)(l1, ..., ld) = pL(k)(lr)
∏
i�=r

pL(k)(li|lr).

(2)
The same as in [3], we assume that pL(k)(L) is Gaus-

sian. Therefore, the conditional distribution pL(k)(li|lr) is
still Gaussian. As defined above, µ(k)

i and Σ(k)
i are the mean

and covariance for the spatial distribution (relative) of part
i in pose k. Then, for each non-reference part i, the con-
ditional distribution of its position with respect to pose k is
defined below,

pL(k)(li|lr) = N (li − lr|µ(k)
i ,Σ(k)

i ). (3)

4.3. Whole body shape prior

For each pose, a whole body shape prior is needed for
body segmentation after pose recognition and localization.
Both off-line and online learning are involved for generating
shape models that capture the general representation as well
as the subject specific information, as shown in Fig. 4.

4.3.1 Off-line learning

The off-line learning is similar to that of parts, except that a
part-based alignment is needed due to the spatial variability
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Figure 4. The learning of the whole body shape prior.

of each pose. For each pose, we can compute the average lo-
cation and orientation for all parts. For each training image
with a segmented body and parts, we want to find a set of
control points based on which the training image can be de-
formed in a way that all parts are transformed to the average
location and orientation. To preserve the shape information
of parts, we will use the edge points of all parts to be con-
trol points which can be transformed to a target image via
2-D rigid transformations obtained from the averaged loca-
tions and orientations. After we get control points in both
source and target images, the multilevel B-spline method
[11] is used to obtain non-linear transformations by which
all pixels in the source image are mapped to the target im-
age. Small holes can be filled by simple morphological op-
erations. These aligned biliary images are used construct a
whole body shape prior, i.e., SWoff (p).

4.3.2 Online learning

The online learning is used to create a subject specific shape
model SWon(p) after all parts are localized. The goal is to
deform SWoff (p) in a way that the locations of all detected
parts are reflected in the shape prior. The similar technique
described above for off-line learning is used here to find
the non-linear transformation functions for every pixel in
SWoff (p) by which SWoff (p) is converted to SWon(p)
that carries a subject specific shape model. It is worth noting
that both SWoff (p) and SWon(p) are not binary images.
Appropriate interpolation is needed to fill the possible holes
in SWon(p) during the deformation process.

5. Low-level vision: watershed transform

Grouping pixels into small homogenous regions is be-
coming a popular pre-processing for many computer vision
tasks. This is well supported by the cognitive theory pro-
posed by [16] that considers uniform connectedness (UC)
regions as the building block for object representation. In
this work, we chose the watershed transform [20] because
of its many “biologically plausible” properties, such as fast,
local computation. More importantly, both boundary and

regional information are available for each cell. To over-
come the over-segmentation problem, the geodesic recon-
struction preprocessing [14] is used to control the watershed
size through some morphological parameters, which can be
dynamically adjusted according to the feedback from the
high-level vision (as shown in Fig. 2).

A given an image I , is represented by Z watershed cells
I = {Ci|i = 1, 2, ..., Z}. Each cell consists of a set of
pixels Ci = {p(i)

1 , p
(i)
2 , ..., p

(i)
ηi }, where ηi is the number of

pixels. Moreover, we use a 3-D Gaussian model {µ(c)
i ,Σ(c)

i }
to represent the color distribution in the L∗a∗b color space
for cell Ci. The watershed cells are used as the building
blocks in the following processes.

6. Mid-level vision: part-based inference

The goal of the mid-level vision is to generate immediate
part detection results that will be useful for the high-level vi-
sion. What we need here is a map image that indicates how
likely there is an object (i.e., a body part) at each location.
Recently, the idea of using segmentation to verify object hy-
potheses has achieved remarkable success in object detec-
tion [18, 12]. We hereby propose a new hypotheses-and-test
paradigm, as shown in Fig. 5, where the region-based shape
prior is used to form a segmentation for a given position hy-
pothesis and the edge-based shape prior is used to validate
the formed segmentation.
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Figure 5. The hypothesis-and-test paradigm for part inference.

6.1. Hypothesis step: region-based segmentation

Given the shape prior SPi(p) p ∈ Ω for part i where Ω is
a rectangular window, we can use Ω as a sliding-window to
scan through the whole image to examine the existence of
part i at each location. For a hypothesized location, we use
SPi(p) to induce a local figure-ground segmentation that is
composed by some watershed cells covered by Ω. This seg-
mentation will be used to validate the existence of part i at
that location. In order to take advantage of watershed cells



and their color models, we propose a new semi-parametric
kernel-based model learning techniques to online learn the
figure/ground color models from the watershed results di-
rectly, as shown in Fig. 6(a). We treat the Gaussian model
learned from a watershed cell as a kernel center, and learn
the figure/ground color models as follows,

f̂ob(x) =
Z∑

i=1,Ci∩ Ω �=∅
αiKi(x), (4)

f̂bg(x) =
Z∑

i=1,Ci∩ Ω �=∅
βiKi(x), (5)

where x is a color vector; Ci is one of Z watershed cells
that has overlap with window Ω; Ki(x) = N (x|µ(c)

i ,Σ(c)
i )

is the color model associated with Ci; αi and βi denote the
contribution of cell Ci to the object and background respec-
tively that can be calculated from SPi(p), (p ∈ Ω) as

αi =
1
T

∑
p∈(Ci∩Ω)

SP (p), (6)

βi =
1
T

∑
p∈(Ci∩Ω)

(1 − SP (p)), (7)

where T is the size of shape prior window Ω. Based on
the figure/ground color models, we can use the maximum
a posterior (MAP) criterion to identify the watershed cells
that belong to the object. Let τi be the class label for Ci:

τi =

{
1 (object), αif̂ob(µ

(c)
i ) > βif̂bg(µ

(c)
i );

0 (background), αif̂ob(µ
(c)
i ) < βif̂bg(µ

(c)
i ).

(8)
Therefore, we can obtain the corresponding segmenta-

tion for the position hypothesis li as, X = {
⋃
Ci|τi = 1}.

Different from the one in [18] where the shape prior is used
once for online color model learning, here we use the shape-
based prior twice. The first time is for the online color
model learning and the second time is for MAP-based seg-
mentation. Considering the false negative is more detrimen-
tal than the false positive in mid-level vision, we fully incor-
porate the region-base shape prior into segmentation. This
may lead to more false positives due to more object-like
segmentations. However, the sequent edge-based evalua-
tion will mitigate this problem.

6.2. Test step: edge-based evaluation

After segmentation X is formed, we evaluate it accord-
ing to the edge prior M. Let Γ(X) to be the boundary of X ,
we compare Γ(X) with M in terms of shape similarity and
smoothness. The score of X with respect to its compliance
with M, i.e., ρM(X) is given by,

ρM(X) = exp(−dc(Γ(X),M)) + ζ(1 − S(Γ(X),M)),
(9)

Figure 6. (a) Kernel-based color model learning using the region-
based priors and watershed cells.(b) Smoothness measurement.

where the first term is the chamfer distance indicating the
shape similarity; the second term measures the boundary
smoothness; and ζ balances the relative importance between
the two terms. It is expected that a valid segmentation
should be smooth and match with M well. The chamfer
distance is sensitive to the transition, rotation and scale.
This is desired for rejecting false hypotheses. The second
term aims to reject segmentations with ragged boundaries.
We define an effective smoothness measurement as follows.

As shown in Fig. 6(b), assume that Γ(X) touches n cells
{C1, ..., Cn}, and we define Hi = {h(i)

1 , ..., h
(i)
ni } to be the

set of ni boundary pixels shared by cell Ci and Γ(X). Let
φM(p) : R2 → R to be the signed Euclidian distance trans-
form that is “+” or “-” for p inside or outside M, respec-
tively. The maximum and minimum distances from Hi to
M are obtained by d

(i)
max = max(φM(h(i)

1 ), ..., φM(h(i)
ni )),

and d
(i)
min = min(φM(h(i)

1 ), ..., φM(h(i)
m )), respectively.

The degree of parallelness between Γ(X) and Hi is mea-
sured by

SM(Hi) =
d
(i)
max − d

(i)
min

ni
. (10)

When Hi is parallel to M (e.g., H2 in Fig. 6(b)),
SM(Hi) ∼= 0, indicating good local smoothness. When Hi

is perpendicular to M (e.g., H3 in Fig. 6(b)), SM(Hi) ∼= 1,
indicating poor local smoothness. In general, the smaller
the value, the more parallel between Hi and Γ(X). There-
fore, we define the overall smoothness of Γ(X) as

S(Γ(X),M) =
1
n

n∑
i=1

SM(Hi). (11)

For each of d parts of pose k, the score function (9) will re-
turn a map image that records the existence possibility of a
part in every location and will be the input for the high-level
vision. It is worth noting that at each position hypothesis,
the shape prior is hypothesized with different orientations
around the mean angle, and we use the winner-take-all strat-
egy to generate the map image. The optimal angle at each
location is also recorded.



7. High-level vision: recognition/localization

We use g
(k)
i (I, li) to represent the map image for part i of

pose k in image I , and li denotes an arbitrary position. Let
I
(k)
maps = {g(k)

i (I, li), ..., g
(k)
d (I, ld)} denotes the set of d

map images, part localization and pose recognition are for-
mulated as an inference process guided by the spatial priors
of different poses represented by {L(k)|k = 1, ...,K}. Us-
ing Bayes law, the posterior distribution for pose k can be
written in terms of the map images I

(k)
maps and the spatial

prior defined in (2) as ,

pL(k)(L|I(k)
maps) ∝ pL(k)(I(k)

maps|L).pL(k)(L). (12)

Let PL(k)(I(k)
maps|L) =

∏i=d
i=1 g

(k)
i (I, li), by manipulating

the terms in (12), we have

pL(k)(L|I(k)
maps) ∝ pL(k)(lr)g(k)

r (I, lr)
∏
i�=r

pLk
(li|lr)g(k)

i (I, li).

(13)
Then pose recognition and part localization can be jointly
obtained by the following optimization:

{k∗, L∗} = arg max
k,L

pL(k)(L|I(k)
maps). (14)

However, the direct evaluation of (14) is computationally
prohibitive. We use the efficient inference engine proposed
in [3] to obtain the solution here. For any non-reference part
i of pose k, the quality of an optimal location can be,

ε∗k,i(lr) = max
li

pL(k)(li|lr)g(k)
i (I, li). (15)

Given pL(k)(li|lr) is Gaussian, ε∗i,k(lr) can be computed
by the generalized distance transform. Then, the posterior
probability of an optimal configuration for pose k can be
expressed in terms of the reference location lr and ε∗i . Then
the posterior probability in (13) will become,

pLk
(L|I(k)

maps) ∝ pLk
(lr)g(k)

r (I, lr)
∏
i�=r

ε∗k,i(lr), (16)

which will lead to a new map image Gk(I, lr) that indicates
how likely the reference part of pose k is in each location.
This new map image Gk(I, lr) is the pooling results of all
the map images in I

(k)
maps via the spatial prior model of pose

k, i.e., L(k). Therefore, pose recognition and reference part
localization can be efficiently implemented by

{k∗, l∗r} = arg max
k,lr

Gk=1:K(I, lr). (17)

After the reference part is located, the position of each non-
reference part can be obtained by

l∗i = arg max
li

p(li|l∗r)g(k∗)
i (I, li). (18)

According to the maximum value of obtained Gk∗(I, l∗r),
we could design a feedback loop to adjust the size of water-
shed cells in low-level vision, as shown in Fig. 2.

8. Whole body Segmentation via Graph-cut

Recently, the graph-cut approach has achieved consid-
erable success in image segmentation. It has the capacity
to fuse both boundary and regional cues in an unified op-
timization framework [2]. Several existing methods, such
as [6], only incorporate a single shape prior (edge-based or
region-based) into the segmentation process. Our contribu-
tion here is to combine two shape priors into segmentation
where the image is represented by watershed cells.

After pose recognition and localization, online learned
whole body shape priors, SWL∗

on (p), ML∗
w and pose con-

figuration L∗ can be obtained. Given image I = {Ci|i =
1, ..., Z}, τ = {τi|i = 1, ..., Z} denotes the set of binary
class labels for all watershed cells (τi = 0: background and
τi = 1: object). Following the segmentation energy defini-
tion from [2]

E(τ) = λ.

Z∑
i=1

R(τi) +
∑

Ci

⋂ Cj �=∅
E(Hi,j)δ(τi, τj), (19)

where R(τi) is the regional term, which relates to the pos-
teriori probability of Ci belonging to class τi; E(Hi,j) is
the boundary term, which represents the consistence be-
tween the edge-based shape prior ML∗

w and local boundary
formed by two cells, Hi,j = Ci

⋂
Cj ; δ(τi, τj) = 1 when

τi �= τj otherwise δ(τi, τj) = 0; λ specifies a relative im-
portance between two terms.

The calculation of R(τi) involves online learning of fig-
ure/ground color models where region-based shape prior
SWL∗

on (p) is involved for kernel-based density estimation,
as discussed in Section 6.1. Let f̂

(w)
ob (x) and f̂

(w)
bg (x) be the

figure/ground color models, and α
(w)
i and β

(w)
i are com-

puted from SWon(p) that denote the prior probabilities of
Ci belonging to the object and background respectively.
Therefore, R(τi) is defined as

R(τi = 1) = − ln α
(w)
i f̂

(w)
ob (µ(c)

i ), (20)

R(τi = 0) = − ln β
(w)
i f̂

(w)
bg (µ(c)

i ), (21)

where µ
(c)
i is the mean color vector of Ci. Using the same

idea of edge-based shape evaluation defined in (9), let X =
Hi,j , and we can define E(Hi,j) = ρM(X), which eval-
uates the consistence between Hi,j and edge-based shape
prior ML∗

w in terms of the degree of parallelness and the
shape similarity.

In a similar way, all body parts can also be segmented.
Moreover, the segmentation in the high-level vision stage
will help us extract more useful features to prune possible
false positives. For example, false positives can be identi-
fied by checking the color similarity between the two arms
or legs. The feedback loop from segmentation to localiza-
tion (as shown in in Fig. 2) makes our framework a dynamic
system that has potential to be further optimized.



9. Experimental results

Here we validate the effectiveness of the proposed ap-
proach on the CMU Mobo database [8], which contains im-
ages of 25 individuals walking on a treadmill. Each image
is down-sampled to the size of 240 × 320 pixels, and each
body part is defined in a window of 61 × 61 pixels. For
each pose, there are totally six parts (the head, torso, left-
arm, right-arm, left-leg, and right-leg), and 200 manually
segmented binary images are used for the off-line learning
of part-based and whole body shape priors. The algorithm
was programmed in C++, and the test platform is Pentium
4 3.2GHz and 1GB RAM.

Totally, the experimental results are reported for three
tasks, pose recognition, body/parts localization, and body
segmentation. The main competing algorithms are the 1-
fan method in [3] for the first two tasks and the graphic-
cut algorithm defined in (19) for the last task. Although
our approach is a dynamic process with potential for further
optimization, we have fixed the watershed transform in all
experiments (without the feedback from high-level vision to
fine tune the watershed transform as shown in Fig. 2).

ContactRecoilPassingHigh-point
Figure 7. Pose definitions [4].

9.1. Pose recognition

In a walking cycle, the human pose is a continuous time-
varying variable. According to [4], a complete walking cy-
cle can be defined by eight poses that are further grouped
into four poses due to the symmetric property. They are
Contact, Recoil, Passing and High-point, as shown in Fig. 7.
In our experiments, we combine poses Recoil and Con-
tact together due to their strong similarity. For each of
the three poses, the torso is used as the reference part, and
230 labeled training data are collected for learning the part-
based spatial prior. It was found that the proposed approach
achieves the recognition rate of 98% for the three poses over
144 test images from 21 persons. The mis-classification
only occurs for pose passing that sometimes is very simi-
lar to other two poses. One possible way to improve the
recognition for this pose is to incorporate the motion infor-
mation from video sequences. The “1-fan” method in [3]
achieved the recognition rate of 93%.

9.2. Localization

Based on the same test images used for pose recogni-
tion, we have tested two methods on the localization of three
poses, i.e., High-point (H-point), Contact and Passing. Ta-
ble 1 compares the proposed method with the 1-fan method
in terms of localization error in pixel for six body parts. It is
shown that the results on localizing the head and torso are
comparable for the two methods, and our approach shows
significant advantages on localizing other body parts.

Table 1. The comparison of localization errors (in pixel) between
the two methods with respect to three poses.

Poses Methods Head Torso Larm Rarm Lleg Rleg
H-point 1-fan 6.7 7.9 10.7 13 16.4 15.4

hybrid 6.2 6.2 6.4 9.2 6.2 9.3
Contact 1-fan 3.4 6.4 13.9 10.4 8.7 10

hybrid 5.4 5.6 11.8 9.6 3.8 4.4
Passing 1-fan 5.6 6.2 11.9 9.8 13.1 12.9

hybrid 6.2 6.3 11.2 7.1 4.5 3.2

The reasons for above observations is that the relative po-
sition between the head and torso has least variability, and
the part-based spatial prior that is shared by the two meth-
ods plays the major role for part localization, leading to the
similar results. However, there is drastic (relative) spatial
variability, both positional and orientational, for the arms
and legs, and the improvements from the proposed method
are much more significant due to the enhanced saliency of
the part-based map images generated by the segmentation-
based hypothesis-and-test paradigm. Some part localization
results of three poses are shown in Fig. 8 (the first three
rows), where the proposed method successfully detects (and
segments) all body parts despite the significant variability.

Figure 8. Part localization of three poses and online learned whole
body shape models that are used for the whole body segmentation.



9.3. Segmentation

After localization, an online learned subject specific
shape prior (as shown in the last row of Fig. 8) is used in
the new Graph-cut algorithm where both region and edge
priors are involved in the energy function defined in (19).
For comparison,the second term of the energy function de-
fined in (19) is replaced by a standard color similarity-based
boundary penalty term [2] without using the edge-based
shape prior. Currently, we only performed Graph-cut seg-
mentation on pose Contact due to its least occlusion. By
setting λ = 1/30 in (19) and using 60 test images, segmen-
tation results are evaluated by the ratio between the falsely
detected region size (including both false positives and false
negatives) and the ground truth region size. The error rate of
the segmentation using both region-based and edge-based
priors is 17.2%, while that of the one without using the
edge-based shape prior is 38.1%. Therefore, we have ob-
tained more than 50% improvement.

10. Discussion and Conclusion

In this paper, we have proposed a hybrid body represen-
tation that supports an integrated pose recognition, local-
ization and segmentation framework. Particularly, segmen-
tation, as a bridge between bottom-up cues and top-down
knowledge, plays an important role in all three levels of vi-
sion. In our experiment, when the number of poses goes up,
the performance of pose recognition will deteriorate due to
the overlap between adjacent poses. However, the perfor-
mance of body/part localization and segmentation is quite
stable and is less sensitive to the error of pose recognition.
We also found that the proposed approach is very robust to
the occlusion of one body part. More experiments need to
be done to test its robustness for multiple occluded parts.
The proposed framework has potential to be a dynamic sys-
tem with the feedback loops that can be used for further
optimization. In principle, this approach is applicable to
any articulated object that has well defined spatial configu-
rations and can be decomposed into different parts that have
little shape variability. Our future research will focus on ex-
tending the proposed body representation to be a dynamic
human body representation that supports video-based pose
recognition, localization, tracking and segmentation.
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