
Image Segmentation via Convolution of a Level-Set Function with a Rigaut Kernel∗
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Abstract

Image segmentation is a fundamental task in Computer

Vision and there are numerous algorithms that have been

successfully applied in various domains. There are still

plenty of challenges to be met with. In this paper, we con-

sider one such challenge, that of achieving segmentation

while preserving complicated and detailed features present

in the image, be it a gray level or a textured image. We

present a novel approach that does not make use of any

prior information about the objects in the image being seg-

mented. Segmentation is achieved using local orientation

information, which is obtained via the application of a

steerable Gabor filter bank, in a statistical framework. This

information is used to construct a spatially varying kernel

called the Rigaut Kernel, which is then convolved with the

signed distance function of an evolving contour (placed in

the image) to achieve segmentation. We present numerous

experimental results on real images, including a quantita-

tive evaluation. Superior performance of our technique is

depicted via comparison to the state-of-the-art algorithms

in literature.

1. Introduction

Image segmentation techniques exploit several features

present in the images while trying to achieve their goal. This

area of research has a long history spanning the past several

decades. Variational formulation of this problem was pop-

ularized by Kass et al., [7] in their seminal work on the so

called snakes a.k.a. active contour models. A region-based

variational formulation of this problem was proposed earlier

by Mumford and Shah [17] and later popularized by Tsai et

al. in an active contour framework [23]. The snakes model

that constitutes a closed curve expressed as an arbitrarily
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parameterized curve was primarily designed as an interac-

tive segmentation model and proved to be quite useful and

general in this context. An alternative model called the geo-

metric active contour in a level set framework was then pro-

posed in the pioneering works of Malladi et al. [12, 13, 14]

and Caselles et al. [1]. This model involved a closed curve

represented in an implicit form that allowed for ease in

modeling shapes with arbitrary unknown topologies. Fol-

lowing this, a variational formulation of the geometric ac-

tive contour model called the geodesic snakes, was inde-

pendently introduced by Caselles et al. [2] and Kichenas-

samy et al. [8]. Over the past decade and a half, there have

been several approaches to segmentation some of which are

improvements over the geodesic active contours as well as

the traditional snakes and some others that are graph-based

global optimization approaches. For more on variational

formulations of the image segmentation problem that led to

improvements of the original proposals of the active con-

tour model and also for graph-based techniques, we refer

the reader to [18].

Despite the extensive activity in the computer vision

community and the “success” of the aforementioned tech-

niques, segmentation that preserves complex local details

has been an elusive goal to achieve. The key innovation

in this paper is the presentation of an adaptive, convolu-

tion based approach for segmentation which preserves the

complicated geometries of the boundaries of objects in real

scenes without using any prior information. We compare

our method with a state-of-the-art graph theoretic approach

presented recently by Schoenemann and Cremers [21].

They proposed an energy minimization framework which

employs curvature constraints in a graph-theoretic formu-

lation involving minimum ratio cycles on product graphs.

In the context of segmenting textured scenes, we compare

our technique with the prominent approach of Rousson et

al., who presented a variational formulation in a level-set

framework, that incorporates a set of features obtained from

the structure tensor [20]. The main limitation of their

method is that it is restricted to a 2-class segmentation prob-
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lem. In contrast our method does not have such restrictions.

Furthermore, to the best of our knowledge, this is the first

time that a convolution based approach is being employed

for feature preserving segmentation.

The proposed method consists of two stages, first of

which includes the extraction of local orientation informa-

tion. This information can be obtained via the application

of Gabor filters. However, one of the key drawbacks of Ga-

bor representations is the size of the filter bank one needs

in order to acquire useful information. This drawback may

be overcome by using steerable filters. Recently Kalliomaki

and Lampinen [6] presented approximate steerability of Ga-

bor filters in 2D for pattern recognition purposes. 3D steer-

able Gabor filters were formulated in [22]. Here we employ

them to extract orientation information required in the first

stage of the proposed approach.

The orientation distribution at each lattice point is then

represented by a continuous mixture of oriented Gaussians.

Continuous mixture is preferred here over the finite mixture

model because one need not specify the number of compo-

nents in the mixture explicitly. For more details see [5, 22].

The continuous mixture representation is cast as the Laplace

transform of the mixing density over the space of covari-

ance (positive definite) matrices. This mixing density is as-

sumed to be in a parameterized form, namely, a mixture

of Wisharts, whose Laplace transform evaluates to a closed

form expression called the Rigaut type function, a scalar-

valued function of the parameters of the Wishart distribu-

tion. The weights in the mixture are then computed using a

sparse de-convolution technique. The second stage involves

iterative local convolution of the signed distance function of

an evolving contour placed in the image with the aforemen-

tioned kernel function, in a narrow banding algorithm [14].

The remainder of this paper is organized as follows: We

briefly expand on the steerable Gabor filters and Rigaut ker-

nel in Section 2. Sufficient description of the level set func-

tion is also provided in this section. Then, in Section 3, we

present the experimental results along with the quantitative

evaluation depicting the merits of the proposed formulation.

Lastly, in Section 4 we summarize our contributions.

2. Methodology

2.1. Local Orientation Representation and the
Rigaut Kernel

In order to achieve feature (corners and junctions) pre-

serving segmentation, we exploit the local orientation infor-

mation obtained by Gabor filtering the images. The main

advantage of these filters due to their Gaussian envelopes

is that they achieve the minimum space-frequency product

specified in the uncertainty principle. So they are optimal

in terms of space-frequency localization. Additionally, they

exhibit the flexibility of being tunable to any frequency or

orientation and they can form a relatively good approxima-

tion of a wavelet frame. Such tuning is particularly useful

in capturing any locally predominant orientations present

in an image. The complex oriented Gabor filter with a

non-spherical Gaussian envelope function has the following

generic form:

G(ξ; ̟,Σ,Rν) = (1)

1

2π
√

|Σ|
exp

(

−
1

2
(Rν

Tξ)TΣ
−1

Rν
Tξ

)

exp(i̟Rν
T ξ)

where ξ is the spatial coordinate vector, ̟ is the center

frequency of the filter, Σ is a diagonal covariance matrix

which determine the frequency bandwidths along the axes

in Cartesian coordinates and Rν is a rotation matrix whose

first column is a unit vector ν. Note that the resulting fil-

ter has a constant template ellipsoid determined by Σ and

is oriented along the orientation determined by ν. To ana-

lyze orientations in regions with one or more orientations,

we use the steerable Gabor filters. Steerable Gabor filters

have been studied extensively in [6, 22].

In order to represent the local image structure, we postu-

late that at each lattice point there is an underlying probabil-

ity measure associated with the manifold of n×n symmetric

positive-definite matrices, Pn. Let f(K) be its density func-

tion with respect to some carrier measure dK on Pn. (This

model has been presented in the context of the diffusion-

weighted MR signal attenuation by Jian and Vemuri in [3]

and later used in the context of image smoothing by Sub-

akan et al. in [22].) We propose to model the orientation

distribution by a continuous mixture of Gaussian functions:

G(ξ; g)/G0 =

∫

Pn

f(K) exp[−gT
Kg] dK , (2)

where ξ encodes the coordinates, G(ξ; g) is the response of

the Gabor filter with an orientation determined by g a unit

direction vector, G0 denotes the maximal filter response.

So, Eq. (2) is a continuous mixture of Gaussian functions

with f(K) being a mixing density. This integral can be rec-

ognized as the Laplace transform (matrix variable case) of

f [16]:

G(ξ; g)/G0 =

∫

Pn

exp(−trace(BK)) f(K)dK = (Lf )(B) ,

(3)

where Lf denotes the Laplace transform of a function f
which takes its argument as symmetric positive definite ma-

trices from Pn, and B = ggT . In this expression, we

are faced with the problem of recovering a distribution de-

fined on Pn that best explains the observed orientation data

G(ξ; g). This is an ill-posed inverse problem. In general

it is intractable without prior knowledge of the mixing den-

sity. A Bayesian interpretation may be given to this esti-

mation problem by considering the orientation tensor as a
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Figure 1. (a) Synthetic images with different orientations (b) Local

orientation information at the bifurcation point (c) Rigaut kernel

components at the bifurcation point

matrix-valued random variable with a known prior, which

allows us to model the uncertainty in the orientation tensor

estimation. One can interpret the orientation tensor K as

the concentration matrix (inverse of the covariance matrix)

of the Gaussian distribution in the g-space. We impose a

Wishart (see definition below) prior on this concentration

matrix as is common in multivariate statistics [] and another

reason for this choice being, computational advantage ac-

crued from the fact that the integral can be solved in closed

form.

Definition 1 [11] For Σ ∈ Pn and for p in
(

n−1
2 ,∞

)

, the

Wishart distribution γp,Σ with scale parameter Σ and shape

parameter p is defined as

dγp,Σ(Y) = Γn(p)−1 |Y|p−(n+1)/2 |Σ|−p e−trace(Σ−1
Y) dY,

(4)

where Γn is the multivariate gamma function and | · | is the

matrix determinant.

This distribution possesses a closed form expression for

the Laplace transform, called the Rigaut-type function [19]

given by:

G(ξ; g) = G0 (1 + (gT Σg))−p . (5)

where Σ is the scale parameter of the Wishart distribution.

Since the Wishart distribution is a single mode distribution,

it cannot resolve the orientational heterogeneity. Hence,

it is natural to use a discrete mixture of Wishart distribu-

tions for the mixing density in Eq.(3), which is then ex-

pressed as dF =
∑N

i=1 widγpi,Σi
. Note that the number

of components in mixture, N , only depends on the dis-

cretization resolution and should not be interpreted as the

expected number of bifurcations characterizing the local

structure. In order to estimate the numerical scale of the

eigenvalues of Σi, we first assume a single Gaussian model

G(ξ; g)/G0 = exp[−gT Σg] and then solve for Σ using

linear regression. The trace of the resulting Σ is used as

a good estimation for the trace of Σi. In practice, we fix

the ratio between the larger and the smaller eigenvalues.

Hence, the eigenvalues of Σi can be determined on a pixel

by pixel basis. Furthermore, this rotational symmetry leads

to a tessellation where N unit vectors evenly distributed on

the unit sphere are chosen as the principal eigenvectors of

Σi. For M measurements with gj , j = 1, 2, ..., M , the

mathematical model yields a linear system Aw = y, where

y = (G(ξ; g)/G0) contains the normalized measurements,

A is a M ×N matrix with Aji = (1+trace(BjΣi))
−p, and

w = (wi) is the weight vector to be estimated. This can

be cast as a sparse de-convolution problem formulated in a

general form as Aw = y + η, where η represents certain

noise model. We assume that the measurement errors η are

i.i.d. and normally distributed. Since the maximization of

the likelihood function under a conditional Gaussian noise

distribution for a linear model is equivalent to minimizing a

sum-of-squares error function, we use a non-negative least

squares (NNLS) minimization which achieves an accurate

and sparse solution for

min ‖Aw − y‖2 subject to w ≥ 0. (6)

Jian and Vemuri have shown that this de-convolution

method outperforms many other methods in achieving ac-

curacy and sparsity [4, 3]. After w is estimated for orienta-

tions, we locally convolve the signed distance function with

the spatially varying Rigaut kernel formulated as

R(x) =

∫

Pn

f(K) exp[−xT
Kx] dK , (7)

dF = f(K)dK is the mixing density described above, i.e.

dF =
∑N

i=1 widγpi,Σi
. Using Laplace transform of the

Wishart distribution, the Rigaut kernel is given as

R(x) =

N
∑

i=1

wi(1 + trace((xxT Σi)))
−p (8)

When p → ∞, this model reduces to a mixture of oriented

Gaussians with weight vector w. Also note that since the

weight vector w and the Σi’s change with regard to the local

orientation information, this formulation leads to spatially

varying segmentation kernels.

Figure 1 illustrates the Rigaut kernel on synthetic im-

ages with different orientations. The orientation informa-



tion obtained by steerable Gabor filters (for 81 different ori-

entations in [0, 2π]) is projected onto cosine vs. sine of the

orientations, as shown in 1(b). The peaks in the plot corre-

spond to the local geometry for the chosen bifurcation point.

Figure 1(c) depicts the 2D views of the components in the

Rigaut kernel. For example, there are two components in

the Rigaut kernel for the X shape in Figure 1. One of these

two components has an orientation of 45◦ as illustrated in

the top middle figure in 1(c) and the other has an orientation

of 135◦ as seen in the bottom middle figure in 1(c). Notice

that the green color denotes higher values in the Rigaut ker-

nel component compared to the blue. This green color is

observed to correctly indicate the 45◦ orientation which lies

along the prongs of the X-shape in the top middle figure

of 1(c). Similar reasoning may be applied to the green col-

ored region in the top right figure of 1(c).

2.2. Convolution of a Level-Set Function with the
Rigaut Kernel

The key idea of level set methods is to represent an

evolving curve C by the zero level set of a Lipschitz contin-

uous function φ : Ω → R. So, C = {(x, y) ∈ Ω: φ(x, y) =
0}. We choose φ to be positive inside C and negative out-

side. C is evolved using the described Rigaut kernel convo-

lution; i.e. φ is convolved locally with the Rigaut kernel in

a narrow banding algorithm. The level-set update equation

is simple and given by:

φt+1(x) = φt(x) ∗ R(x) (9)

The update stops when no further changes in the zero level

set are observed. The feature/junction preserving property

is achieved due to the nature of the characteristic response

of the convolution kernel.

3. Experimental Results

Figure 2. Segmentation result (right) of a textured image (left)

using our Rigaut kernel-based convolution filter

In this section we present the experimental results ob-

tained from an application of our segmentation technique to

some real images containing a variety of junctions, corners

and textures. The first test image contains two zebras in a

natural scene. The zoomed-in region depicts a low-contrast

region where a successful segmentation is quite difficult de-

spite which, our technique clearly segments the feet of the

two zebras while preserving their geometry. Note the pres-

ence of junctions in the zoomed region.

As a second example we choose a leopard image which

has been experimented with by many other segmentation

approaches in the past. Specifically, we compare our tech-

nique with the method proposed by Rousson et al. [20]. The

leopard’s tail recovery proves our method to be fully com-

petitive to the recent approaches [9, 20]. Figure 3(a) was

taken from [20].

(a)

(b)

Figure 3. Segmentation results on a test image of a leopard using

(a) algorithm by Rousson et al. [20] (b) our Rigaut kernel-based

convolution filter. The result in (a) was taken from [20]

Figure 4 depicts another example where the results from

4 different segmentation methods are shown, namely, (i) the

piecewise constant version of the Mumford-Shah segmen-

tation scheme, (ii) the Mumford-Shah scheme, (iii) elastic

ratio technique by Schoenemann et al [21], and (iv) our

technique respectively. On careful examination, Figure 4(d)

is slightly better in segmentation (see the details around the

tail) than 4(c). Techniques in Figures (a) and (b) fail in this

difficult scene. (Figures (a), (b) and (c) were reproduced

with permission from the authors of [21].) Figure 5(b) de-

picts another example, note the accurate segmentation of

the sling-on strap attached to the case as compared to that

obtained by a competing method shown in figure 5(a). Fig-

ure 6 contains another set of segmentation results, one per-

formed by humans and another by our technique on some

images from the Berkeley Segmentation Dataset [15]. Note

the closeness of the two segmentations which depicts the

qualitative accuracy of our scheme.

Lastly, we present the precision/recall curves for our ap-

proach on the 4 images in Figure 6 in order to evaluate the

segmentation quality. Precision and recall are preferred as

measures of segmentation quality because they are sensitive

to under and over-segmentation. We use human segmen-

tations from the Berkeley Segmentation Dataset as ground

truth. Since there are multiple human segmentations, we

chose to compare against the union of the segmentations

from all human subjects for each image. Matching of the



(a)

(b)

(c) (d)

Figure 4. Segmentation results using (a) piecewise constant

Mumford-Shah (b) piecewise smooth Mumford-Shah (c) elastic

ratio by Schoenemann et al [21] (d) our technique. (Figures (a),

(b) & (c) were taken from [21])

(a) (b)

Figure 5. Segmentation result (a) from Schoenemann and Cre-

mers [21] (b) from our convolution method

boundaries between two segmentations is performed by ex-

amining a neighborhood within a radius of ǫ = 3, which

is a reasonable choice given the resolution of the images.

We tested the effect of the shape parameter p in the Rigaut

kernel and the effect of a threshold parameter (for values

in {0.005, 0.05, 0.1, 0.5}) for Gabor filter responses. For

each run, we take the average of the precision and recall

values for the 4 images above and use these values to gen-

erate the tuning curves that characterize the performance of

Figure 6. (first column) Segmentations performed by humans

(taken from the Berkeley Segmentation Dataset and Benchmark)

(second column) Segmentations obtained by our technique (The

images have a size of 481x321 pixels.)
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Figure 7. Tuning curves for variations of the shape parameter p

for our Rigaut kernel-based segmentation. The points along each

curve correspond to variations of a threshold parameter for orienta-

tion information obtained by steerable Gabor filters. The threshold

varies within [0.05, 0.5].

our method. Experimentation showed that the largest dif-

ferences between segmentations were obtained by varying

the threshold parameter, which determines the level of de-

tail that is desired in the segmentation. A low threshold

value results in over-segmentation which is characterized in

the curves by high recall but low precision. Moreover, for

a given threshold value, the precision/recall values change



only slightly with respect to the changes in p, depicting the

insensitivity of the segmentation results to this parameter.

4. Conclusions

In this paper, we treated the problem of feature preserv-

ing segmentation. We presented results that depicted accu-

rate segmentation of complex scenes containing a variety of

complex local geometries. This was achieved through mod-

eling the local geometry of the image function – extracted as

orientation information via the use of steerable Gabor filters

– by a continuous mixture of multi-variate Gaussian func-

tions, with the mixing density being assumed to be a mix-

ture of Wishart distributions. This leads to a closed form

expression called the mixture of Rigaut functions which

serves as the spatially varying convolution filter that when

applied iteratively to the signed distance function of an ar-

bitrarily initialized contour in the image to be segmented,

yields the desired segmentation.

A sparse de-convolution technique is employed for com-

putation of the weights in the mixture of Wisharts model.

The sparseness requirement is justified by the fact that the

local image geometries do not in general have more than a

small set of maxima, i.e., one does not encounter a large

number of spikes at each lattice point in an image. The

classic non-negative least squares (NNLS) algorithm devel-

oped in [10] is most suitable for our de-convolution problem

in achieving sparseness and robustness. To the best of our

knowledge, this is the first time that a convolution based ap-

proach is being used for feature preserving segmentation.

Finally, the experimental results on real images with com-

plex geometries and textures demonstrate that the proposed

model provides better overall performance than other state-

of-the-art techniques for segmentation.
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