
A Scalable Graph-Cut Algorithm for N-D Grids

Andrew Delong

University of Western Ontario

andrew.delong@gmail.com

Yuri Boykov

University of Western Ontario

yuri@csd.uwo.ca

Abstract

Global optimisation via s-t graph cuts is widely used in

computer vision and graphics. To obtain high-resolution

output, graph cut methods must construct massive N-D

grid-graphs containing billions of vertices. We show that

when these graphs do not fit into physical memory, cur-

rent max-flow/min-cut algorithms—the workhorse of graph

cut methods—are totally impractical. Others have resorted

to banded or hierarchical approximation methods that get

trapped in local minima, which loses the main benefit of

global optimisation.

We enhance the push-relabel algorithm for maximum

flow [14] with two practical contributions. First, true global

minima can now be computed on immense grid-like graphs

too large for physical memory. These graphs are ubiquitous

in computer vision, medical imaging and graphics. Second,

for commodity multi-core platforms our algorithm attains

near-linear speedup with respect to number of processors.

To achieve these goals, we generalised the standard rela-

beling operations associated with push-relabel.

1. Introduction

Maximum flow algorithms are the workhorse behind

many global optimisation methods popular in computer

vision, such as graph-cuts [4, 21] and quadratic psuedo-

boolean optimisation (QBPO) [15, 18]. Common applica-

tions include image restoration, segmentation, stereo, and

multiview reconstruction. We introduce a new maximum

flow algorithm to improve the main performance bottleneck

at the heart of these global optimisation methods.

There are many problems for which global methods are

currently impractical despite potential for high quality re-

sults. High-resolution biomedical imaging and multiview

reconstruction involve massive 3D or 4D grids containing

billions of vertices. Data for these problems may not fit into

cache, physical memory, or even into the virtual address

space. When these limits are reached, current maximum

flow algorithms hit a performance wall. Just as importantly,

good algorithms for vision have not been parallelised [4].

For example, banded [17] and hierarchical [19] graph-

cut approximations are directly motivated by the limited

scalability of [4] and, where applicable, heuristics such as

“touch-expand” [16] are currently needed to generate high

quality global solutions.

By definition, global graph-cut methods must consider

the entire problem simultaneously. Inside each maximum

flow algorithm, however, are basic steps to propagate flow

towards the sink. For this paper we call a flow propagation

scheme scalable in a practical sense if its associated steps

a) allow control of locality so that many algorithm steps

can be made within memory constraints, and

b) are parallelisable so that multiple steps can be carried

out asynchronously.

The popular maximum flow algorithm by Boykov and Kol-

mogorov [4] satisfies neither of these criteria, and none of

the other practical algorithms we surveyed satisfy both si-

multaneously [1, 2, 8, 14, 6].

Our new maximum flow algorithm is of the well-known

“push-relabel” variety [14] and is

1. scalable in the above sense,

2. practical on commodity shared-memory multiproces-

sor workstations, and

3. strongly polynomial, but only efficient on grid graphs.

An inherent benefit of our approach is that, at the expense

of some parallelisability, synchronisation overhead can be

coarsened arbitrarily. This is crucial for systems with 2–8

processors because other parallel methods [1, 2] require up

to 8 processors just to overtake a sequential implementation

and they cite fine-grained locking as the culprit.

In Section 2 we review push-relabel methods, paying

special attention to two effective heuristics: the global rela-

bel and gap relabel operations. Our algorithm in Section 3

is distinct primarily because it relies on generalised versions

of these operations which we term region relabel and region

gap relabel. Our 3D segmentation experiments in Section

4 show that our algorithm is orders of magnitute faster than

[4] and [14] when the graph is too large for physical mem-

ory (Figure 13). These 3D graphs are also representative of

those needed for multiview reconstruction. Section 5 dis-

cusses our C++ library and future work.

978-1-4244-2243-2/08/$25.00 ©2008 British Crown Copyright

(a) image with seeds (b) corresponding grid graph

(c) augmenting paths (d) s-t cut = segmentation

Figure 1. Simple example of graph-cut image segmentation. (a)

Image with seeds. (b) Corresponding capacitated network. (c) An

augmenting paths algorithm finds two paths and saturates [13]. (d)

Max-flow implies minimum cut, thus segmenting image in (a).

2. Background

The maximum flow problem is to maximise the amount

of some scalar quantity transported from a designated

source s to a designated sink t, where there exists some

capacitated network connecting s and t indirectly. The net-

work is a digraph G = (V,A, c) of vertices V , directed arcs

A, and capacities c(v, w). Each capacity suggests a limit

on how much quantity (flow) can be transported across arc

(v, w) ∈ A. In computer vision, a simple application [3] is

illustrated in Figure 1.

The running time of a maximum flow algorithm is at

least proportional to the number of arcs across which flow is

sent. So, maximum flow algorithms must balance two com-

peting factors in performance: flow should reach its desti-

nation via short paths, but finding short paths is expensive.

Strategies for finding such paths fall into either augmenting

path or preflow-push categories.

Augmenting path algorithms [4, 11, 12, 13] are a conser-

vative approach in that they first search for a complete s → t
path and then ‘augment’ the entire path by sending enough

flow to saturate it, effectively removing the path from future

consideration. The augmentation step operates on complete

s → t paths which do not meet our locality goals nor is

the augmentation step easy to parallelise. The effort by [4]

at ‘tree recycling’ improves performance on many useful

graphs, but does not scale in the sense we defined earlier.

Preflow-push algorithms do not operate on paths directly.

Instead, flow is optimistically ‘pushed’ across a single arc

at a time. The particular arc chosen is based on purely local

information, making this class of algorithms a good starting

point for scalability. Our algorithm is an extension of one

called push-relabel.

(a) initial excess & labels (b) some excess gets ”stuck”

(c) new maximal labels (d) via repeated PUSH/RELABEL

Figure 2. How push-relabel [14] might solve the problem in Fig. 1.

(a) Initialise to maximal labels. When excess gets stuck (b), new

maximal labels are ideal (c), but RELABEL works eventually (d).

2.1. Pushrelabel algorithms

The first push-relabel algorithms proposed in 1988 by

Goldberg and Tarjan [14] offer the most robust performance

for general graphs [1, 8, 10] but are surpassed by [4] for

many graphs used in vision, particularly 2D grids. The more

recent pseudoflow algorithm shares much in common with

preflow-push approaches and was recently shown to be the

fastest on many general graphs [6].

The term ‘relabel’ refers to the fact that pushes (and

thereby paths) are determined by labels d(v) ∈ Z+ associ-

ated with each v ∈ V . The idea is that d(v) should roughly

indicate v’s distance to the final destination of flow t, where

d(t) = 0. Flow is only pushed ‘downhill’ across an arc

(v, w) where d(v) > d(w), since w has a shorter expected

path to t than v does. If flow gets stuck at a dead-end u 6= t
then clearly d(u) was wrong and u needs to be ‘relabeled’.

Relabeling can be thought of as a backtracking mechanism

to correct for overly optimistic local decisions.

Push-relabel tracks the propagation of flow by maintain-

ing a list of all ‘active’ vertices—those that have received

flow, but have not yet passed it downhill. The accumulated

flow at vertex v is called its excess e(v), and v is active when

e(v) > 0. Every time δ units of flow are pushed across arc

(v, w), any residual (unused) capacity of c(v, w) is remem-

bered as c′(v, w). If d(v) > d(w) and c′(v, w) > 0 then

flow can be pushed from v to w and arc (v, w) is called ad-

missible. If v is active but has no admissible arcs, then v is a

dead-end and needs to be relabeled by increasing d(v). No-

tice that d(v) is always a lower bound on the true minimum

distance from v to t. Figure 2 illustrates this process.

Figure 3 lists the PUSH and RELABEL operations, and

the basic algorithm from [14] upon which ours will be

based. We use the conventional n = |V | and m = |A|.

PUSH(v, w) � v active

δ ← min{e(v), c′(v, w)}
e(v)← e(v)− δ, c′(v, w)← c′(v, w)− δ

e(w)← e(w) + δ, c′(w, v)← c′(w, v) + δ

RELABEL(v) � v active, all (v, w) inadmissible

d(v)← min(v,w){d(w) + 1 | c′(v, w) > 0}

GENERIC-PUSH-RELABEL

c′(v, w)← c(v, w)
d(s)← n, d(V − {s})← 0
e(s)←∞, e(V − {s})← 0
PUSH(s, v) for all c′(s, v) > 0
while exists active v ∈ V − {s, t}

do if exists (v, w) admissible

then PUSH(v, w)
else RELABEL(v)

return e(t)

Figure 3. GENERIC-PUSH-RELABEL runs in O(n2m) time.

The generic algorithm outlined above has sequential

variants that run in O(n2m), O(n3) [14], O(nm log n
2

m
)

[20], and a parallel O(n2 log n) version exists assuming

O(n) processors [14]. Unfortunately, none of these algo-

rithms are of practical interest unless global heuristics are

used [7, 8, 10, 14], and these heuristics inhibit scalability.

2.2. Relabeling heuristics

Basic push-relabel is defined in terms of purely local

steps. This has a catastrophic affect on practical perfor-

mance because, as arcs saturate (i.e. c′(v, w) = 0), long

paths develop where the labels are totally misleading to the

local decisions. Repeated RELABEL operations are a terri-

bly slow (but correct) way to fix large labeling problems.

The two relabeling heuristics described in this section are

critical for practical implementations of push-relabel. How-

ever, they are strictly global heuristics, and their behaviour

is bound to the global problem size.

GLOBAL-RELABEL [14] throws away the current labels

d(v) and computes a maximal labeling for the current c′.
That is, it sets d(v) = min{dG(v, t), dG(v, s) + n} for

all v ∈ V where geodesic distance dG(v, w) measures the

shortest path (number of non-saturated arcs) from v to w.

For a short time thereafter, flow is guaranteed to push to-

wards t if possible, or towards s when t is unreachable.

Global relabel is implemented via backwards breadth-first

search from t and then from s, taking O(n + m) time. For

best performance (and to ammortise the cost), global rela-

bel should be done after roughly hn RELABEL operations

[8]. Figure 4 illustrates the affect of h on total running time

for a 3D segmentation problem.

GAP-RELABEL(g) [7, 10] is based on the observation

that if no vertex has label g < n then any v where g < d(v)
can never reach t (i.e. g is a ‘gap’ in the global labeling).

ru
n

n
in

g
 t

im
e

← more frequent Global Relabels less frequent →

time spent by push & relabel

time spent by global relabel

Figure 4. Total running time of sequential push-relabel as fre-

quency of global relabeling (h) varies. Dark and light bars con-

vey the proportion of time spent in push-relabel and global relabel

phases respectively. Better labels mean less pushing, but more

overhead (left side). Optimal h depends on the specific problem.

Thus, when such g is detected, all labels g < d(v) < n
are increased to n + 1, which is a conservative lower bound

on their maximal label (i.e. what global relabel would com-

pute). Gaps are detected by maintaining a bucket for every

label 0 < ` < n containing a global linked list of all v with

d(v) = `. When a bucket becomes empty, a gap relabel is

triggered.

Interestingly, [14] notes that generic push-relabel can be

modified to maintain maximal labels at all times, without

affecting complexity. However, they found that maximal la-

belings are not worth the computational effort and the afore-

mentioned heuristics result in much better performance.

2.3. Practical parallelism, memory locality

Anderson and Setubal [1] introduced the first practical

parallel version of push-relabel. Each thread maintains a

local queue of active vertices, and locks v before every

RELABEL(v) and also w before each PUSH(v, w). Their

main innovation, however, is to interleave a parallel version

of global relabeling into the generic computation. They call

this wave relabeling, and it involves extra bookkeeping and

careful locking of vertices during a breadth first search.

More recently Bader and Sachdeva [2] found that cache

hierarchies fail to accommodate the memory access pattern

of push-relabel and (global) wave relabel, hindering perfor-

mance. They propose a “cache-aware” memory layout for

the graph, and combine wave relabeling with gap relabel

and the highest-first ordering suggested in [8, 14].

Table 1 contrasts the most relevant maximum flow algo-

rithms for computer vision. The two parallel versions [1, 2]

give good relative speedup as processors are added but ab-

solute speedup over sequential push-relabel is difficult to

obtain. They cite fine-grained synchronisation overhead

added to each PUSH and RELABEL as the reason, meaning

parallel implementations start at a disadvantage.

practical parallel local

Dinitz AP [11]

generic PR [14]
√ √

global heuristic PR [8, 14]
√

tree recycling AP [4]
√

pseudoflow [6]
√

wave relabel PR [1]
√ √

cache-aware PR [2]
√ √

region PR (this paper)
√ √ √

Table 1. Review of max-flow scalability traits in computer vision

(PR = push-relabel, AP = augmenting path).

Figure 5. When segmentation problem (a) is solved independently,

optimal running time involves many global relabels (i.e. many

global relabels were effective). If (a) is part of a larger problem

(b) then, at this scale, global relabel is rarely worth the overhead.

Figure 6. Region push-relabel focuses on a region until it has been

purged, or discharged, of excess flow (1). Excess accumulates on

the boundary. The region becomes inactive, so select a new active

region (2) and repeat the process (3).

3. Region push-relabel

We were motivated by situations such as Figure 5 where,

at a moderate problem scale, frequent global relabeling was

most effective, but at large scales it was rarely worth the

effort beyond initialising d. Poor labelings develop at each

scale regardless of total problem size, but global relabel, as

a tool, becomes inappropriate for dealing with intermediate

labeling issues. The best performance on immense graphs

is thus to rely on many, many RELABEL operations until

global gaps occur. We could update labels better at inter-

mediate scales if only we had the right tool for the job.

We call our algorithm region push-relabel. At a high

level, ours follows Goldberg and Tarjan’s ‘discharge’ vari-

ant of push-relabel [14]. Their idea is to select an ac-

tive vertex v ∈ V , and repeatedly call PUSH(v, w) and

RELABEL(v) until all excess e(v) has been pushed to v’s

neighbours. In our variant, we instead select an active re-

gion R ⊆ V −{s, t} and try to push all excess to neighbours

outside R while only modifying labels inside R. (A region

is ‘active’ if it contains at least one active vertex.) Figure 6

illustrates this scheme on a 2D grid.

To understand how our algorithm relates to generic and

heuristic push-relabel, consider the following two extremes.

If we only allow one region, R = V − {s, t}, our algo-

rithm reduces to heuristic push-relabel since we can just

use global/gap relabeling inside R to speed things up. If

we only allow regions Ri = {vi}, then our algorithm is

equivalent to the discharge variant of push-relabel without

any global heuristics.

Figure 7 illustrates how our algorithm fills the range

between these two cases. For all region sizes less than

the full graph, global heuristics do not apply. Repeated

PUSH/RELABEL inside the current region is a terribly slow

but perfectly correct approach. The overall algorithm would

then just be generic push-relabel with a particular ordering

on processing vertices, and thus have O(n2m) complexity

(or O(n3) on nearest-neighbour grid graphs).

The novelty of our approach is in how we discharge re-

gions more efficiently than just PUSH/RELABEL. We in-

troduce two non-global heuristics we call region relabel

and region gap relabel to speed up region discharge in the

same manner that global/gap relabel speed up generic push-

relabel. Our framework is also trivial to parallelise when

non-intersecting active regions are readily available, as sug-

gested by Figure 7.

3.1. Discharging regions efficiently

We redefine global relabel and gap relabel to operate on

an arbitrary subset of vertices. At two extremes, our new

relabeling operations reduce to the three standard ones:

GLOBAL-RELABEL ⇔ REGION-RELABEL(V − {s, t})

GAP-RELABEL(g) ⇔ REGION-GAP-RELABEL(V − {s, t}, g)

RELABEL(v) ⇔ REGION-RELABEL({v}) or
REGION-GAP-RELABEL({v}, d(v)− 1)

When called on some region R ⊆ V − {s, t}, our oper-

ations try to increase labels in R as much as they can while

keeping the labeling consistent. This means that, for cor-

rectness, each d(v) inside R should be no greater than the

(maximal) labeling that a global relabel would have com-

puted. Large regions can ‘see’ farther than small ones and

thereby have potential to increase labels more dramatically.

The easiest way to think of how this works is by anal-

ogy to how RELABEL(v) makes local decisions: to increase

d(v), each c′(v, wi) is inspected and, if residual capacity re-

mains, then from a purely local vantage there is possibly a

Figure 7. Our region push-relabel fills the range between variants of generic push-relabel (a) and global heuristic push-relabel (d) [14].

Region size impacts parallelism, memory locality, and propagation of flow (see Fig.8 for theoretical running times corresponding to a, b, c,

d above). Above also conveys the effect on parallelism. Supposing there are 4 CPUs: (a) per-vertex regions, poor labelings, heavy locking

overhead; (b) good balance; (c) too large, idle CPU; (d) entire graph, good labelings, but not parallel/local.

(a1) worst case: number of discharges

vs. their complexity
(a2) worst case: theoretical run time T(r)

 for region push-relabel

(b) best case: theoretical run time T(r)

for region push-relabel

Figure 8. Region size r affects running time T (r) of region push-relabel. In the worst case (a1) we may need (4n3

r3 + 4n2

r2) region discharge

operations on a grid of size n. As we show in [9], this bound holds when selected regions are 2·n
r

overlapping intervals uniformly distributed

over a 1D grid. We conjecture that similar bounds hold for ND grids. Each region discharge involves at most (a + br + cr2 + dr3) push-

relabel operations internally. Then, the worst case run time (a2) is T (r) = (4n3

r3 + 4n2

r2)(a + br + cr2 + dr3). In the best case (b) we have

T (r) = n

r
(a + br). The dotted lines in (a2) and (b) suggest ideal parallelisation opportunities min{4, n

r
} for 4 CPUs.

path vwi . . . t and so v is at least d(wi) + 1 arcs away from

t. The only safe move is then to increase d(v) based on

minimum d(wi).
These neighbouring wi form a separator between v and

the rest of the graph because any path leaving v must pass

through one of the wi. Call {wi} the boundary of {v}. Now

consider the same idea for some R ⊆ V − {s, t}.

boundary(R) =
{

w /∈ R
∣

∣ c′(v, w) > 0, v ∈ R
}

(1)

Our operations assume labels on boundary(R) remain con-

stant, and try to maximise the labels inside R under that

constraint.

Figures 9 and 10 list code for our operations in terms of

(1). Again, notice that both of our operations reduce to stan-

dard RELABEL when applied to a single vertex. For larger

regions, their complexity and behaviour resembles that of

their global counterparts. In particular, REGION-RELABEL

becomes O(n + m).

3.2. Regions & nearestneighbour grid graphs

An important outstanding issue is our specific choice of

regions. Figure 7 suggests that our regions on grids are

REGION-RELABEL(R) � R ⊆ V − {s, t}

1 d(R)←∞
2 Q← R ∪ boundary(R)
3 while Q 6= {}
4 do � Choose w with lowest label d(w)
5 w ← extract min(Q)
6 for (v, w) where v ∈ R

7 do if c′(v, w) > 0 and d(v) =∞
8 then d(v)← d(w) + 1

Figure 9. REGION-RELABEL is simply a special case of Dijkstra

initialised with multiple sources bi ∈ B = boundary(R) and

biases d(bi). Above runs in O(m̂ + n̂ log n̂) where n̂ = |R ∪ B|
and m̂ is the number of arcs with at least one end in R ∪ B. See

[9] for O(m̂ + n̂ + nb log nb) version (nb = |B|) that becomes

O(m̂ + n̂) with O(nb) storage for caching.

REGION-GAP-RELABEL(R, g) � g 6= d(v) ∀v ∈ R

1 db ← min{ d(b) | g < d(b), b ∈ boundary(R) }
2 for v ∈ R

3 do d(v)← max{d(v), db + 1}

Figure 10. Above runs in O(n̂) once a new gap g is detected.

roughly square, all of the same size, and have a margin be-

tween them when being discharged in parallel. Indeed this

is the case for the version we analyse and evaluate in this pa-

per. It is easy to imagine other possibilities, and this section

examines tradeoffs to consider.

First, consider the effect of the boundary. When dis-

charging a region R, our heuristics from Section 3.1 only

perform useful relabeling work on d(R) even though their

locality and complexity also depends on boundary(R).
This suggests that our algorithm is only suitable when

boundary(R) is small enough relative to R. Take for exam-

ple a first-degree nearest-neighbour grid graph of dimension

N and suppose region R corresponds to an N -cube with

sides of length z. The proportion of useful work done by

our operations is limited by

|R|

|R + boundary(R)|
≈

(

1 −
2

z + 2

)N

(2)

which approaches zero as N increases, and would do so

faster for higher degree neighbourhoods. To counteract this

effect, larger regions could be chosen for highly connected

graphs, but doing so can inhibit parallelism and locality.

Second, consider the internal ‘shape’ of the region. For

our REGION-RELABEL heuristic to be effective in region

R, the average distance of interior vertices to boundary(R)
should be as large as possible. On a 2D grid, for exam-

ple, diamond and square shaped regions are ideal for 4- and

8-connected neighbourhoods respectively since they corre-

spond to a circle under the distance metric by which labels

d are computed.

To predetermine a set of equally sized regions, our algo-

rithm thus depends on a good partitioning of the graph via

either arc or vertex separator decomposition. The resulting

groups of vertices determine which subsets R ⊆ V −{s, t}
can be selected for discharging, and how boundaries (1) are

associated with these regions in practice. See [9] for de-

tails. Good quality graph partitions and separators are NP-

hard to even approximate on general graphs [5], whereas

on nearest-neighbour grid graphs they are trivial, bypassing

any preprocessing issues. Nearest-neighbour grid graphs

are ubiquitous in computer vision, medical imaging and

graphics applications, but are not of particular importance

to combinatorial optimisation communities. Our algorithm

is still polynomial on arbitrary (i.e. poor quality) partitions

of general graphs, but we have no performance ambitions in

this case.

3.3. Parallel implementation

For parallel region push-relabel we maintain a global

shared list of active regions. Each thread acquires a mu-

tex on this global list, ‘reserves’ an active region and its

boundary, and releases the mutex. Regions themselves each

Figure 11. The 256×256×192 brain MRI (left) and 512×512×
256 abdomen CT (right) data used to construct 6-connected graphs

in our tests. Output is 3D object/background labeling (red/blue).

maintain a list of active vertices. The effect is similar to the

implementation of [1] in that small ‘batches’ of work are

passed between threads.

Since only non-intersecting regions/boundaries are pro-

cessed in parallel, all vertices in the region satisfy the mu-

tual exclusion conditions outlined by [1]. Synchronisation

is only required when accessing the global queue.

We do not implement REGION-GAP-RELABEL as de-

scribed in this paper. Instead we rely on REGION-RELABEL

to raise labels fast, and a modified gap relabel to detect

global labeling gaps. Our parallel gap relabel implementa-

tion is similar to [2] except we update label counts in small

batches to factor out synchronisation overhead.

4. Experiments on 3D Segmentation

Our proof-of-concept experiments are on the binary 3D

segmentation problem outlined in [4] (graph-cuts). Figure

11 shows an example 2D slice of our test output. Our perfor-

mance results suggest that our algorithm is effective for im-

mense, sparse graphs1 typical of segmentation, multiview

reconstruction and other vision applications.

Our own region push-relabel (RPR) and global heuris-

tic push-relabel (PR) implementations are both optimised

specifically for grid graphs, whereas the codes of Goldberg

(HIPR-3.6) and Boykov & Kolmogorov (BK-3.0) assume

arbitrary graphs. HIPR employs global relabel, gap relabel,

and highest-label ordering on discharges. Vertex discharges

for both RPR and PR are processed in approximate FILO

order; likewise for region discharges in RPR. We also pa-

rameterise RPR tests by region diameter. In 3D this means

our regions are cube shaped and of the same size. (i.e. diam-

eter 64 implies 643 vertices, except largest diameter since

our full test volumes are not perfect cubes).

Results shown are for graphs 2–3 orders of magnitude

larger than what is typically tested in general papers on

maximum flow [2]. For small problems in vision, such

as 2D segmentation, BK has superior performance to both

RPR and PR consistent with [4].

1A database of max-flow problem instances, for testing algorithms in

vision, is available at http://vision.csd.uwo.ca/maxflow-data/.

brain (256x256x192)

0

10

20

30

40

50

60

70

80

90

100

16 32 64 128 256

region diameter

ru
n

n
in

g
 t

im
e
 (

s
e
c
)

1 CPU

2 CPU

4 CPU

8 CPU

abdomen (512x512x256)

0

20

40

60

80

100

120

140

160

180

200

16 32 64 128 256 512

region diameter

1 CPU

2 CPU

4 CPU

8 CPU

Figure 12. Running time versus region diameter for 3D segmen-

tation. Between smallest and largest regions lies a performance

“sweet spot” where parallelism opportunities are best exploited.

Compare to the estimates in Figure 8.

4.1. Parallelism performance results

Our parallelism experiments in Figure 12 show that for

sufficiently large problems our algorithm achieves near-

linear speedup not only in a relative sense, but in an ab-

solute sense. In other words, synchronisation is sufficiently

coarse that our parallel algorithm beats optimised sequential

push-relabel, even with few processors. This is particularly

appealing for multi-core systems so prevalent today.

In Figure 12 the PR performance is represented in the

rightmost column in each plot. The BK and HIPR codes

ran out of virtual addresses on these graphs. On smaller 3D

problems they were at least 3 times slower than our PR, but

mainly because these codes are not optimised for grids.

Parallelism performance tests were run on an 8× 1.8GHz

Xeon E5320 workstation under Windows XP 32-bit.

4.2. Limited physical memory results

Our memory experiments show that PR, HIPR and BK

are all impractical when there is not enough physical mem-

ory to contain the graph. (This is not to be confused with the

virtual address space, which is typically 2–3GB for 32-bit

address models and can exceed 256TB for 64-bit.)

Grid graphs can be stored without explicit adjacency in-

formation at each arc. Comparing absolute running times

is not particularly informative because the HIPR and BK

codes do not take advantage of this. Instead we focus on the

relative impact of memory scarcity on performance.

For each implementation tested, we chose the largest 3D

segmentation problem that could fit into the virtual address

space of the test system. BK-3.0 managed to construct a

256×256×160 grid graph needing 1.3GB. HIPR-3.6 man-

aged 250 × 250 × 81 needing 1.3GB. Our PR and RPR

managed 512 × 512 × 256 needing 1.2GB. (Note that PR

and RPR are solving the same problem in this test, but BK

and HIPR are not.) We repeatedly solved the same segmen-

tation problem while varying the amount of total physical

RAM available on the test system. RPR was configured to

use one thread and a region diameter of 32 throughout. To

1

10

100

1000

10000

2GB 1GB 512MB 256MBti
m

e
 i
n

 m
in

u
te

s
(l

o
g

 s
c
a

le
)

system physical memory

BK (256x256x160)

HIPR (250x250x81)

PR (512x512x256)

RPR (512x512x256)

1 day -

1 hr -

Figure 13. When a graph is larger than RAM, algorithms with

poor locality will ‘thrash’ and become impractical. Our current

RPR implementation is still affected, but at a more reasonable rate.

(Note that BK and HIPR are solving smaller problems in this plot.)

improve HIPR and PR performance, in cases below 2GB

the global relabel frequency h was reduced by a factor of

20 from the default. Results are shown in Figure 13.

To double 3D output resolution requires an 8× increase

in the size of the corresponding graph. Moving to a 64-bit

architecture helps a little, but is no substitute for a scalable

algorithm—physical memory perhaps goes up from 2GB

to 16GB (typical for high-end 64-bit workstations), but the

“performance wall” in Figure 13 is then merely two steps

away instead of one.

Memory performance tests were run on a 2.8GHz Xeon

workstation under Windows XP 32-bit.

5. Future work

We intend to further demonstrate our algorithm on im-

portant applications in computer vision, particularly 3D

multiview reconstruction where current global methods are

impractical for high-resolution output. A C++ library of

RPR and BK optimised for grid-like graphs is available at

http://vision.csd.uwo.ca/code/.

Region push-relabel affords many strategies that may af-

fect practical performance, and we intend to explore them.

Because regions are represented at a much coarser scale

than vertices it pays off to invest in more sophisticated

strategies at runtime when choosing active regions to dis-

charge. For example, one could prioritise regions by:

• a schedule to minimise disk-swapping,

• density of excess (to encourage parallelism),

• min-cut estimates computed on coarse data, etc.

Perhaps most interesting is that, within an active region

R, excess at any v ∈ R can be thought of as capacity c′(s, v)
from the source and boundary(R) as destinations (sinks)

prioritised by lowest-label. An approach to maximum flow

that does not scale to immense graphs, such as BK [4] or

pseudoflow [6], may still be more effective on intermedi-

ate subgraphs than the region-based heuristics we have pro-

posed. This is analogous to why quicksort implementations

use insertion sort internally.

One final note is that our approach is a good starting

point for computing maximum flows on non-shared/non-

uniform memory architectures such as IBM’s CELL. To

scale to many processors, these architectures explicitly dis-

tinguish between high-bandwidth (but high-latency) shared

memory and extremely fast local memory addresses.

Acknowledgements We wish to thank Olivier Juan for his ex-

tremely helpful investigations and discussions concerning perfor-

mance of max-flow algorithms. We also thank Siemens Corporate

Research, Daphne Yu in particular, for the abdomen dataset and

for supporting our early research into parallel push-relabel.

References

[1] R. Anderson and J. Setubal. A Parallel Implementa-

tion of the Push-Relabel Algorithm for the Maximum

Flow Problem. J. of Parallel and Dist. Comp. (JPDC),

29(1):17–26, 1995.

[2] D. Bader and V. Sachdeva. A Cache-Aware Paral-

lel Implementation of the Push-Relabel Network Flow

Algorithm and Experimental Evaluation of the Gap

Relabeling Heuristic. In ISCA Int. Conf. on Parallel

and Dist. Comp. Sys. (PDCS), 2005.

[3] Y. Boykov and G. Funka-Lea. Graph Cuts and Effi-

cient N-D Image Segmentation. Int. J. of Computer

Vision (IJCV), 70(2):109–131, 2006.

[4] Y. Boykov and V. Kolmogorov. An Experimen-

tal Comparison of Min-Cut/Max-Flow Algorithms

for Energy Minimization in Vision. IEEE Trans.

on Pattern Anal. and Mach. Intelligence (PAMI),

29(9):1124–1137, 2004.

[5] T. Bui and C. Jones. Finding Good Approximate Ver-

tex and Edge Partitions is NP-Hard. Inf. Process. Lett.,

42:153–159, 1992.

[6] B. Chandran and D. Hochbaum. A Computational

Study of the Pseudoflow and Push-relabel Algorithms

for the Maximum Flow Problem. Operations Re-

search, (to appear).

[7] B. Cherkassky. A Fast Algorithm for Computing Max-

imum Flow in a Network. AMS Transactions, 158:23–

30, 1994.

[8] B. Cherkassky and A. Goldberg. On Implementing

Push-Relabel Method for the Maximum Flow Prob-

lem. Algorithmica, 19:390–410, 1997.

[9] A. Delong. A Scalable Max-Flow/Min-Cut Algo-

rithm for Sparse Graphs. Master’s thesis, University

of Western Ontario, August 2006.

[10] U. Derigs and W. Meier. Implementing Goldberg’s

Max-Flow Algorithm — A Computational Investiga-

tion. ZOR — Methods and Models of Operations Re-

search, 33:383–403, 1989.

[11] E. Dinitz. Algorithm for solution of a problem of max-

imum flow in networks with power estimation. Soviet

Math. Dokl., 11:1277–1280, 1970.

[12] J. Edmonds and R. M. Karp. Theoretical improve-

ments in algorithmic efficiency for network flow prob-

lems. Journal of ACM (JACM), 19:248–264, 1972.

[13] L. Ford and D. Fulkerson. Maximum Flow Through a

Network. Canadian J. of Math., 8:399–404, 1956.

[14] A. Goldberg and R. Tarjan. A New Approach to the

Maximum Flow Problem. Journal of ACM (JACM),

35(4):921–940, 1988.

[15] V. Kolmogorov and C. Rother. Minimizing non-

submodular functions with graph cuts - a review.

IEEE Trans. on Pattern Anal. and Mach. Intelligence

(PAMI), 29(7), 2007.

[16] V. Lempitsky and Y. Boykov. Global Optimization for

Shape Fitting. In Comp. Vision and Pattern Recogni-

tion (CVPR), 2007.

[17] H. Lombaert, Y. Sun, L. Grady, and C. Xu. A Multi-

level Banded Graph Cuts Method for Fast Image Seg-

mentation. In 10th IEEE Int. Conf. on Comp. Vision

(ICCV), pages 259–265, 2005.

[18] C. Rother, V. Kolmogorov, V. Lempitsky, and

M. Szummer. Optimizing Binary MRFs via Extended

Roof Duality. In Comp. Vision and Pattern Recogni-

tion (CVPR), 2007.

[19] P. M. S. N. Sinha and M. Pollefeys. Multi-View Stereo

via Graph Cuts on the Dual of an Adaptive Tetrahedral

Mesh. In Int. Conf. on Comp. Vision (ICCV), 2007.

[20] D. Sleator and R. Tarjan. A data structure for dynamic

trees. J. of Comp. and Sys. Sci., 24:362–381, 1983.

[21] G. Vogiatzis, P. Torr, and R. Cipolla. Multi-view stereo

via Volumetric Graph-cuts. In Comp. Vision and Pat-

tern Recognition (CVPR), pages 391–398, 2005.

