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Abstract

Segmenting arbitrary unions of linear subspaces is an
important tool for computer vision tasks such as motion
and image segmentation, SfM or object recognition. We
segment subspaces by searching for the orthogonal comple-
ment of the subspace supported by the majority of the obser-
vations,i.e., the maximum consensus subspace. It is formu-
lated as a grassmannian optimization problem: a smooth,
constrained but nonconvex program is immersed into the
Grassmann manifold, resulting in a low dimensional and
unconstrained program solved with an efficient optimiza-
tion algorithm. Nonconvexity implies that global optimality
depends on the initialization. However, by finding the max-
imum consensus subspace, outlier rejection becomes an in-
herent property of the method. Besides robustness, it does
not rely on prior global detection procedures (e.g., rank of
data matrices), which is the case of most current works. We
test our algorithm in both synthetic and real data, where no
outlier was ever classified as inlier.

1. Introduction
We segment linear subspaces by finding the maximum

consensus subspace (MCS ), i.e., the subspace with the
largest number of inliers. Its null space (MCS⊥ ) con-
tains, by definition, the majority of zero point projections,
which we use as the criterion to searching for the MCS (see
figure 1). We call arbitrary union to a mixture of an
unknown number of linear subspaces of unknown dimen-
sions, with arbitrary intersections and containing outliers.
When segmenting, we seek nontrivial linear subspaces: d-
dimensional subspaces with, at least, d+1 features’ consen-
sus. Since our patterns are nontrivial subspaces, we define
an outlier to be a trivial 1D subspace (or the unique feature
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Figure 1. An arbitrary union of linear subspaces, containing 2 non-
trivial 1D subspaces (L1 and L2) and 1 trivial 1D subspaces,i.e.
outlier (L3). We find the MCS by searching for the MCS⊥ .

supporting it). Finding the subspace with maximum sup-
port discriminates trivial solutions, rejecting outliers. Fur-
thermore, the maximum consensus is a global criterion that
does not need global data explanation, such as rank detec-
tion. We efficiently search for the MCS by formulating it
as an optimization problem on the Grassmann manifold (or
Grassmannian). The d(n − d)-dimensional Grassmannian,
denoted by Gn,d, is the space of all d-dimensional linear
subspaces of a n-dimensional vector space (e.g., the eu-
clidean Rn). The grassmannian optimization framework
allows to perform guided search by employing a geodesic
descend method, which provably converges to a local opti-
mum, with superlinear rate near the solution.

We apply our generic methodology to multiple motion
segmentation with outliers, an active, and theoretically chal-
lenging research topic in computer vision. Assuming affine
cameras, if the objects have independent motions, the seg-
mentation is obtained [2]. Extensions to degenerate and ar-
ticulated motions have been recently addressed in [10, 11].
However, all these methods rely on rank detection of some
data matrix, which is highly prone to errors in the presence
of outliers. Therefore, some additional procedures, such as
RANSAC (e.g., [7, 8]) or voting schemes (e.g., [4]), must be
considered. There are two main reasons why segmenting ar-
bitrary unions is still an open issue: none of the approaches
is provably correct and both are computationally inefficient,
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Figure 2. An arbitrary union in R3 where the MCS is, itself, an
arbitrary union.

even in the noiseless case.
Our approach differs from the previous methods by effi-

ciently searching the MCS⊥ , providing a robust criterion
for segmenting without relying on rank detection. To be
precise:
• Contributions: Finding the MCS is a nonsmooth,

nonconvex problem, solved by providing an ana-
lytic smooth equivalent cost and immersing it into
the Grassmannian, resulting in a nonconvex, uncon-
strained program in Rd(n−d). We use a combina-
tion of Steepest descend and Newton’s algorithm,
with Armijo’s stepsize, to follow the grassmannian
geodesics (guided search). Such method provably con-
verges to a local optimizer in a finite number of steps,
with superlinear rate near the solution (efficiency).
The MCS criterion allows to classify all the inliers
on some d-dimensional subspace, thus avoiding rank
computation, i.e. classifying inliers amounts to look-
ing for zeros in the cost vector.

• Drawbacks: The tradeoff is nonconvexity. Thus global
optimality is not guaranteed, leaving an avenue for fu-
ture work.

In the presence of noise, we must handle a local decision
(detecting zeros), instead of a global one (detecting rank),
making the choice of threshold easier: we may reject inliers
(a local error) and still provide correct segmentation while
computing the wrong rank (a global error) jeopardizes it.
Summarizing, neither robustness nor segmentation rely on
threshold setting, but rather on cost design.

2. Subspace segmentation with outliers
We assume that the data matrix W ∈ Rn×N has the

following canonical (segmented) form

W = [W1 . . . Wm W0], (1)

where Wj ∈ Rn×Nj support nontrivial linear subspaces
Lj = span{Wj} for all j 6= 0 and L0 = span{W0} is a
trivial subspace, that is, W0 collects N0 points supporting
N0 trivial 1D linear subspaces,i.e. N0 outliers. This means
there is, at least, one nontrivial subspace in the union (fea-
sibility condition). The methodology follows the principle

U0
MCS = U1

L4

SubspaceTree

DataTree

L1

L2

L3

W = [W1 W2 W0] , W0 = [w3 w4]

W

[W1 W2 w3]

w4

W1

W2
w3

Figure 3. Segmentation tree for the union in Figure 2: clustered
unions are segmented by recursion while the segments are found
iteratively (superscripts refer to levels of recursion).

of RANSAC: find the maximum consensus d-dimensional
subspace. The segmentation follows iteratively until only
trivial solutions exists in the union Ur, i.e. outliers are the
“left overs” of the segmentation process. Whenever a non-
trivial solution is found, we get into it by recursion (the
superscript r identifies the level of recursion), looking for
nontrivial subspaces of lower dimensions, thus finding de-
generacies or rejecting outliers. Inliers are classified and
taken out of the observations matrix, and outliers are rein-
troduced in the data matrix because they may be support-
ing some other nontrivial subspace in the union. There are
three (optional) parameters: the minimum support for a d-
dimensional segment (min consensus) and its maximum
(dmax) and minimum (dmin) dimension, with default val-
ues min consensus = d + 1, dmax = min{n, N}− 1 and
dmin = 1.

As an example, consider the union in Figure 2. Let
W ∈ Rn×N , with n = 3, and U0 = span{W} as in
Figure 3. Assuming the default values for the parameters,
in the recursion level r = 0 we have d0 = dmax = 2 and
min consensus0 = 3, so MCS =

⋃3
j=1 Lj . Thus, the

cost vector collecting the algebraic distances of all points to
MCS have minimal cardinality among all cost vector maps
with domain in the Grassmannian G3,1.

Having found a nontrivial solution, we need to check
if this is a union or a segment, i.e. see if there are lower
dimensional nontrivial subspaces and/or outliers. Recog-
nizing clustered unions is done by calling the algorithm
recursively. Hence, for r = 1, we have d1 = d0 −
1 = 1, min consensus1 = 2, and data lies on U1 =
span{[W1,W2,w3]} (see Figure 3). In U1 the MCS =
L1 (as in Figure 1, where now the MCS⊥ is a plane because
the ambient space is R3). Remark that, if N1 = N2, both
L1 and L2 have maximum support and one of them is seg-
mented depending on the initialization (c.f . Section 3.3.1).
Recurring once more (r = 2), we have d2 = d1 − 1 = 0
and the algorithm returns to the previous level r = 1. This
means that L1 is a segment of dim(L1) = d1, so the N1

points supporting it are classified and removed from the data
matrix, resulting in U1 = span{[W2,w3]}. This is the
generic mechanism to classify segments of arbitrary dimen-



Figure 4. Grassmannian approach to the MCS : formulating the
problem as a smooth, low dimensional, unconstrained optimiza-
tion program allows to employ geodesic descend algorithms, guar-
anteing analytic convergence to a local optimizer with superlinear
rate near the solution.

sion: in any level r, if a nontrivial dr-dimensional subspace
is a segment, all lower dimensional subspaces in it are triv-
ial subspaces. In other words, the data matrix supporting
a segment breaks the feasibility condition. Therefore, the
iterative path will lead to dr = 0, providing a unique con-
dition for classifying: level r is infeasible, i.e. seen from
level r−1, dr = 0 and no features were classified in deeper
levels of recursion.

Returning to our example and proceeding as before, we
classify and remove the N2 observations supporting L2 :
dim(L2) = d1, leaving U1 = span{[w3]}. This is a trivial
solution, and so we return to level r = 0. Since level r = 1
was feasible, segmentation proceeds by updating the union
U0 = span{[w3 w4]} without classifying data. Recalling
that d0 = 2, U0 is now a trivial solution, because it contains
only outliers (trivial 1D subspaces). Thus, iterating leads to
d0 = 0, ending the segmentation.

Note that using the MCS criterion ensures that all inliers
on some d-segment are well classified. Hence, by vary-
ing the dimension of subspaces, iteratively if no admissi-
ble solution is found, or recursively otherwise, the current
approach provides the intrinsic dimension of the segment
supported by the classified data. In short, our method seg-
ments arbitrary unions without computing rank, as shown
by the example.

3. Finding the MCS : a Grassmannian ap-
proach

The Grassmannian approach allows to finding the
MCS efficiently, a crucial distinction between our method-
ology and random sampling or voting schemes (Figure 4).
We provide a guided search method by following the grass-
mannian geodesics along the maximum consensus direc-
tion1.
3.1. Minimum cardinality formulation

Define the cost vector map as the algebraic distance of
all points to a d-dimensional linear subspace L, i.e. v :
Gn,n−d → RN

+ such that

1Informally, geodesics are generalizations of straight lines for curved
spaces, in the sense that the straight lines are the euclidean geodesics.

v(L⊥) = diag(WTQQTW), (2)

where diag(·) extracts the main diagonal of the argument
and Q is an orthonormal basis (a representative) of L⊥. By
the uniqueness of the orthogonal projector QQT, this map
is such that

vi(L
⊥) = 0 ⇔ wi ∈ L. (3)

Therefore, the maximum number of zeros in v is a max-
imum consensus criterion. Hence, finding the MCS is
equivalent to minimizing the cardinality of v over the
Grassmannian Gn,n−d, i.e.

MCS⊥ = arg min{card(v(L⊥)) : L⊥ ∈ Gn,n−d}. (4)

Minimizing the cardinality of a vector has a variety of
applications and, in general, is a NP-Hard problem. In some
special cases, it may be solved by the `1−norm [6]. Unfor-
tunately, in our case, the `1 − norm minimizer is the span

of the n− d least significant left singular vectors of the data
matrix, taking all union into account without segmenting.

3.2. Smooth problem formulation
To avoid exhaustive search, we built a smooth heuristic

for counting zeros: the LSE map. We start by showing
that there is a real number λ∗ shaping the sum of exponen-
tial functions to the constraint set in such way that, if v∗

minimizes the cardinality then it maximizes the sum of the
exponentials.
Proposition 1. Consider the map f : R++ ×RN

+ → [0, N ],

f(λ,v) =
N

∑

i=1

e
−λ·vi =

N
∑

i=1

fi(λ,vi), (5)

and assume that v∗ = arg min{card(v) : v ∈ S} withS ⊆ RN
+

compact. Let I(v) = {i : vi > 0}. Then, ∃ λ∗, v0 > 0 verifying

λ
∗ ≥

ln(N + 1)

v0
, v0 = min{vi : i ∈ I(v)} (6)

such that v∗ = arg max{f(λ∗,v) : v ∈ S}.

Proof. Let card(v∗) = l ≤ N . Then λ∗ must verify

fi(λ
∗
,vi) ≤

1

l + 1
, ∀ i ∈ I(v), (7)

for any v ∈ S . Since 1
l+1

≥ 1
N+1

, ∀ l ≤ N , choose λ∗ such that
fi(λ

∗,vi) ≤ 1
N+1

, ∀ i ∈ I(v). Solving for λ∗ results in λ∗ ≥
ln(N+1)

v0
. Setting v0 as in (6) provides a finite number verifying

f(λ∗,v∗) ≥ f(λ∗,v), ∀v ∈ S .

Note that Mangasarian proved the existence of λ∗ in [5].
Our proof differs in form and provides an expression for it.
However, except for special cases, finding v0 in (6) is not
an easy task. Generically, we suggest v0 = min{v+

i : i ∈
I(v+)}, where v+ is the `1 − norm minimizer over S.

Let S be the image of the Grassmannian through the
continuous cost vector map (2). Since the Gn,n−d is com-
pact, S is compact. Setting v0 using v+ = v(L⊥+

), where
L⊥+ is the `1 − norm minimizer, and computing λ∗ from
(6), apply Proposition 1 to built f(λ∗,v(L⊥)). Remark
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Figure 5. Geodesic descend method: L⊥
k+1 = γX(α) is found

by following the geodesic γX(t) emanating from the current point
L⊥

k along the tangent vector X ∈ TL⊥

k
Gn,n−d, where t = α is the

time (Armijo’s stepsize) when the subspace γX(α) improves the
cost function.

that, in practice, λ∗ may be quite large, resulting in nu-
merical ill-conditioning. To prevent flatness of the gradi-
ent at points away from local optima, we define the map
LSE : Gn,n−d → R

LSE(L⊥) = ln

N
∑

i

e−λ∗vi(L
⊥), (8)

solving the problem

MCS⊥ = arg max{LSE(L⊥) : L⊥ ∈ Gn,n−d}, (9)

to find a (possibly global) optimum for Problem (4). The
logarithm induces a fractional form on the gradient favoring
stationary points with zeros in v(Q), as desired. Note that
the Problem (9) is equivalent to maximizing f(λ∗,v(L⊥))
over Gn,n−d. In summary, instead of minimizing the cardi-
nality of the cost vector, we solve Problem (9) to find the
MCS with efficient optimization methods.

3.3. Grassmannian optimization
Instead of modeling the Grassmannian by some smooth

parameterization, suppose there is a way to transport Prob-
lem (9) into the constraint set. In this intrinsic scenario, we
would achieve accuracy w.r.t. the constraints, dimensional-
ity reduction and simplification of processes (constrained
vs. unconstrained problems). As an example, consider the
G10,8 and note that dim(G10,8) = 16: an intrinsic optimiza-
tion method solves an unconstrained problem over R16,
finding an exact representative of some subspace in G10,8;
while an extrinsic method works over constrained R80 (or
R55, if projectors were the variables), guaranteeing the con-
straints up to a tolerance. In short, the intrinsic approach
simplifies the problem and increases the accuracy of the so-
lution (in a numerical sense).

We follow the work of Edelman et al. [3] to obtain
the intrinsic formulation for problem (9), and solve it by
an unconstrained optimization method, switching from the
Steepest descent to the Newton’s Method in a neighborhood
of a local maximum, converging superlinearly. The step-
size is chosen by Armijo’s rule, applied to Grassmannian’s
geodesics (Figure 5). It is proven that such unconstrained
optimization method always converges to a local optimizer,
with better global properties than the pure Newton’s algo-
rithm, although global optimality is not guaranteed [1].
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Figure 6. LSE convergence plots for real data (Figure 8): (a)
with a good initialization, the grassmannian approach converges
superlinearly;(b) a poor initialization makes the optimization al-
gorithm switching between Steepest descend and the Newton’s
method, severely increasing the number of iterations (expected
since minimizing the cardinality is NP-Hard), though convergence
is guaranteed in a finite number of steps.

Since the LSE is a maximum consensus heuristic, fol-
lowing the geodesics along the maximum consensus di-
rection amounts to plugging the intrinsic entities (c.f . Ap-
pendix) into the unconstrained optimization algorithm, thus
searching for the MCS efficiently (Figure 6).

3.3.1 Initialization
To obtain the initial estimate, we use a k-nearest neighbors
algorithm, with k = d + 1 and similarity function

max |w̃i
T
w̃k|, w̃i =

wi

‖wi‖2

(10)

evaluated over all observations i,k = 1, . . . , N . The initial
point is the orthogonal complement of some d-dimensional
subspace spanned by the nearest neighbors. This is nei-
ther equivalent to proximity on Gn,n−d nor robust. In-
tuitively, points lying on different subspaces are likely to
be rejected from the nearest neighbors, though it’s easy to
provide counter-examples. Neighbors supporting the same
subspace is a sufficient, but not necessary, condition for
optimality, in the sense that the solution is the MCS⊥ on
which the nearest neighbors lie, assuring correct segmen-
tation and rejecting outliers. In other words, unlike wrong



rank detection, which surely ruins segmentation, converg-
ing to a local optimum may only alter the order by which
segments are identified, producing a different, yet correct,
subspace tree.

4. Motion segmentation application
We apply our algorithm to segmenting linear subspaces

spanned by the tracked trajectories of points belonging to
moving objects and observed by affine cameras. Let N be
the number of features and F the number of frames. The
observation matrix W ∈ R2F×N is such that

wi = [u1
i . . . uF

i , v1
i . . . vF

i ]T , i = 1, . . . , N (11)

[uf
i v

f
i ]

T
= A

f
2×4xi, xi ∈ P3, f = 1, . . . , F (12)

where A
f
2×4 is the affine camera matrix at frame f . Un-

der affine projections, the canonical form (1) provides the
segmentation of an arbitrary mixture of trajectories from ar-
ticulated, and/or independently rigid, moving shapes, with
possible degeneracies [11]. The algorithm is evaluated on
both synthetic and real data.
4.1. Identification in the presence of noise

When the observations are corrupted by noise, we cannot
rely on null entries of the v map (2). Therefore, we relax
the optimal condition (3) to

vi(L
⊥) < ξ ⇔ wi ∈ L (13)

with ξ & 0.
With L⊥ given by the Grassmannian approach, classi-

fying inliers amounts to searching null entries in the cost
vector. A wide threshold jeopardizes the segmentation,
while if the threshold is too conservative, inliers may be
misclassified as outliers and/or over-segmentation may oc-
cur. However, misclassifying inliers as outliers still pro-
vides a correct segmentation, as long as there are, at least,
d + 1 observations verifying (13) for each d-dimensional
segment. Over-segmentation may be solved by (i) a merge
criterion, e.g. any metric on the Grassmannian [3], at the
cost of another threshold, or (ii) by increasing the support of
the d-dimensional segments, i.e. min consensus > d + 1.
Nevertheless, it has little influence on scene reconstruction
since, for example, SfM is still correctly obtained.

This local approach presents an advantage over methods
relying on rank detection, where a small mistake is critical
in segmentation, as well as for scene reconstruction, since
it jeopardizes SfM.
4.2. Synthetic results

We performed 10000 trials on synthetic data, modelling
articulated objects increasingly contaminated with outliers.
The number of frames was set to F = 10 and the number
of inliers uniformly chosen between 25 and 50 for each part
of the object. The object has a randomly chosen link (joint
or hinge) for each trial and the outliers were modeled by 1D
trivial subspaces, drawn from the standard normal distribu-
tion.
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Figure 7. Average of correct classifications for 10000 trials on syn-
thetic data.

(a) (b)

Figure 8. First frame from the articulated (a) and the arm sequence
(b) (Hopkins155 database), with 10% of outliers superimposed
(green ◦).

Figure 7 depicts the results. As expected, the Grassman-
nian approach increases the accuracy for kNN initializa-
tion, most noticeably when the outlier’s contamination is
high. Also, no outlier was classified as an inlier. Notice
the decrease of 5.58% on the accuracy for an increase on
the outliers’ population corresponding to 50% of the total
number of observations. In fact, since the LSE is a maxi-
mum consensus heuristic, the accuracy of the method does
not depend so much on the outlier contamination as it does
on the initialization. This explains the small decrease on
performance with a high percentage of outliers and is why,
on average, we cannot achieve 100% accuracy for 0% of
outliers.

4.3. Real data results
We tested our approach on the articulated (a) and arm

(b) sequences from the Hopkins155 database [9], adding
10% of random trajectories (Figure 8). The first sequence
has three linked bodies, forming one articulated object,
with 150 inlier trajectories over 31 frames. The arm se-
quence has 77 inlier trajectories over 30 frames. We set
min consensus = 5 and look for 4D dimensional sub-
spaces, i.e. dmax = dmin = 4, taking a conservative ap-
proach by setting ξ = 10−5 (c.f . Section 4.1). Figure 9
shows the results.

In no experiment was ever an outlier misclassified as in-
lier. In sequence (a) we found three subspaces, correspond-
ing to the bodies of the articulated object and one inlier
was classified as outlier, as a result of conservative thresh-
old. The results for sequence (b) show four 4D subspaces
(a case of over-segmentation), two inliers were considered
outliers and one inlier from the M-group was wrongly clus-
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Figure 9. Segmentation results for the sequences in Figure 8.

tered in the ♦-group (red ∗-trajectory). Our algorithm clas-
sified 33 points in the O-group, 25 in the �-group, 9 in the
M-group and 8 in the ♦-group. Data points in both the M-
group and the ♦-group were left out of their reference clus-
ters (O-group and �-group, respectively) by the threshold.
In this case, over-segmentation and misclassification would
be solved without any threshold adjustment by simply im-
posing a higher consensus (e.g., min consensus = 20).

5. Conclusion
We presented a methodology for segmenting arbitrary

unions of linear subspaces. Our approach differs from the
conventional methods by efficiently searching for the maxi-
mum consensus subspace inside the Grassmann manifold,
providing a criterion for segmenting, without relying on
rank detection, voting or random search. The drawback
is that global optimality depends on the initialization. How-
ever, by finding the maximum consensus subspace, outlier
rejection becomes an inherent property of the method.

Experimental results on both synthetic and real data
show a decrease of 5.58% on the accuracy for a 50.0% in-
crease on the number of outliers and the capability to deal
with challenging real sequences. Also, no outliers were ever
classified as inliers. Ongoing work is being conducted to-
wards exploring alternative initializations and the recursive
structure of the algorithm for building automatic kinematic
chains in the presence of outliers.

Appendix
Let TL⊥Gn,n−d denote the tangent space to the Gn,n−d at

L⊥. Recall that the tangent space to a p-dimensional mani-
fold is a p-dimensional vector space with origin at tangency
point. A geodesic emanating from L⊥ ∈ Gn,n−d along the
tangent direction X is computed by

γX(t) = span{[QV U]

[

cosΣt

sinΣt

]

VT}, (14)

where Q is a representative of L⊥, X = UΣVT and t ∈
(0, 1] is the stepsize. The intrinsic gradient at L⊥, is such
that

Gint(L
⊥) = (In −QQT)Gext(Q), (15)

where Gext(Q) ∈ Rn×(n−d) is the extrinsic (usual) gra-
dient of the LSE map at point Q ∈ Rn×(n−d), in matrix

form. The intrinsic Newton’s direction is the tangent vec-
tor X computed as X = Q⊥A, with QTQ⊥ = 0 and
A ∈ Rd×(n−d) verifying

Hintvec(A) = −vec(QT
⊥Gint), (16)

and Hint = In−d ⊗ QT

⊥Hext(Q)Q⊥ − sym(QTGext) ⊗ Id,
where vec(·) stacks the argument’s columns into a vector,⊗
is the Kronecker product, sym(·) is the symmetric part of
the argument and Hext(Q) ∈ Rn×n is the extrinsic hessian
of the LSE map.
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