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Abstract

The objective of this paper is to estimate 2D human pose

as a spatial configuration of body parts in TV and movie

video shots. Such video material is uncontrolled and ex-

tremely challenging.

We propose an approach that progressively reduces the

search space for body parts, to greatly improve the chances

that pose estimation will succeed. This involves two con-

tributions: (i) a generic detector using a weak model of

pose to substantially reduce the full pose search space;

and (ii) employing ‘grabcut’ initialized on detected regions

proposed by the weak model, to further prune the search

space. Moreover, we also propose (iii) an integrated spatio-

temporal model covering multiple frames to refine pose es-

timates from individual frames, with inference using belief

propagation.

The method is fully automatic and self-initializing, and

explains the spatio-temporal volume covered by a person

moving in a shot, by soft-labeling every pixel as belonging

to a particular body part or to the background. We demon-

strate upper-body pose estimation by an extensive evalua-

tion over 70000 frames from four episodes of the TV series

Buffy the vampire slayer, and present an application to full-

body action recognition on the Weizmann dataset.

1. Introduction
Our aim is to detect and estimate 2D human pose in

video, i.e. recover a distribution over the spatial configu-

ration of body parts in every frame of a shot. Various pose

representations can then be derived, such as a soft-labelling

of every pixel as belonging to a particular body part or the

background (figure 1b); or the ‘stickman’ of figure 1c, in-

dicating the location, orientation, and size of body parts.

Note, our objective here is not to estimate 3D human pose

as in [4, 23, 26].

We wish to obtain pose estimates in highly challenging

uncontrolled imaging conditions, typical of movies and TV

shows (figure 7). Achieving this is one of the main contri-

butions of the paper. In this setting, images are often very

cluttered, and a person might cover only a small proportion

of the image area, as they can appear at any scale. Illumi-

a b c

Figure 1. Objective of this work. (a) Input image. (b) Soft-

labelling of pixels to body parts or background. Red indicates

torso, green upper arms, blue lower arms and head. Brighter pix-

els are more likely to belong to a part. Color planes are added

up, so that purple indicates overlap between lower-arm and torso,

yellow between upper-arm and torso, and so on. (c) Stickman rep-

resentation of pose, obtained by fitting straight line segments to

the segmentations in (b). For enhanced visibility, the lower arms

are in yellow and the head is in purple.

nation varies over a diverse palette of lighting conditions,

and is often quite dark, resulting in poor image contrast.

A person’s appearance is unconstrained, as they can wear

any kind of clothing, including body-tight or loose, short

or long sleeves, and any colors/textures. The background is

unknown and changes over time, preventing the use of back-

ground subtraction techniques [3, 6]. Finally, the camera is

usually moving, causing motion blur, and multiple people

can be present at the same time and can occlude each other

during a shot.

Our method covers all poses within the upper-body

frontal range. Special attention is given to the arms, as they

carry most of the information necessary to distinguish pose.

The proposed method supports arms folded over the torso,

stretching outwards, pointing forward, etc.

The need for such human centered tracking is evident,

with applications ranging from video understanding and

search through to surveillance. Indeed 2D human segmen-

tation is often the first step in determining 3D human pose

from individual frames [2]. We illustrate the use of the ex-

tracted poses with an application to action recognition on

the Weizmann dataset.

1.1. Approach overview
We overview the method here for the upper-body case,

where there are 6 parts: head, torso, and upper/lower
right/left arms (figure 1). Full details are given in section 2.
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The method is also applicable to full bodies, as demon-

strated in section 4.

A recent and successful approach to 2D human tracking

in video has been to detect in every frame, so that tracking

reduces to associating the detections [19, 25]. We adopt this

approach where detection in each frame proceeds in three

stages, followed by a final stage of transfer and integration

of models across frames.

In our case, the task of pose detection is to estimate the

parameters of a 2D articulated body model. These param-

eters are the (x, y) location of each body part, its orienta-
tion θ, and its scale. Assuming a single scale factor for the
whole person, shared by all body parts, the search space has

6 × 3 + 1 = 19 dimensions. Even after taking into account
kinematic constraints (e.g. the head must be connected to

the torso), there are still a huge number of possible config-

urations.

Since at the beginning we know nothing about the per-

son’s pose, clothing appearance, location and scale in the

image, directly searching the whole space is a time con-

suming and very fragile operation (there are too many im-

age patches that could be an arm or a torso!). Therefore, in

our approach the first two stages use a weak model of a per-

son obtained through an upper-body detector generic over

pose and appearance. This weak model only determines the

approximate location and scale of the person, and roughly

where the torso and head should lie. However, it knows

nothing about the arms, and therefore very little about pose.

The purpose of the weak model is to progressively reduce

the search space for body parts.

The next two stages then switch to a stronger model, i.e.

a pictorial structure [6, 18, 19] describing the spatial con-

figuration of all body parts and their appearance. In the

reduced search space, this stronger model has much better

chances of inferring detailed body part positions.

1. Human detection. We start by detecting human upper-

bodies in every frame, using a sliding window detection

based on Histograms of Oriented Gradients [5], and asso-

ciate detections over time. Each resulting track carves out

of the total spatio-temporal volume the smaller subvolume

covered by a person moving in the shot. This reduces the

search space by by setting bounds on the possible (x, y)
locations of the body parts and by fixing their scale, thus

removing a dimension of the search space entirely.

2. Foreground highlighting. At this stage the search for

body parts is only limited by the maximum extent possi-

ble for a human of that scale centered on the detected po-

sition. We restrict the search area further by exploiting

prior knowledge about the structure of the detection win-

dow. Relative to it, some areas are very likely to contain part

of the person, whereas other areas are very unlikely. This

allows the initialization of a Grabcut segmentation [20],

which removes part of the background clutter. This stage

further constrains the search space by limiting the (x, y) lo-
cations to lie within the area output by Grabcut.

3. Single-frame parsing. We obtain a first pose estimate

based on the image parsing technique of Ramanan [18].

The area to be parsed is restricted to the region output of

foreground highlighting. Since the person’s scale has been

fixed by stage 1), no explicit search for body parts over

scales is necessary.

4. Spatio-temporal parsing. The appearance of the body

parts of a person changes little within a shot. Moreover,

the position of body parts changes smoothly over time. We

exploit both kinds of temporal continuity in a second pose

estimation procedure which (i) uses appearance models in-

tegrated from multiple frames where the system is confi-

dent about the estimated pose; and (ii) infers over a joint

spatio-temporal model of pose, capturing both kinematic

constraints within a frame, and temporal continuity con-

straints between frames. As appearance is a powerful cue

about the location of parts, the better appearance models

improve results for frames where parsing failed or is inac-

curate. At the same time, the spatio-temporal model tight-

ens the posterior distributions over part positions and dis-

ambiguiates multiple modes hard to resolve based on indi-

vidual frames.

1.2. Related works
Our work builds mainly on the Learning to Parse ap-

proach by Ramanan et al. [18], which provides the picto-

rial structure inference engine we use in stage 3, and on
the Strike-a-pose work [19]. The crucial difference to both

works is the way the search space of body part configu-

rations is treated. Thanks to the proposed detection and

foreground highlighting stages, we avoid the very expen-

sive and fragile search necessary in [18, 19]. Moreover,

compared to [19], our initial detection stage is generic over

pose, so we are not limited to cases where the video contains

a pre-defined characteristic pose at a specific scale. We also

generalize and improve the idea of transferring appearance

models of [19]. Rather than using a single frame containing

the characteristic pose, we integrate models over multiple

frames containing any pose.

Initially, our approach attempts to fit a pictorial struc-

ture model independently to each frame (stage 3). Previous

use of these models have tolerated only limited amounts of

background clutter [6, 18] and often assume knowledge of

the person’s scale [18, 19] or background subtraction [6]. A

few methods operate interactively from regions of interest

provided by the user [14].

There are also methods that detect humans using gener-

ative models for the entire video sequences, e.g. [9, 11].

However, todate these methods have been limited to rela-

tively simple backgrounds and to no occlusion of the per-

son.



Our spatio-temporal model (section 2.4) is most closely

related that of [23, 24], but our framework is fully automatic

(it does not need any manual initialization or background

subtraction).

Finally, [15] recovers unusual, challenging body config-

urations in sports images by combining segmentation and

detectors trained to specific body parts, but requires a per-

son centered in the image and occupying most of it.

2. Technical details

2.1. Upper­bodydetection and temporal association

Upper-body detection. In most shots of movies and TV

shows, only the upper-body is visible. To cope with this

situation, we have trained an upper-body detector using the

approach of Dalal and Triggs [5], which achieves excellent

performance on the related task of full-body pedestrian de-

tection. Image windows are spatially subdivided into tiles

and each is described by a Histogram of Oriented Gradi-

ents. A sliding-window mechanism then localizes the ob-

jects. At each location and scale the window is classified

by an SVM as containing the object or not. Photometric

normalization within multiple overlapping blocks of tiles

makes the method particularly robust to lighting variations.

The training data consists of 96 video frames from
three movies (Run Lola run, Pretty woman, Groundhog

day), manually annotated with a bounding-box enclosing

an upper-body. The images have been selected to maximize

diversity, and include many different actors, with only a few

images of each, wearing different clothes and/or in different

poses. No images from the test material (shots from Buffy

the Vampire Slayer) were used for training.

Following Laptev [12], the training set is augmented by

perturbing the original examples with small rotations and

shears, and by mirroring them horizontally. This improves

the generalization ability of the classifier. By presenting it

during training with misalignments and variations, it has a

better chance of noticing true characteristics of the pattern,

as opposed to details specific to individual images. The aug-

mented training set is 12 times larger and contains more
than 1000 examples.
We choose an operating point of 90% detection-rate at

0.5 false-positives per image. This per-frame detection-rate
translates into an almost perfect per-track detection-rate af-

ter temporal association (see below). Although individual

detections might be missed, entire tracks are much more ro-

bust. Moreover, we removemost false-positives by weeding

out tracks shorter than 20 frames.
In practice, this detector works well for viewpoints up to

30 degrees away from straight frontal, and also detects back
views (figure 7).

Temporal association. After applying the upper-body de-

tector to every frame in the shot independently, we associate

b
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Figure 2.Overview of the single-frame steps. 1. Upper body de-

tection: The detected person (inner rectangle) and enlarged win-

dow where further processing is applied (outer rectangle). 2. Fore-

ground highlighting: (b) subregions for initializing Grabcut. (c)

foreground region output by Grabcut. 3. Parsing: (d) area to be

parsed F (dilated from (c)) and (e) edges withinF . (f) posterior of
the part positions p(li|I) after the edge-based inference. (g) pos-
terior after the second inference, based on edges and appearance.

the resulting bounding-boxesover time by maximizing their

temporal continuity. This produces tracks, each connecting

detections of the same person.

Temporal association is cast as a grouping problem [25],

where the elements to be grouped are bounding-boxes. As

similarity measure we use the area of the intersection di-

vided by the area of the union (IoU), which subsumes

both location and scale information, damped over time.

We group detections based on these similarities using the

Clique Partitioning algorithm of [7], under the constraint

that no two detections from the same frame can be grouped.

Essentially, this forms groups maximizing the IoU between

nearby time frames.

This algorithm is very rapid, taking less than a second

per shot, and is robust to missed detections, because a high

IoU attracts bounding-boxes even across a gap of several

frames. Moreover, the procedure allows persons to over-

lap partially or to pass in front of each other, because IoU

injects a preference for continuity scale in the grouping pro-

cess, in addition to location, which acts as a disambiguation

factor.

In general, the ‘detect & associate’ paradigm is substan-

tially more robust than regular tracking, as recently demon-

strated by several authors [17, 25].

2.2. Foreground highlighting

The location and scale information delivered by an

upper-body detection greatly constrains the space of possi-

ble body parts. They are now confined to the image area

surrounding the detection, and their approximate size is

known, as proportional to the detection’s scale. However,

to accommodate for all possible arm poses we must still ex-

plore a sizeable area (figure 2a). Stretching out the arms



in any direction forms a large circle centered between the

shoulders. In challenging images from TV shows, this area

can be highly cluttered, confusing the body part estimator.

Fortunately, we have prior knowledge about the struc-

ture of the search area. The head lies somewhere in the

middle upper-half of the detection window, and the torso is

directly underneath it (figure 2b). In contrast the arms could

be anywhere. This is known because the detector has been

explicitly trained to respond to such structures. We pro-

pose to exploit this knowledge to initialize Grabcut [20], by

learning initial foreground/background color models from

regions where the person is likely to be present/absent. The

resulting segmentation removes much of the background

clutter, substantially simplifying the later search for body

parts (figure 2c).

Let R be a region of interest obtained by enlarging the
detection window as in figure 2a. R is divided into four
subregions F, Fc, B, U (see figure 2b). Grabcut is initial-
ized as follows: the foreground model is learnt from F and
Fc (Fc is known to belong to the person, while F contains
mostly foreground, but some background as well); and the

background model from B (it covers mostly background,
but it might also include part of the arms, depending on

the pose). Furthermore, the region Fc is clamped as fore-

ground, but grabcut is free to set pixel labels in all other

subregions (we have extended the original Grabcut algo-

rithm to enable these operations). The U region is neutral

and no color model is learnt from it. The setup accurately

expresses our prior knowledge and results in a controlled,

upper-body-specific segmentation, assisted by as much in-

formation as we can derive from the previous object detec-

tion process. Near the head, B and Fc compete for the U
region, with the foreground growing outwards until it meets

a background-colored area, resulting in a good head seg-

mentation. Along the sides, the background floods into the

initial F to segment the shoulders, while at the same time
the arms get labeled as foreground because they are colored

more similarly to the initialF than to the initialB (figure 3).

The above procedure is rather conservative, and it of-

ten retains parts of the background. The goal is not to

achieve a perfect segmentation, but to reduce the amount

of background clutter (figure 3). It is more important not to

lose body parts, as they cannot be recovered later. To vali-

date this, we have inspected 1584 frames of a Buffy episode
(i.e. every 10th frame) and only in 71 a body part was lost
(4.5%). In contrast to traditional background subtraction,
used in many previous works to extract silhouettes [3, 6, 8],

our method does not need to know the background a priori,

and allows the background to change over time (in video).

2.3. Single­frame parsing

Our main goal is to explain the spatio-temporal volume

covered by a person moving in a shot. In particular, we

Figure 3. Examples of foreground highlighting.

want to estimate the 2D pose of the person, as the location,

orientation and size of each body part. Ideally, the exact

image regions covered by the parts should also be found.

For estimating 2D pose in individual video frames, we build

on the image parsing technique of Ramanan [18]. In the

following we first briefly summarize it, and then describe

our extensions.

Image parsing [18]. A person is represented as a pictorial
structure composed of body parts tied together in a tree-
structured conditional random field. Parts, li, are oriented
patches of fixed size, and their position is parametrized by
location and orientation. The posterior of a configuration of
parts L = {li} given an image I can be written as a log-
linear model

P (L|I) ∝ exp

0

@

X

(i,j)∈E

Ψ(li, lj) +
X

i

Φ(li)

1

A (1)

The binary potentialΨ(li, lj) corresponds to a spatial prior
on the relative position of parts and embeds the kinematic

constraints (e.g. the upper arms must be attached to the

torso). The unary potential Φ(li) corresponds to the lo-
cal image evidence for a part in a particular position (like-

lihood). Since the model structure E is a tree, inference
is performed exactly and efficiently by sum-product Belief

Propagation.

The key idea of [18] lies in the special treatment of Φ.
Since the appearance of neither the parts nor the background

is known at the start, only edge features are used. A first in-

ference based on edges delivers soft estimates of body part

positions, which are used to build appearance models of the

parts (e.g. in figure 2f the torso is in red). Inference in then

repeated using an updated Φ incorporating both edges and
appearance. The process can be iterated further, but in this

paper we stop at this point. The technique is applicable to

quite complex images because (i) the appearance of body

parts is a powerful cue, and (ii) appearance models can be

learnt from the image itself through the above two-step pro-

cess.

The appearancemodels used in [18] are color histograms

over the RGB cube discretized into 16 × 16 × 16 bins. We
refer to each bin as a color c. Each part li has foreground
and background likelihoods p(c|fg) and p(c|bg). These are
learnt from a part-specific soft-assignment of pixels to fore-

ground/background derived from the posterior of the part

position p(li|I) returned by parsing. The posterior for a
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Figure 4. The image parsing pose estimation algorithm of [18]

applied to the image in figure 1. (a) All edges inside region R,
without filtering them through foreground highlighting. (b) Pars-

ing applied to the whole region R. It achieves a worse estimate
than when helped by foreground highlighting, figure 2g, because

it is attracted by the bars in the background. (c) Parsing applied

directly to the whole image, without reducing the search space to

R based on the initial person detection. It fails entirely.

pixel to be foreground given its color p(fg|c) is computed
using Bayes’ rule and used during the next parse.

As in [18], in our implementation we explicitly main-

tain a 3D binned volume to represent the possible (x, y, θ)
positions of each part (discretization: every pixel for (x, y)
and 24 steps for θ). This dense representation avoids the
sampling needed by particle representations (e.g. [23, 24]).

When run unaided on a highly cluttered image such as

figure 1a, without any idea of where the person might be or

how large it is, parsing fails entirely (figure 4c). There are

simply too many local image structures which could be a

limb, a head, or a torso. This is assessed quantitatively in

section 3.

We reduce the space explored by parsing based on three

sources of information: (i) the location and scale informa-

tion supplied by the upper-body detector, is used to define

the enlarged search region R. Parsing is run only within
R, rescaled to a fixed size, tuned to roughly yield the part
sizes expected by the parser. Thanks to the proper use

of scale information from detection, we effectively obtain

scale-invariant pose estimation, without having to explicitly

search for body parts at multiple scales. This significantly

reduces ambiguity and false positive detections. (ii) Fore-

ground highlighting. We further simplify pose estimation

by restricting the area to be parsed to the region F ⊂ R
output of foreground highlighting (figure 2d). This is real-

ized by removing all edges outside F and setting all pixels
R\F to black. This causes the image evidenceΦ(li) to go
to −∞ for li /∈ F , and hence it is equivalent to constrain-
ing the space of possible poses. (iii) Head and torso con-

straints. A final assistance is given by mildly constraining

the location of the head and torso based on our prior knowl-

edge about the spatial structure of R (see section 2.2). The
constraints come in the form of broad subregionsH, T ∈ R
where the head and torso must lie, and are realized by set-

ting Φ(lhead), Φ(ltorso) to −∞ for li /∈ H, T (figure 2d).
These constraints directly reflect our prior knowledge from

the detection process and therefore do not limit the range of

poses covered by the parser (e.g. for the arms).
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1
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1
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2

l LA
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Figure 5. Spatio-temporal model. For clarity, only head (lH),

torso (lT ), and left/right upper arms (lLA, lRA) are drawn.

All the above aids to pose estimation are made possible

from the initial generic upper-body detection. Foreground

highlighting and location constraints can only be automated

when building on a detection window. The combined effect

of these improvements is a vastly more powerful parser, ca-

pable of estimating 2D pose in a highly cluttered image,

even when the person occupies only a small portion of it.

Moreover, parsing is now faster, as it searches only an im-

age region, supports persons at multiple scales, and multiple

persons at the same time, as each detection is parsed sepa-

rately.

2.4. Spatio­temporal parsing

Parsing treats each frame independently, ignoring the

temporal dimension of video. However, all detections in

a track cover the same person, and people wear the same

clothes throughout a shot. As a consequence, the appear-

ance of body parts is quite stable over a track. In addition to

this continuity of appearance, video offers also continuity

of geometry: the position of body parts changes smoothly

between subsequent frames.

In this section, we exploit the continuity of appear-

ance for improving pose estimations in particularly difficult

frames, and the continuity of geometry for disambiguiating

multiple modes in the positions of body parts, which are

hard to resolve based on individual frames.

Learning integrated appearance models. The idea is to

find the subset of frames where the system is confident of

having found the correct pose, integrate their appearance

models, and use them to parse the whole track again. This

improves pose estimation in frames where parsing has either

failed or is inaccurate, because appearance is a strong cue

about the location of parts.

Frames where parsing infers a highly confident config-

uration of body parts provide good reference appearance

models (figure 6a). The measure of confidence used here

is the entropy of the posterior of the part positions p(li|I),
accumulated over all parts to give the total pose entropy

TPE = −
∑

i H(p(li|I)). Rather than simply selecting
the single frame with the lowest TPE, we learn models

by integrating over all frames with a similar low TPE. It

can be shown [21] that the distribution minimizing the to-

tal KL-divergence to a set of distributions is their average.



Hence, we integrate the foreground and background likeli-

hoods {pr(c|fg)}, {pr(c|bg)} from the reference frames r
by averaging them. The integrated posteriors pi(fg|c) are
then obtained by applying Bayes’ rule.

The integrated models are richer, in that pi(fg|c) is
nonzero for a broader range of colors, so they generalize

to a larger number of frames. Moreover, they are more ac-

curate, because estimated over a wider support.

Spatio-temporal inference. We extend the single-frame
personmodel of [18] to include dependencies between body
parts over time (figure 5). The extended model has a node
for every body part in every frame of a continuous temporal
window (11 frames in our experiments). The posterior of all
configurations of parts {Lt} = {lti} given all frames {I

t}
can be written as

P ({Lt}|{It}) ∝ exp

0

@

X

t,i

0

@

X

j|(i,j)∈E

Ψ(lti , l
t
j) + Φ(lti) + Ω(lti , l

t+1
i )

1

A

1

A

(2)

In addition to the kinematic dependenciesΨ between dif-
ferent parts in a single frame, there are temporal dependen-

cies Ω between nodes representing the same part in sub-
sequent frames. As a temporal prior Ω(lti , l

t+1

i ) we use
a simple box-shaped distribution limiting the difference in

the lti = (x, y, θ) position of a body part between frames.
We use the integrated appearance models to obtain a bet-

ter image likelihood Φ. Since the spatio-temporal graphical
model has loops, we perform approximate inference with

sum-product Loopy Belief Propagation, which in practice

delivers a good estimate of the posterior marginals and is

computationally efficient.

The spatio-temporal inference is a batch process treating

all frames in the temporal window simultaneously, as op-

posed to traditional tracking, where only past frames can

influence estimation in the current frame. The inference

procedure outputs the full marginal posteriors p(lti |{I
t}),

defining the probability of every possible (x, y, θ) body part
position in every frame. This is better than a single MAP

solution [19], as any remaining ambiguity and uncertainty

is visible in the full posteriors (e.g. due to blurry images,

or tubular background structures colored like the person’s

arms). Finally, our joint spatio-temporal inference is bet-

ter than simply smoothing the single-frame posteriors over

time, as the kinematic dependencies within a frame and

temporal dependencies between frames simultaneously help

each other.

As a combined result of using integrated, high-

confidence appearance models within a joint spatio-

temporal inference, the final pose estimates are tighter and

more accurate than the single-frame ones (figure 6, and

compare figure 2g to figure 1b). Moreover, they are tempo-

rally continuous, which is useful for estimating the motion

of body parts for action recognition.

a b c

Figure 6. Spatio-temporal parsing. (a) one of several frames with

low TPE after single-frame parsing, from which integrated appear-

ance models are learnt. (b) a frame with high TPE. The system is

uncertain whether the right arm lies on the window or at its actual

position. (c) Output of spatio-temporal parsing. Thanks to the in-

tegrated appearance models and the spatio-temporal inference, the

right arm ambiguity is resolved, and the estimated position of the

torso improves visibly.

3. Upper-body pose estimation results

We have applied our pose estimation technique to

episodes 2,4,5 and 6 of season five of Buffy the vampire

slayer, for a total of more than 70000 video frames over

about 1000 shots.

The examples in figure 7, show that the proposedmethod

meets the challenges set in the introduction. It successfully

recovers the configuration of body parts in spite of extensive

clutter, persons of different size, dark lighting and low con-

trast (b4, c3, f2). Moreover, the persons wear all kinds of

clothing, e.g. ranging from long sleeves to sleeveless (b3,

a3, a4), and this is achieved despite the fact that their ap-

pearance is unknown a priori and was reconstructed by the

algorithm. The system correctly estimated a wide variety

of poses, including arms folded over the body (a2, c1, c2),

stretched out (c3, e3), and at rest (c4, e1). The viewpoint

doesn’t have to be exactly frontal, as the system tolerates

up to about 30 degrees of out-of-plane rotation (c1). Per-
sons seen from the back are also covered, as the upper-body

detector finds them and we don’t rely on skin-color seg-

mentation (e1, f1). Finally, the method properly deals with

multiple persons in the same image and delivers a separate

pose estimate for each (e2, f4).

We quantitatively assess these results on 69 shots divided
equally among three of the episodes 1. We have annotated

the ground-truth pose for four frames spread roughly evenly

throughout the shot, by marking each body part by one line

segment [15] (figure 7a). Frames were picked where the

person is visible at least to the waist and the arms fit inside

the image. This was the sole selection criterion. In terms of

imaging conditions, shots of all degrees of difficulty have

been included. A body part returned by the algorithm is

1The data is available on our website:

www.robots.ox.ac.uk/∼vgg/research/pose estimation/index.html
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Figure 7. Pose estimation results. (a1) example ground-truth ‘stickman’ annotation. All other subfigures are the output of the proposed

method, with body part segmentations overlaid. For illustration, in (a2) we also overlay the stickman derived by our method. The color

coding is as follows: head = purple, torso = red, upper arms = green, lower arms = yellow. A fair sample of failures are also included,

e.g. (f1) is missed as a detection, and the wrong pose is obtained in (e3) (rear person). Notice how the leftmost person in (e2) is largely

occluded.

considered correct if its segment endpoints lie within 50%
of the length of the ground-truth segment from their anno-

tated location. The initial detector found an upper-body in

88% of the 69 × 4 = 276 annotated frames. Our method
correctly estimates 56% of the 243 × 6 = 1458 body parts
in these frames.

To put this result in perspective, we have repeated the ex-

periment with stripped down versions of the system. Pars-

ing without foreground highlighting, only exploiting the lo-

cation and scale from the detection, causes performance to

drop to 41%. We also compare to the image parser of [18]
using software supplied by the author, and run unaided, di-

rectly on the image. [18] achieves only 10%, thus highlight-
ing the great challenge posed by this data, and the substan-

tial improvements brought by our technique. The results

also confirm that both search space reduction stages we pro-



posed (starting from a detection and foreground highlight-

ing) contribute considerably to the quality of the results.

4. Application: Action recognition on theWeiz-

mann dataset

Determining human pose is often a first step to ac-

tion recognition. For example [13] classifies frames by

their pose as a pre-filter to spatio-temporal action detection,

and [22] specifies actions by pose queries.

In this section we apply the extracted pose representation

to the task of action recognition on the Weizmann dataset

[3], which includes nine actions performed by nine differ-

ent subjects who are fully visible in all frames (including

their legs). Following the standard leave-one-out evaluation

protocol [3, 8, 16], we train on eight subjects and test on the

remaining one. The experiment is then repeated by chang-

ing the test subject and recognition rates are averaged.

Here, we replace the upper-body detector by the stan-

dardHOG based pedestrian detector of Dalal and Triggs [5],

and employ a full-body pictorial structure including also up-

per and lower legs. Our action descriptor is obtained by

subtracting soft-segmentations between pairs of subsequent

frames, and accumulating the differences over the whole se-

quence. We train a linear SVM on this descriptor and use

it to classify the actions of the test subject. Although pre-

vious works using background subtraction achieve perfect

results on this dataset [3, 8], the only work we are aware of

tackling the task without any static background assumption

only obtains 73% recognition rate [16]. While operating in
the same conditions, our method achieves the significantly

higher rate of 88%. These results demonstrate the suitabil-
ity of our technique to full body pose estimation.

5. Appraisal and future work
We have demonstrated automated upper body pose esti-

mation on extremely challenging video material – the prin-

cipal objective of this work.

The numerous works defining action descriptors based

on body outlines [3, 8] could benefit from our technique,

as it provides outlines without resorting to traditional back-

ground segmentation, requiring a known and static back-

ground.

Of course, further improvements are possible. For ex-

ample the body part segmentations could be improved by

a further application of Grabcut initialized from the current

segmentations. Moreover, the model could be extended to

include layering [1, 10, 24] to account for self-occlusions.
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