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Abstract

An efficient and robust framework for two-view multiple

structure and motion segmentation is proposed. To handle

this otherwise recursive problem, hypotheses for the models

are generated by local sampling. Once these hypotheses are

available, a model selection problem is formulated which

takes into account the hypotheses likelihoods and model

complexity. An explicit model for outliers is also added for

robust model selection. The model selection criterion is op-

timized through branch-and-bound technique of combinato-

rial optimization which guaranties optimality over current

set of hypotheses by efficient search of solution space.

1. Introduction

Segmentation of structure and motion is a vital step to-

wards interpretation of a dynamic scene. A typical dynamic

scene structure includes multiple independently moving ob-

jects which is being captured by a moving camera. Con-

ventional approach based on frame difference [4] or 2-

D flow based methods [11] are restricted in segmenting

such a scene. Frame difference based approaches are lim-

ited due to requirement of camera motion compensation.

While 2-D flow based approaches are limited by camera

model used which is typically affine. To address the prob-

lem is a better way, a comprehensive theory of structure-

and-motion (SaM) estimation from perspective images has

been developed by computer vision researchers over the

years [5]. Analysis of dynamic scenes based on this theory,

also known as multi-body structure-and-motion (MSaM) is

now being explored extensively. Two-view MSaM problem

can be interpreted as a geometric problem [16]. However,

its direct application in real world is limited as it lacks an

outlier model. An interesting alternative is a clustering per-

spective. Two-view MSaM clustering is a chicken-and-egg

problem. To segment the scene, one needs motion models

for all the objects. To estimate the motion models of in-

dividual objects, one has to segment the objects first. To

solve such a recursive problem, iterative techniques such as

expectation maximization can be used [3]. However, results

of expectation maximization can be guaranteed to be only

locally optimal and hence depend on the initialization. Al-

ternative to iterative method is a sequential extraction strat-

egy where dominant motions are segmented and separated

one by one till entire scene is explained [7]. Limitation of

such methods is that the similar motions are often incor-

rectly segmented. For objects having similar motions, se-

quential method assigns some fraction of other objects to

the motion encountered first in its search.

To get out of chicken-and-egg dilemma, some re-

searchers have applied Monte-Carlo sampling to generate

multiple hypotheses for the motions in a scene [9, 17]. A

prior knowledge of spatial coherency helps in selection of

reliable hypotheses by local sampling though RANSAC like

process. Once hypotheses are available through sampling, a

suitable cost function can be optimized to achieve the mo-

tion segmentation. Another important aspect of clustering

is the number of clusters itself. While most of the cluster-

ing techniques assume that the number of clusters is known,

such assumption is invalid for the segmentation of a dy-

namic scene. Typically, clustering is carried out for vary-

ing number of clusters and the one fitting a certain criterion

the best is selected. Under a sampling based framework,

problem of selecting optimal number of clusters can be for-

mulated as a combinatorial optimization problem.

Our paper gives a general combinatorial optimization

framework to optimize a cost function integrating maxi-

mum likelihood of hypotheses, a clustering cost and uni-

form distribution of outliers. Initially, hypotheses for mo-

tion are generated by local sampling of matched features

between two views. A null hypothesis is also introduced

which suggests that any match can be an outlier with uni-

form likelihood. Next, a model selection criterion that pe-

nalizes the likelihood of the clustering with increasing num-

ber of clusters is added to the framework. The model se-

lection criterion is optimized through branch-and-bound to

obtain the final MSaM segmentation.

The paper is organized as follows: Section 2 formulates
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the MSaM segmentation as a combinatorial optimization

problem. A branch-and-bound solution to the problem is

formulated in section 3. The experimental results are pre-

sented in section 4 and section 5 enlists the concluding re-

marks.

2. Formulation

Consider set of N image correspondences X =
{(x1, x′

1), (x2, x′
2), . . . , (xN , x′

N )}, where xi and x′
i are im-

age coordinates of ith correspondence. Relationship of var-

ious object structures and motion in the scene can be ex-

pressed as,

x
′T
i





K
∑

j=1

Lj(i)Fj



 xi = 0. (1)

Here, Fj is the fundamental matrix for jth rigid body in the

scene. The indicator function Lj(i) is one when ithe corre-

spondence belongs to the jth rigid body and zero otherwise.

A label field L = [l1, l2, . . . , lN ] is associated with the in-

dicator function Lj(i) such that, li = j ↔ Lj(i) = 1. Goal

of the MSaM segmentation is to estimate the label field L.

Once the label field in known, fundamental matrix Fj can

be computed as,

Fj = arg min
F

∑

∀i,li=j

d(xi, x′

i,F). (2)

Here, d is a distance measure such as symmetric transfer er-

ror, reprojection error or Sampson approximation [5]. Un-

der assumption of Gaussian errors above estimate is the op-

timal maximum likelihood estimate.

On the other hand, if Fjs are known, the maximum like-

lihood estimate for the label of ith match is given by,

l̂i = arg min
l

d(xi, x′

i,Fl). (3)

Equations (2) and (3) are parameter estimation and label

estimation or segmentation steps respectively. Since these

steps are interdependent, the MSaM problem can be solved

iteratively to maximize the likelihood of the correspon-

dences. Log likelihood of the matches is given by,

log{Lik(X)} = −
N

2
log

(

SSD

N

)

+ C, (4)

where,

SSD =
N

∑

i=1

K

min
j=1

d(xi, x′

i,Fj), (5)

and C is a constant. This optimization procedure also as-

sumes that the number of clusters K is known a priori. This

assumption is unrealistic in most of the scenes. Since like-

lihood of the correspondences increases if K is increased,

likelihood alone cannot be applied to select optimal K. A

model selection criterion such as Bayesian information cri-

terion (BIC) or Akaike information criterion (AIC) can be

utilized to select the optimal K [10]. These criterions penal-

ize likelihood in proportion of K. We define a generalized

cost function to incorporate this idea,

C = −2 log{Lik(X)} + α · K. (6)

For BIC, α = log(N) and for AIC, α = 2N .

The cost function in (6) can be optimized by iterative

optimization of likelihood in (4) for varying values of K.

Finally, the optimal K can be selected to minimize C. Al-

ternative to this approach is simultaneous model selection

and segmentation. In this approach, multiple hypotheses

for fundamental matrix Fj are generated by using sampling

on the correspondences. Once these hypotheses are know,

MSaM segmentation problem is reduced to combinatorial

optimization problem to select K hypotheses out of total

Nh hypotheses. Note that there are 2Nh possible solutions

for this problem. Thus, even for moderate value of Nh,

exhaustive search becomes intractable. However, nature of

the problem allows us to use branch-and-bound approach

to obtain optimal solution in reasonable time for practical

problems.

3. Branch-and-bound

Branch-and-bound approach [1] to global optimization

splits the optimization problem into smaller subproblems

and for these subproblems, upper and/or lower bounds of

cost function are estimated. These bounds are used to elim-

inate the subproblems that would not lead to an optimal so-

lution. The subproblems that survive are further divided

and the bound calculation is continued till all the subprob-

lems are explored. Branch-and-bound procedure is popular

in optimal feature subset selection [2] and is also used in

clustering [8, 2] where number of clusters are known. Rest

of this section constructs the branch-and-bound algorithm

for the optimization of cost function in (6).

3.1. Solution tree

There are Nh hypotheses H = {F1,F2, . . . ,FNh
} for

the fundamental matrices Fj and we have to choose K of

them to minimize the criterion in (6). All possible solutions

of the optimization problem can be represented as a rooted

tree. Each node encountered on the tree represents a solu-

tion. The node is also the partial solution for its descendent

nodes. It is important that every solution is listed only once

to avoid unnecessary computations. This can be ensured

by creating child nodes that are different than left siblings,

ancestors and left siblings of ancestors. One simple way

of generating such a solution tree for Nh = 5 is shown in

Figure 1 with an additional null hypothesis. We will intro-

duce the null hypothesis later in the section. Note that, in

the solution tree (z1 < z2 < z3 . . . < zn) and (left sib-

ling < right sibling). These two conditions ensure that the

rule stated above to generate the child nodes is followed.
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Figure 1. Solution tree for Nh = 5 and a null hypothesis

The solution tree is explored by series of branch forward,

branch right and retraction operations. At the circled node

in figure 1, the current partial solution is {0, 1, 3}. A branch

forward operation moves deeper in the tree by one level. Af-

ter branch forward operation, the partial solution {0, 1, 3}
would lead to {0, 1, 3, 4}. Branch right operation moves to

the sibling branch towards right. Solution {0, 1, 3} would

branch right to give {0, 1, 4}. Retraction moves the solu-

tion one level up the tree. Retraction is carried out when no

forward or right branching is possible. {0, 1} is the result of

the retraction at the circled node. The branch-and-bound al-

gorithm is terminated when retraction leads to the root node.

3.2. Monotonocity of partial costs

A solution for a node at depth n be given by

Z(n) = {(z0, z1, z2, . . . , zn−1, zn),D(n)}. The so-

lution Z(n) represents n clusters which have cluster

centers at {Fz0
,Fz1

,Fz2
, . . . ,Fzn−1

,Fzn
}. D(n) =

{D(1, n), D(2, n), . . . , D(N, n)} corresponds to minimum

distances for the N matches under current cluster center hy-

pothesis. Thus the cost function for this solution can be

written as,

C(Z(n)) = N log

{

1

N

N
∑

i=1

D(i, n)

}

+ α · n, (7)

where,

D(i, n) =
n

min
k=0

d(xi, x′

i,Fzk
).

D(i, n) gives the minimum distance for all the hypotheses

included in solution till tree level n. When a new hypoth-

esis is added to the existing partial solution it means that a

new cluster center is being added. Matches which are close

to the new cluster center are reassigned to the new cluster

while others remain unchanged. In terms of the partial solu-

tion D(i, n−1), the newly formed D(i, n) can be calculated

incrementally as,

D(i, n) = min[D(i, n − 1), d(xi, x′

i,Fzn
)]. (8)

From (8), D(i, n) has to be lesser than or equal to D(i, n−
1). The cost function in (6) is made up of two terms, one

corresponding to the inverse likelihood and another corre-

sponding to the number of clusters. When a new cluster

center is added, the second term of cost function increases

by α while inverse likelihood term decreases. We will use

this monotonocity property in the following subsection to

establish the lower bound on the cost function.

Leading from the monotonic decrease of the inverse

likelihood and linear increase of clustering cost, a mono-

tonicity requirement can be imposed on the optimal solu-

tion. According to this requirement, for an optimal solution

{z0, z1, . . . , zm−1, zm, zm+1, . . . , zn}, we must have:

C(z0, z1, . . . , zm−1, zm) < C(z0, z1, . . . , zm−1)
for any value m ≤ n. If decrease in negative likelihood

from Z(m−1) to Z(m) is given by ∆m, then for monotonic

decrease of cost, ∆m > α. For any m which has ∆m < α,

a better solution can be achieved by removing zm from cur-

rent solution as there will be decrease of at least α−∆m in

the cost. Elimination of zm corresponds to branch right op-

eration in the solution tree which abandons solutions stem-

ming from zm.

3.3. Lower bound on cost

To establish lower bound on the cost, we define a com-

plementary variable D∗(i, zn) as,

D∗(i, zn) =
Nh

min
k=zn+1

d(xi, x′

i,Fk).

The variable D∗(i, zn) gives the minimum of the distance

measure from all hypotheses which can be included in the

solution in future. In case of the variable D∗(i, zn), its value

solely depends on last node zn. As there are only Nh pos-

sibilities for value of zn, D∗(i, zn) can be pre-computed to

speed up the branch-and-bound process. Similar to D(i, n),
D∗(i, n) can also be calculated incrementally as,

D∗(i, zn) = min[D∗(i, zn + 1), d(xi, x′

i,Fzn+1)].
Consider a possible partial solution Z(4) = {0, 1, 3, 4, 7}
for Nh = 10. The variable D at level n can be computed

as,

D(i, 4)=min{d(xi, x′

i,F0), d(xi, x′

i,F1),

d(xi, x′

i,F3), d(xi, x′

i,F4), d(xi, x′

i,F7)}.

Now for the same example, we consider the complementary

variable D∗.

D∗(i,F7) = min{d(xi, x′

i,F8), d(xi, x′

i,F9), d(xi, x′

i,F10)}.
With help of the complementary variable, lower bound

on the possible solution leading from Z(n) is,

CLower(Z(n)) = N log

{

1

N

N
∑

i=1

min[D(i, n), D∗(i, zn)]

}

+α · (n + 1). (9)

If CLower(Z(n)) > C∗, then the current partial solution can

be safely abandoned as it would not lead to better solution

than current optimal solution C∗.



3.4. Outlier likelihood

Matching errors are common in MSaM problems. These

errors can severely deteriorate quality of the solutions

achieved for MSaM segmentation. Outliers can be assumed

to be uniformly distributed throughout the image with like-

lihood d0. For ease of notation, we assume that,

log(d0) = d(xi, x′

i,F0).

With introduction of this outlier likelihood, the proposed

MSaM segmentation scheme would act as a simple re-

descending M-estimator [6].

3.5. Branch­and­bound algorithm

Based on the monotonocity requirement and the lower

bound, the branch-and-bound segmentation algorithm is

listed below.

1. Initialization: Set the tree level n = 1,current node

z0 = 0 and current optimal cost C∗ = C(Z(0)).

2. Generate child nodes: Initialize LIST (n),

List(n) = {zn−1 + 1, zn−1 + 2, . . . , Nh}

3. Select new node: If List(i) is empty, to step (5). Oth-

erwise, set zn = k where k ∈ List(i). Set cur-

rent solution Z(n) = {z0, z1, . . . , zn}. Delete k from

List(i).

4. Check bounds:

• Compute C(Z(n)) and CLower(Z(n)).

• If C(Z(n)) < C∗, set C∗ = C(Z(n)) and Z∗ =
Z(n).

• If C(Z(n − 1)) < C(Z(n)) or CLower(Z(n)) >

C∗, go to step (3).

• If C(Z(n − 1)) > C(Z(n)) and CLower(Z(n)) <

C∗, set n = n + 1 and go to step (2).

5. Backtrack to lower level: Set n = n − 1. if n > 0 go

to step (3), otherwise terminate the algorithm.

In the following section, the branch-and-bound hypoth-

esis selection was implemented and results achieved are re-

sented.

4. Experimental results

The proposed MSaM segmentation approach was imple-

mented and tested with publicly available data sets. MSaM

segmentation was implemented in Matlab and executed on

a Core 2 Duo processor operating at 2.33GHz as a single

thread.

To generate the motion hypotheses, for each matched

image feature fundamental matrix was computed from its
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(a) (b)
Figure 2. Spinning wheels: (a) Segmentation results, 4 motions de-

tected, red tracks are outliers; (b) Memberships of various tracks,

201 to 250 are outliers.

neighborhood. Due to sparse nature of data, neighborhood

was generated through Delaunay triangulation. Matches in

the neighborhood were used to compute fundamental ma-

trix using “Structure and Motion Toolkit” from [15]. Simi-

lar to RANSAC, outliers and inliers were selected for each

fundamental matrix with a threshold. To avoid repeated hy-

pothesis which are similar, non maximal suppression was

carried out for the matches based on number of inliers. Fi-

nally, the surviving hypotheses were arranged in decreasing

order of number of inliers. Bayesian information criterion

(BIC) was optimized for these hypotheses to select optimal

hypothesis.

In the first experiment, we use “Spinning wheels” syn-

thetic test data from [13]. This sequence contains four ro-

tating objects with 50 tracked points each with 50 outliers.

Frame 1 and 3 of the sequence were used in our experiment.

After sampling and non maximal suppression, 27 hypothe-

ses were selected. Proposed approach detects 4 clusters

along with outliers. All the inliers were correctly labeled

while 5 of the outliers were mislabeled. Total number of

solutions explored by the branch-and-bound was 139.

For the second experiment, “Box-book-mag” and

“Desk” image pairs from [12] are used. “Box-book-mag”

pair has three independently moving objects while camera

is stationary. Figure 3 (a) shows disparities between the

image pair indicated in different colors. While red colored

matches are detected outliers, each of rest of the colors rep-

resents disparities for a segmented object. For the “Desk”

image pair shown in figure 4, there are three moving ob-

jects namely pile of books, a computer screen and a journal.

Although the camera has also moved, there are no matches

for the background. Thus the background motion is not de-

tected. Result of segmentation can be seen in figure 4 (b)

and (c).

In the next experiment, our method is applied to the “car-

truck-box” sequence used by Vidal et al. [18]. Motion be-

tween frame 1 and frame 4 of the sequence was analyzed.

In this sequence, there are three different motions. The box

lies on a rotating desk, while car and truck are moved away



(a) (b) (c)
Figure 3. Box-book-mag: (a) Disparities between two images, each cluster is denoted by different color, matches marked by red are outliers;

(b) Segmentation result for the first image; (c) Segmentation result for the second image.

(a) (b) (c)
Figure 4. Desk: (a) Disparities between two images, each cluster is denoted by different color, matches marked by red are outliers; (b)

Segmentation result for the first image; (c) Segmentation result for the second image.

Table 1. Execution summary for the experiments

Experiment Nh Solutions Fraction Search

explored explored time (ms)

Spinning wheels 27 129 1.03e-006 391

Box-book-mag 31 701 3.26e-007 94

Desk 20 535 5.10e-004 78

Car-truck-box 19 73 1.39e-004 47

Kanatani 32 116 2.70e-008 32

from each other with hand. However, these motions are

very small and are magnified for plotting purpose in figure

5(a). Three moving objects are correctly identified; how-

ever some of the motion vectors are incorrectly assigned.

This is due to the sampling scheme that we use, rather than

the cost function being optimized. If optimal motions are

subset of the hypotheses being constructed then segmenta-

tion results are guaranteed to optimal.

In the final sequence, taken from Sugaya and Kanatani

[14] has a single moving object, i.e. the car. However, cam-

era is also moving for this sequence. Frame 1 and frame 11

are used for segmentation in our experiment. Egomotion of

camera and motion of the car are correctly segmented and

are shown in figure 6 (c).

Table 1 shows summary of the execution of our method

for all the experiments. Fraction of solutions explored

shown in the table is calculated as,

Fraction explored =
Solution explored

2Nh

.

As seen for the table, fraction of all the solutions explored

is very small. This is also reflected in the execution speed.

Note that execution times for search alone are listed and

they do not include sampling and pre-computing involved.

Speedups achieved increase with increase in Nh since more

solutions are generally rejected implicitly by explicitly re-

jecting a partial solution.

5. Concluding remarks

We have proposed a versatile multiple structure and mo-

tion segmentation scheme and demonstrated its effective-

ness through experiments. The branch-and-bound scheme

can easily be scaled for parallel processing by solving one

branch of the problem on a processor. Scheduling of these

branches can be also an interesting direction of research.

Although the method is proposed for a multi body SaM seg-

mentation, it can be also applied to various other computer

vision problems involving clustering such as segment based

stereo and motion segmentation. Since the outcome of the

method heavily depends on the initial hypotheses chosen,

various available guided sampling approaches have to be

evaluated as to how well they explore and represent the so-

lution space. Current approach can also be extended to an it-

erative approach. After each iteration of segmentation, fun-

damental matrices can be calculated based on membership

of the matches and these can added as additional hypothesis

to repeat the segmentation.
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