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Abstract

Unsupervised over-segmentation of an image into super-

pixels is a common preprocessing step for image parsing al-

gorithms. Ideally, every pixel within each superpixel region

will belong to the same real-world object. Existing algo-

rithms generate superpixels that forfeit many useful prop-

erties of the regular topology of the original pixels: for

example, the nth superpixel has no consistent position or

relationship with its neighbors. We propose a novel al-

gorithm that produces superpixels that are forced to con-

form to a grid (a regular superpixel lattice). Despite this

added topological constraint, our algorithm is comparable

in terms of speed and accuracy to alternative segmentation

approaches. To demonstrate this, we use evaluation met-

rics based on (i) image reconstruction (ii) comparison to

human-segmented images and (iii) stability of segmentation

over subsequent frames of video sequences.

1. Introduction

Image parsing attempts to find a semantically meaning-

ful label for every pixel in an image. Many vision problems

that use natural images involve image parsing. Possible ap-

plications include autonomous navigation, augmented real-

ity and image database retrieval.

Image parsing is necessary to resolve the natural ambi-

guity of local areas of an image [18]. One example of this

ambiguity is depicted in Figure 1a. The small blue image

patch might result from a variety of semantically different

classes: sky, water, a car door or a person’s clothing. How-

ever, given the whole image, we can see that when found

above trees and mountains and alongside similar patches

across the top of the image and in the absence of boats,

people, roads etc., the correct class is probably sky.

Image parsing algorithms [19, 7, 20] combine segmen-

tation, detection and recognition to attempt to resolve these

ambiguities. It is common in the literature to use Markov

Random Field (MRF) or Conditional Random Field (CRF)
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Figure 1. a) The semantic label associated with the small blue im-

age patch (small white box, enlarged) is ambiguous in the absence

of context. Image parsing algorithms can resolve this ambiguity.

b) Over-segmentation is a common preprocessing step for image

parsing. In this paper we propose a method for over-segmentation

into a regular grid of superpixels. In this example we have reduced

a 640 × 480 image to a regular 20 × 20 lattice of superpixels.

models to incorporate relational/spatial/temporal context.

These are graph based models relating the observed image

data to the hidden underlying object class at each position in

an image. Normally, the probabilistic connection between

nodes favors similarity between labels and therefore acts to

smooth the estimated field of labels from data. Apart from

some special cases, both exact and approximate inference

methods in these models slow down as the number of nodes

increases.

Consequently, inference can be slow in large images

when MRF or CRF graphs have one node for every pixel.

Moreover, the pixel representation is often redundant, since

objects of interest are composed of many similar pixels.

Computational resources are wasted propagating this redun-

dant information. One possible solution to this is to use

multi-scale and banded techniques [11, 15] to reduce mem-

ory requirements and limit the time complexity of solutions.

A different approach was suggested by Ren and Malik

[16]. They proposed a preprocessing stage in which pix-

els were segmented into superpixels1 thereby reducing the

number of nodes in the graph. Their method uses the nor-

malized cut criterion [17] to recursively partition an im-

1A superpixel is a spatially-coherent, homogeneous, structure which

preserves information over scales or sampling resolutions. We refer to

algorithms that over-segment the image as superpixel algorithms.
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age using contour and texture cues and has been used as a

preprocessing step in contemporary image parsing schemes

[7]. Other possible superpixel algorithms include [1, 3] and

reducing the number of nodes using the watershed algo-

rithm was demonstrated in [10].

Unfortunately, these superpixel algorithms forfeit sev-

eral useful properties of the original pixel representation.

First, pixels can be represented in arrays without the need

for pointers. Second, it is easy to sub-sample pixels uni-

formly and use multi-scale methods. Third, the nth pixel

has a consistent, ordered, position in the image. Fourth, the

nth pixel has a consistent relationship with the (n − 1)th

pixel, allowing local neighborhood operations. Fifth, pixel

representations of images of the same dimension (row ×
col) are isomorphic (a unique mapping from pixel to pixel

in different images). These properties result from the reg-

ular topology of the original grid graph of pixels and are

abandoned by contemporary superpixel algorithms.

In this paper, we introduce a segmentation algorithm that

is guaranteed to produce a regular grid of superpixels (a su-

perpixel lattice). This is motivated by two concerns:

• First, a grid increases engineering efficiency and con-

venience. The architecture of common sensors means

that most current vision algorithms implicitly assume

a Cartesian grid and can be adapted easily for use in

superpixel lattices without the need to resort to more

general graph algorithms [5].

• There are some algorithms that are very difficult to

adapt to a graph with non-regular topology. For ex-

ample, there has been considerable recent interest in

using higher order cliques relating labels over small

regions of the image [6, 9]. However, it is not ob-

vious how to learn joint statistics of labels over re-

gions of superpixels if the topology relating superpix-

els changes in every image. Indeed, He et al. [6] be-

moan this state of affairs, stating that “ideally the sys-

tem we described would be applied to a higher level of

representation [than pixels]. However, this requires a

consistent and reliable method for extracting such rep-

resentations from images.” Our proposed algorithm is

one such higher level of representation.

The contributions of the paper are as follows: in Sec-

tion 2 we propose a superpixel algorithm that preserves the

topology of a regular lattice, an example of which is shown

in Figure 1b. In Section 3 we investigate the qualitative

properties of the resulting segmentation and compare it to

contemporary algorithms. In Section 4 we develop several

quantitative measures that show that the topological con-

straint imposed by the regular lattice does not adversely af-

fect segmentation, making our system a viable preprocess-

ing step for image parsing algorithms. In Section 5 we show

how superpixels can be merged to produce a coarser seg-

mentation while retaining the qualitative advantages of our

Figure 2. Incremental construction of superpixel lattice. a) The

image is initially split left to right and top to bottom to form four

regions. In each case we seek the optimal path within a prede-

fined image strip. b) Adding one more vertical and horizontal path

partitions the image into nine superpixels. Future path costs are

modified in bands around previous paths (light colors) to prevent

multiple-crossings and set a minimum distance of approach be-

tween paths.

system. Lastly, in Section 6 we demonstrate that our algo-

rithm produces stable segmentations across frames of video

data.

2. A Greedy Regular Lattice

In this section we describe a greedy superpixel algorithm

that maintains the regular topology of the grid graph of pix-

els. Most segmentation algorithms pose the question: “what

properties would we like of individual segments?”, and de-

velop different metrics for segment homogeneity. Here, we

consider “what relations would we like to hold between seg-

ments?”. In particular, a regular topology is our goal.

The input to our algorithm is a boundary map. This is

a 2D array containing a measure of the probability that a

semantically meaningful boundary is present between two

pixels. This problem is well studied in the literature, which

in the simplest case results in the binary output of an edge

detector but in more complicated schemes leads to an es-

timate of the probability of natural [13, 2] or occlusion

boundaries [8] in an image. For convenience we invert and

re-scale the boundary map to take a value of 0 where there

is the most evidence for a boundary and 1 where there is no

evidence. We term this the boundary cost map. Our goal

is to segment the images in places where this boundary cost

map is lowest, which we do by finding minimum weighted

paths through the graph.

The construction of the superpixel lattice is incremental:

initially we bipartition the image vertically and horizontally.

Each path splits the image into two, to cumulatively produce

four superpixels (see Figure 2a). At each subsequent step

we add an additional vertical and horizontal path (Figure

2b). A regular lattice is guaranteed if we ensure that (i)

each horizontal and vertical path only cross once (ii) no two

horizontal paths cross and (iii) no two vertical paths cross.



Figure 3. Estimation of optimal path through an image strip. a)

Min-cut between source and sink. Arbitrary paths are allowed.

b) Dynamic programming. Forward pass is green. Global opti-

mal path of backwards pass is red. Only non-returning paths are

obtained.

We first describe how to form each path, and then discuss

how to ensure these constraints are maintained.

At each stage in the algorithm we seek the optimal path

across the whole image. The optimal path is determined by

the values in the boundary cost map along the path (we aim

to follow image boundaries). However, we also apply reg-

ularizing constraints that prevent the path from wandering

arbitrarily. One such constraint is to restrict each path to

fall within a predefined strip across the image (see Figure

2). This prevents the formation of paths that run diagonally

across the whole image and hence restrict the placement of

subsequent paths. It also forces a quasi-regular grid and re-

duces the computation at each step by limiting the number

of paths considered.

We present two solutions. The s-t min-cut method pro-

duces paths of arbitrary topology. We also used the dy-

namic programming method that produces paths that are

non-returning (every subsequent point on the path is closer

to the other side of the image and the path cannot turn back

on itself). In general we expect the former method to fol-

low boundaries more closely, but the latter method to be

faster and to exhibit more stability. Examples of the min-

cut method are shown in Figures 1 and 4. An example of

the dynamic programming method is shown in Figure 5.

Method 1 - s-t min-cut: For this method, we define a

graph GMC = {V, E} as depicted in Figure 3a. In this

graph there is one cost associated with each edge (νi, νj)
between neighboring pairs of nodes. All nodes on one side

of the strip are connected to the source. Nodes on the op-

posite side are connected to the sink. The costs for edges

connecting pixels is determined by the boundary cost map

so that the path is more likely to pass along boundaries. In

addition, we add a constant value to the costs for cuts per-

pendicular to the strip direction. This controls the tortuosity

(the degree to which the path deviates from a straight line).

The min-cut algorithm [4] finds the minimum cost cut be-

tween source and sink and hence defines the path.

Method 2 - dynamic programming: We define a sec-

ond, different, graph GDP = {V, E} over the image pixels

a b c d e
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Figure 4. Two image sequences to demonstrate tuneable parame-

ters of a greedy regular lattice. a) Original image. b)-e) Superpixel

lattices with increasing superpixel resolution; 2 × 2, 4 × 4, 6 × 6

and 10 × 10, respectively. f) Original image. g)-j) 10 × 10 super-

pixels. Increasing tortuosity results in transition from straight grid

to superpixels that conform to natural image boundaries.

in the strip as shown in Figure 3b. Dynamic programming

is a well known algorithm that finds the 1D path that min-

imizes the total cost of edges and nodes. The edge cost is

zero for paths that move straight across the image (left to

right in Figure 3). The cost for diagonal paths is a parame-

ter and affects the tortuosity of the path.

Strips for adjacent paths must overlap, to preserve

boundaries in the image, so this in itself is insufficient to

prevent parallel paths from intersecting. To ensure that this

does not happen, forcing the correct topology, we update

the boundary cost map after generating each path. Values

along the path are allocated a fixed large cost. This prevents

subsequent parallel paths crossing. Perpendicular paths are

forced by geometry to cross once, but the high cost pre-

vents them turning back on themselves and crossing again.

In addition we increase the costs of a band of neighboring

nodes to each path to prevent paths becoming very close

to one another. This is undesirable because (i) it produces

very small superpixels and (ii) close paths often follow the

same real-world boundary, making the subsequent semantic

interpretation of the intervening superpixel difficult.

2.1. Parameters of Greedy Lattice

There are three important parameters that control the fi-

nal superpixel lattice. First, the resolution determines the

total number of superpixels, which is indirectly determined

by the number of paths. In Figure 4a-e we demonstrate in-

creasing resolution. Second, the width of each image strip

constrains the chosen path. Together the width and resolu-

tion determine the overlap of the strips. These must overlap

so that a real-world boundary may be followed from one

strip to the next using different paths. Third, the tortuosity

of the path determines the degree to which the curve de-

viates from a straight line. The effect of varying this pa-

rameter can be seen in Figure 4f-j. As tortuosity increases,



the paths are slowly allowed to conform to the costs in the

boundary map. Increasing this parameter does not indefi-

nitely improve results because, at very high levels, the algo-

rithm produces a meandering solution that attempts to as-

similate all the image boundaries into a single path.

3. Qualitative Evaluation

In Figure 5 we qualitatively compare the regular lattice

(top) to two other superpixel algorithms (middle and bot-

tom) for the same image. The segmentations produced by

our algorithm have a number of desirable properties:

(i) Consistent pixel positions: For a fixed resolution, each

of our superpixels is always at roughly the same position in

the image. This facilitates the definition of spatially vary-

ing priors over image classes as in [6]. For example, we

can impose the information that superpixel 1 in the top-left

of the image tends to be part of the sky. In other segmen-

tation schemes, we would have to first establish the spatial

position of superpixel 1, which may be ambiguous, and then

relate this to a spatial prior defined over the original image.

(ii) Consistent spatial relations: In image parsing we want

to learn the probabilistic relations between labels; for in-

stance the frequency with which sky appears above the

ground (e.g. [7]). While such relations can be defined ad

hoc on any segmentation it results in a graph isomorphism

problem: is the relationship between nodes in this graph

the same as that encountered on other graphs during learn-

ing? A regular lattice means there is a bijection between

segmentations (a one-to-one correspondence between seg-

ments), resulting in a consistent and unambiguous relation-

ship between superpixels. This can be seen in Figure 5d. In

contrast, in Figure 5e, which numbered region is to the left

of region 244: 67,71 or 65? Which is under region 208: 73

or 67? Learning label distributions under this segmentation

is ambiguous or involves imposing a new mapping.

(iii) Conservatism: The segments in the superpixel lattice

are of regular size and never greedily select huge image

regions. This limits the possibility of erroneously group-

ing large semantically different regions such as sky and sea

causing drastic ‘leaking’ between classes. Other algorithms

can produce extended regions (e.g. sky in Figure 5c).

(iv) Natural Scale Hierarchy: It is common to solve ran-

dom field models using multi-scale techniques (e.g [15]).

Regular lattices easily accommodate such methods as they

have the same multi-scale relations as the original pixels:

each superpixel decomposes into four smaller child super-

pixels, since happens between Figure 4b and c.

(v) Graph Isomorphism: For a given resolution, superpix-

els in every segmentation have the same relationships with

one another. This allows the development of algorithms that

learn of the relationships between the labeling of groups of

superpixels (i.e. higher-order cliques).
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Figure 5. Comparing superpixel properties. a) Our algorithm.

b) Superpixel algorithm [17] that provides state-of-the-art perfor-

mance against human labeled ground truth (see Section 4). c) Su-

perpixel algorithm [3] that provides efficient segmentation bench-

mark (see Section 4). d) Our algorithm maintains all the useful

pixel properties that result from a regular lattice. e) Superpixels

have a variable number of neighbors in varying spatial configura-

tions. f) Superpixels with varying topologies e.g. some superpixels

can exist completely inside others.

4. Quantitative Evaluation

In this section we demonstrate that our algorithm pro-

duces useful segmentations despite the added topological

constraint of being forced to create a grid. Our evaluation

is based on 11 grayscale test images, equally spaced on a

ranked list2 for performance, from the Berkeley Segmenta-

tion Database Benchmark (BSDB) [12].

We investigate three choices of boundary map: The Pb

boundary map [13] generated using gradient/texton cue in-

tegration that provides good performance against human la-

beling. The fast BEL boundary map [2] generated using a

boosted classifier to learn natural boundaries. This algo-

rithm is efficient and produces a good f-measure score [12]

on the BSDB. We contrast with a simple edge map gener-

ated using the absolute value of the Sobel operator at four

orientations.

We use two metrics for comparing the performance of

superpixel algorithms: explained variation and accuracy.

2id(rank): 42049(1), 189080(10), 182053(20), 295087(30),

271035(40), 143090(50), 208001(60), 167083(70), 54082(80), 58060(90),

8023(100)
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Figure 6. Performance of superpixel algorithm using alternative

boundary maps. a) Explained variation metric (R2) b) Mean accu-

racy (µA). The region of 100-2000 superpixels represents a region

around ∼1% of the original pixels.

4.1. Explained Variation

We are interested in measuring how well the data in the

original pixels is represented by superpixels, for which we

introduce explained variation

R2 =

∑
i(µi − µ)2

∑
i(xi − µ)2

(1)

where we sum over i pixels, xi is the actual pixel value, µ is

the global pixel mean and µi is the mean value of the pixels

assigned to the superpixel that contains xi. An example of

using the superpixel mean can be seen in Figure 1b. This

metric describes the proportion of image variation that is

explained when the detail within the superpixels is removed.

The explained variation metric R2 will take the maxi-

mum possible value of 1 as the number of superpixels in-

creases and we recover the original pixels. It takes the min-

imum possible value of 0 when there is only one superpixel

(the image mean). This is not a perfect metric for evaluating

performance as it penalizes superpixels that contain consis-

tent texture with large pixel variance. However, our intent

is to provide a human independent metric.

In Figure 6a we investigate the performance of our al-

gorithm using explained variation. For all boundary maps

expected variation increases with the number of superpix-

els as we gradually return to the original pixel image. We

achieve similar performance using boundary maps [13] and

[2]. This is important as [13] takes of the order of a minute

to compute which prohibits its use as a preprocessing step.

This is not a limitation for [2] since it uses a boosted classi-

fier on the Canny edge mask. Unsurprisingly both of these

algorithms are superior to just using the Sobel operator. We

also compare the min-cut and dynamic programming for-

mulations for the Sobel operator. The min-cut formulation

is superior: it is better to allow paths that double back on

themselves even though our control over the smoothness of

the path is diminished.

ba b

c d

Figure 7. Accuracy of superpixels against human-labeled ground

truth. a) Human-labeled ground truth regions. b) An example of

the errors associated with the 20×20 lattice presented in Figure 1b

when compared to the ground truth in (a). Pixels in black will be

misclassified by an ideal classifier as they lie in superpixels which

are dominated by a different object class. c) Errors for uniform

sampling. This can only produce piece-wise linear approximation

to image boundaries. d) Errors for [3] with 400 superpixels.

4.2. Mean Accuracy

We use human-labeled ground truth data from the BSDB

to test the accuracy of superpixel boundaries. Each image

in the data set contains independently labeled ground truth

from multiple human subjects. Example ground truth data

can be seen in Figure 7a. We use the mean accuracy, µA,

over subjects, where Accuracy3 is the agreement between

our superpixel and the pixel ground truth si.

We set the j pixels assigned to the nth superpixel to the

mode class (most frequently occurring) of the ground truth

data. This can be interpreted as using an ideal classifier.

As with R2, the mean accuracy µA inevitably tends to a

maximum value of 1 as the resolution of the superpixels in-

creases to that of individual pixels. An example of the errors

associated with the 20×20 lattice presented in Figure 1b can

be seen in Figure 7b, together with competing methods.

With respect to the choice of boundary map, the pattern

is the same as for the explained variation metric: the Sobel

method is inferior to the more sophisticated boundary find-

ing methods. However, in contrast with the previous metric,

performance is improved with the dynamic programming

method relative to the min-cut algorithm. This effect re-

sults from the implicit smoothing properties of the dynamic

programming algorithm, which are important with a weak

boundary cost map.

It is instructive to consider the absolute figures in the

graph. The original images were 640× 480 pixels, so if we

reduce the number of superpixels to 1/500th of this number

(i.e. ∼600 superpixels) we expect to incur a 5% penalty in

3Accuracy is (TruePositive + TrueNegative)/Total.



Algorithm 400 1296

[2] + Method 1 0.750 0.805

[3] 0.808 0.874

[13] + [14] 0.792 0.819

Table 1. Comparison of algorithms using explained variation. Our

method is relatively poor at reconstructing images because it dis-

tributes the superpixels roughly evenly over the frame, rather than

having many superpixels in highly textured areas and few else-

where.

terms of classification. Given that most image parsing al-

gorithms currently exhibit error rates of several times this

magnitude, this is an acceptable price to pay for the conve-

nience of reducing the number of unknown parameters by a

factor of 500.

4.3. Comparison to other algorithms

We compare our algorithm to two other methods: the

normalized cuts (NC) code made available by [14] and the

agglomerative method (FH) of Felzenszwalb and Hutten-

locher [3]. These algorithms represent either ends of a spec-

trum of segmentation algorithms: the NC algorithm pro-

vides state-of-the-art performance against human-labeled

ground truth data, whereas the FH algorithm sets the bench

mark for efficiency. The implementation of the NC algo-

rithm [14] includes post-processing to remove small seg-

ments and break superpixels into homogeneous sizes. We

apply the NC algorithm to the boundary map [13] to achieve

a bench mark of maximum performance. This algorithm is

too slow to be a viable preprocessing component of a vi-

sion algorithm pipeline but serves as a upper bound of seg-

mentation performance. We post-process the FH algorithm

by removing regions <10% of the size of the image area

divided by the number of superpixels. This improves per-

formance at low resolutions and makes results comparable

to our algorithm, which has natural regularizing constraints.

We perform no post-processing on our algorithm.

In Table 1 we compare our algorithm to these competing

methods using the explained variation metric. We compare

for segmentations of 400 and 1296 superpixels, since these

values roughly bracket the useful range of a superpixel al-

gorithm: the region in which we get a large compression ra-

tio without too great a sacrifice in the segmentation quality.

The best performance is achieved with the algorithm of [3],

followed by [13] + [14], and then our algorithm. It is un-

surprising that our method performs worse than these other

approaches because of the topological restrictions. How-

ever, it is surprising that normalized cuts ([13] + [14]) does

not perform best. Closer examination of the results reveals

that the algorithm of [3] tends to describe textures with a

large number of very small regions. This is good for re-

constructing the image, but these regions have no seman-

a d

b e

c f

Figure 8. Merged lattices using [2]. This reduces the number of

superpixels while the lattice preserves structure as well as accu-

racy. a) Original high ranked image (easy). b) 20 × 20 regular

lattice. c) Merged lattice reduced to 200 superpixels. Accuracy

reduces from 0.956 to 0.951. d) Original low ranked image (diffi-

cult). e) 20 × 20 regular lattice. f) Merged lattice reduced to 200

superpixels. Accuracy reduces from 0.923 to 0.902.

tic meaning, which is unhelpful for the final goal of image

parsing. Moreover, this tendency to over-model the image

results in a lack of stability. This is investigated further in

Section 6.

In Table 2 we compare algorithms using the mean accu-

racy metric where a different pattern emerges. Our algo-

rithm produces almost identical results to that of [3]. This

can be seen qualitatively in Figure 7. The normalized cuts

algorithm [17] produces slightly better results, with an aver-

age 1% difference in the region of interest. Unsurprisingly

all methods perform considerably better than simply reduc-

ing the resolution of the image (see Figure 7). We conclude

that our algorithm produces segmentations comparable to

those of [3] despite having an additional topological con-

straint.

Algorithm 400 1296

[2] + Method 1 0.942 0.964

[3] 0.948 0.964

[13] + [14] 0.957 0.968

Table 2. Comparison of algorithms using the mean accuracy met-

ric. Remarkably, our algorithm produces almost identical results

to that proposed by [3] despite being topologically restricted to

segment into a lattice.



5. Merging Superpixels

It is possible to improve the performance of our algo-

rithm by merging adjacent superpixels. In other words, we

can apply a further segmentation algorithm to our computed

superpixel grid. In Figure 8 we show examples of merg-

ing superpixels based on greedily removing boundaries with

the smallest cost. This merging process need not elimi-

nate the desirable properties of the lattice structure. In the

context of a message passing algorithm, we consider the

merged regions as groups of constituent superpixels: they

maintain their usual relationships with neighbors outside

the group, but the MRF/CRF costs are designed so an in-

finite penalty is incurred if the group members take differ-

ent values. Many current inference algorithms can operate

in these circumstances. The graph can still be represented

on a regular grid with all the advantages this provides. The

relationships between the new regions are inexpensive to

calculate as we operate in the 20 × 20 grid of superpixels,

rather than the 640 × 480 domain of the original images.

We investigated segmenting initially into 784 superpix-

els (28 × 28 grid) and merging superpixels until we reach

400 superpixels. Under these circumstances, the perfor-

mance of our algorithm increases substantially (see Table

3). In terms of explained variation our algorithm is supe-

rior to [13] + [14] and comparable to that of [3]. However,

the superpixels are qualitatively more interpretable in our

case sice they do not attempt to model individual texture el-

ements. More importantly, using mean accuracy our perfor-

mance is better than both competing algorithms and may be

attributed to reducing the small cut behavior [17] by over-

partitioning and merging.

Algorithm Explained Variation Mean Accuracy

[2] + Method 1 0.803 0.963

[3] 0.808 0.948

[13] + [14] 0.792 0.957

Table 3. Comparison of algorithms using both metrics after merg-

ing superpixels. Our algorithm explains the variation in the image

almost as well as the best competing algorithm [3] and produces a

better mean accuracy than both competing algorithms.

6. Stability

The use of greedy algorithms means that the solutions

are unstable for consecutive frames of video. To deal

with the temporal aspects of segmenting sequences of video

footage we extend the s-t min-cut solution presented in Sec-

tion 2 to 3D. In this new graph source and sink nodes are

connected to the edge of each strip of the image over sev-

eral frames.

However, this is only half a solution as either memory or

time constraints will limit the number of available frames

Figure 9. A seeded 3D lattice. a) A batch of two frames with

additional t-link edges from the solution of previous frame (black

outline). Additional nodes colored white and black from previous

s-t min-cut solution. b) Cut surface representing the solution to 3D

lattice. Performing the s-t min-cut over several frames results in a

cut that is stable between consecutive frames.

segmented at any given instance. Given such constraints,

each batch (set of frames) would be temporally consistent

but there would be a large jump at the transition between

batches. It is therefore necessary to impose temporal sta-

bility on the next batch of frames by utilizing the greedy

solution from the previous batch of frames.

One solution to achieve a stable greedy lattice is to alter

the nodes and t-links in the 3D grid graph. The first frame

of each new batch is connected (seeded) to the nodes in the

graph of the last frame in the previous batch. Membership

of nodes to source and sink in the s-t min-cut solution from

this last frame are used to connect new t-links in the first

frame of the new batch. An example of this can be seen in

Figure 9. Additional nodes mean that the new s-t min-cut

solution will be influenced by the solution to the last batch.

We took 50 frames from a video sequence of a shop en-

trance in a mall. We segmented this sequence using both

[3] and our method but do not compare with normalized

cuts because this is too slow for useful application to video.

We quantify stability by comparing adjacent pairs of im-

ages in the sequence. As [3] does not produce segmenta-

tions that are isomorphic we find the nearest superpixel in

the consecutive frames where proximity is determined by

the Euclidean distance between cluster centers. We then

count the proportion of pixels from the superpixel in the

first image that are in the matching superpixel in the second

image. We normalize this by the total number of pixels to

provide a number that varies from 0 (totally unstable) to 1

(completely stable). As the scene is static, viewed with a

static camera, the ground truth stability is 1.

Our algorithm applied to each frame produces a mean

stability of 0.73 compared to 0.69 for [3]. However it

rapidly increases to 0.96, 0.97 and 0.98 using batches of

1,2 and 5 frames respectively. There is a trade off between

the stability and the smoothness of the solution which will

be more apparent in dynamic scenes or changing camera

viewpoint and this is left for further work.



a b

c d
Figure 10. Superpixel Stability. Example superpixels (blue) have

stability of 0.70 with the centroid marked with a cross (black).

Note the change in superpixel boundaries (red) between consec-

utive frames. a) and b) Example frames i and i + 1 using [3],

stability 0.69. c) and d) Example frames i and i+1 using a greedy

regular lattice, stability 0.97.

7. Discussion and Conclusions

In this paper, we have introduced a novel algorithm to

segment the image into a regular grid of superpixels4. We

have argued that the regular grid confers a number of use-

ful properties. We have also demonstrated that despite this

topological constraint, we can achieve segmentation perfor-

mance comparable with contemporary algorithms.

The current gold standard method for segmentation is

the normalized cuts algorithm [17]. For a square N × N

image, with N2 pixels, this involves solving an eigenprob-

lem of size N2 using m iterations of the Lanczos method.

It can take of the order of minutes to converge per image.

The computation in [3] is dominated by the need to sort

the edge strengths (of which there are roughly 2N2) yield-

ing O(N2logN2) complexity and in practice can work at

near frame rate for reasonable sized images. Our method

is also fast and scales well as image size increases when

applied to overlapping strips of length N and width S.

Ignoring overlap there are approximately 2N/S of these

strips. For the min-cut method, the cost for processing each

strip is O(N2S2 log NS), giving an overall complexity of

O(N3S log NS) which runs at about 2fps for 20 × 20 su-

perpixel lattices on 321 × 481 images.

In conclusion, our algorithm is fast, accurate, stable and

produces a segmentation with favorable topological prop-

erties. Moreover, if we are prepared to abandon a fixed

topology it produces more accurate segmentations than the

current gold standard. In future work, we intend to develop

our algorithm to spatiotemporal segmentation in dynamic

scenes and investigate learning higher order MRF and CRF

4Code will be made publicly available from http://pvl.cs.ucl.ac.uk/

models using the superpixel lattice as a basis.
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