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Abstract

In this paper, we present a non-rigid quasi-dense match-
ing method and its application to object recognition and
segmentation. The matching method is based on the match
propagation algorithm which is here extended by using lo-
cal image gradients for adapting the propagation to smooth
non-rigid deformations of the imaged surfaces. The adap-
tation is based entirely on the local properties of the im-
ages and the method can be hence used in non-rigid im-
age registration where global geometric constraints are not
available. Our approach for object recognition and seg-
mentation is directly built on the quasi-dense matching. The
quasi-dense pixel matches between the model and test im-
ages are grouped into geometrically consistent groups us-
ing a method which utilizes the local affine transforma-
tion estimates obtained during the propagation. The num-
ber and quality of geometrically consistent matches is used
as a recognition criterion and the location of the matching
pixels directly provides the segmentation. The experiments
demonstrate that our approach is able to deal with exten-
sive background clutter, partial occlusion, large scale and
viewpoint changes, and notable geometric deformations.

1. Introduction
This article addresses the problem of recognizing objects

in photographs. Object recognition is a wide subject and it
can be divided into model-based and appearance-based ap-
proaches. Here we consider appearance-based approaches
which do not require a specific model of the object. It is as-
sumed that some example images of the object are sufficient
for recognition. In addition, we concentrate on recognizing
the given object instances in photographs taken under chal-
lenging viewing conditions where, for example, the amount
of background clutter is large.

Object recognition in the presence of background clut-
ter, occlusion and changing illumination or viewpoint is a
difficult problem. Furthermore, the possible deformation of
the object between the model and test images provides addi-
tional challenge. However, despite the diversity of the prob-

lem, recent research has produced many successful recogni-
tion approaches [13, 10, 6]. Typically these approaches are
local, i.e., they are based on some local viewpoint invari-
ant image features which are matched between the model
and test images. The basic building block in the local meth-
ods is a region detector which is invariant under viewpoint
changes. Several such region detectors have been proposed
in the literature [8]. The detectors adapt to the local shape
of the intensity surface and hence are able to extract corre-
sponding regions from the model and test images despite
the change in viewpoint. Given the detected regions in
the model and test images, the most straightforward ap-
proach for recognition is to represent the regions with fea-
tures which allow reliable matching and then use the num-
ber of matched features as a recognition criterion [10].

The advantage of the local recognition methods is that
they are more tolerant to clutter and partial occlusion than
the global approaches [9]. However, even the performance
of the local approaches is limited in the presence of exten-
sive background clutter. This is due to the fact that the back-
ground produces many incorrect feature matches which dis-
turb the recognition process. In addition, occlusion and
large scale or viewpoint changes reduce the probability that
a model feature is correctly extracted from the test image.
Hence, the combined effect is that the number of matching
features is not a reliable recognition criterion since most
of the matches are caused by the background. In order to
counter these problems a multi-step match-growing strategy
has been proposed [2]. This approach consists of alternating
expansion and contraction phases which gradually increase
the ratio of correct matches. In the expansion phase the cur-
rent set of region matches is used to construct more match-
ing regions in the surrounding image areas and in the con-
traction phase some of the mismatches are removed using
either a global or local filter. Usually the correctly matched
regions grow better than the false ones and this increases the
performance of the recognition system [2].

The problem of recognizing a particular object instance
in a photograph is closely related to the image registration
problem. In fact, the approach in [2] basically searches for
the best registration between the model and test images.
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However, in some sense the object matching problem de-
scribed above is more difficult than a traditional non-rigid
registration problem where the common area in the images
is usually approximately known in advance [1]. Hence, due
to the different context, the approaches for solving the regis-
tration problem may be quite different [1, 2]. Nevertheless,
the match propagation principle used in quasi-dense match-
ing [4, 3] is somewhat similar to the match expansion in
[2]. Yet, the quasi-dense approach originates from the con-
text of image matching and, until now, it has not been used
for object recognition.

In this paper we propose a new object recognition
method which is based on quasi-dense matching. The match
propagation technique [4, 3] is here extended to deal with
non-rigid image deformations and combined with a new
match grouping technique so that it can be applied for ob-
ject recognition and segmentation. The closest works to that
which we report here are [3] and [2]. We use a similar wide
baseline match propagation strategy as in [3]. However, the
adaptive propagation method proposed in [3] requires that
the epipolar geometry between the images is known while
the approach proposed here does not have such a limita-
tion. This increases the applicability of the method. Our
approach for object recognition and segmentation is con-
ceptually similar to [2]. Yet, the proposed method is more
straighforward than that in [2] since there are no repeated
contraction phases. In addition, our approach does not use
any global constraints and handles the images symmetri-
cally. Hence, it can be applied also in cases where both the
model image and the test image contain background clutter.

In addition to [2] and [3] the basic idea of growing
matches has been used in several works. A region-growing
algorithm was proposed in [12] and also the more recent
papers [7] and [14] contain somewhat similar ideas. How-
ever, these earlier approaches do not address the generic ob-
ject recognition problem. For example, [7] assumes known
epipolar geometry and [14] does not discuss the grouping
of matching regions.

2. Background
The match propagation algorithm for quasi-dense match-

ing was proposed in [4] and extended to the wide baseline
case in [3]. Since our method utilizes the approach of [3]
we briefly review it here.

The basic idea in quasi-dense matching is to compute
a large number of point correspondences between two im-
ages by starting from a sparse set of initial matches. Affine
covariant regions [8] can be used as such initial matches
[3]. Hence, the output of the initial matching phase is a
set of corresponding points {(xi,x

′

i)}i (the centroids of the
matched regions) accompanied with the local affine trans-
formation matrices Ai. The initial matches are used as
seed points for the match propagation which searches new

PSfrag replacements

2W + 12W + 1

2N + 1

I I ′

A

x
x
′

x̂

û
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Figure 1. The geometric normalization of local image neighbor-
hoods for a seed match (x,x′). The pixels x̂ and x̂

′ in the nor-
malized coordinate frame correspond to the points x and x

′ in
the original images. The large black framed windows indicate the
search region for new candidate matches. The ZNCC score for
the candidate match (û, û′) is computed from the smaller black
framed windows whose size is (2W +1)×(2W +1).

matches from the surrounding image areas by using the
zero-mean normalized cross-correlation (ZNCC) as a simi-
larity measure. The obtained matches are stored in a dispar-
ity map which is filled in by iterating the following steps:

(i) the seed point (xi,x
′

i) with the highest ZNCC score is
removed from the list of seed points

(ii) new candidate matches are searched from the sur-
roundings of (xi,x

′

i) by using Ai for the geometric
normalization of local image neighborhoods

(iii) the candidate matches with a sufficiently high ZNCC
score are stored in the disparity map and added to the
list of seed points

In this manner, the number of correspondences in the dis-
parity map increases until the list of seeds becomes empty.

The geometric normalization process of step (ii) is illus-
trated in Fig. 1. There the current seed is (x,x′) and the cor-
responding affine transformation matrix is A. The local im-
age neighborhoods of x and x

′ are normalized into patches
of size (2N+1)×(2N+1) where from the candidate matches
are searched for. The normalization is performed so that the
size of the normalized region is (2N+1)×(2N+1) pixels in
the image which locally has a lower resolution. The size of
the corresponding region in the other image is determined
by the local magnification factor which is either |detA| or
|detA|−1. The normalized image neighborhoods are il-
lustrated by the large black framed windows in Fig. 1 and
denoted by N (x̂) and N (x̂′) in the following.



Given the normalized neighborhoods for the current seed
match, the possible candidate matches are given by

N (x̂, x̂′) = {(û, û′) | û ∈ N (x̂), û′ ∈ N (x̂′),

||(û′ − x̂
′) − (û − x̂)||∞ ≤ ε},

where ε is the disparity gradient limit [4]. Here we used
the value ε=1 which implies that the vectors from the seed
point to the candidate point must have approximately the
same direction in both normalized coordinate frames. In
addition, a candidate match is considered valid only if it is
not yet in the disparity map, i.e., neither the pixel closest to
u in image I nor the pixel closest to u

′ in image I ′ is labeled
as matched. The ZNCC score is computed for the valid can-
didate matches using windows of size (2W +1)×(2W +1)
in the normalized domain. Those candidates which exceed
a predefined ZNCC threshold z are stored in the disparity
map and added to the list of seed points. In the basic propa-
gation mode the new seeds inherit the affine transformation
matrix from the current seed. Hence, a seed match is always
associated with a local affine transformation which provides
the basis for the geometric normalization at each iteration.

Furthermore, in order to prevent mismatching in low-
textured regions, a threshold τ may be introduced for the
intensity variance of the correlation windows. That is, a
seed match is rejected if the intensity variance in its neigh-
borhood is below τ . This is motivated by the fact that the
threshold z alone may not be a reliable matching criterion
in uniform image areas [4].

In addition to the basic propagation mode described
above, an adaptive propagation approach was proposed in
[3]. There the idea is to update the estimate of the local
affine transformation during the propagation. The adapta-
tion is based on the second order intensity moments and the
epipolar geometry. The adaptive propagation mode allows a
single seed match to propagate into regions where the local
transformation between the images differs from the initial
one. However, the adaptation requires that the scene is rigid
and the epipolar geometry is known.

As observed in [4], the match propagation algorithm has
some desirable properties for image matching. Firstly, the
algorithm can be implemented efficiently by using a heap
data structure for the fast selection and addition of seed
points. Secondly, the algorithm is relatively robust to false
matches among the initial seeds. This is due to the best-first
propagation strategy which stops the growing of bad seeds
in an early stage.

3. Non-rigid quasi-dense matching
In this section we propose an extension to the match

propagation technique which allows the propagation to
adapt to smooth non-rigid deformations of the imaged sur-
faces. In addition, we suggest a fast propagation strategy

for such cases where a disparity map with a reduced num-
ber of point correspondences is desired. Finally, the pro-
posed techniques are illustrated with real image registration
examples.

3.1. Non-rigid adaptation
Our non-rigid match propagation method uses the local

image gradients and the second order intensity moments to
update the estimate of the local affine transformation dur-
ing the propagation. Hence, unlike in [3], we do not use the
epipolar geometry or any other global constraint in match-
ing. Thus, our approach can be used also in cases where the
epipolar geometry is not known or the scene is deforming.
The details of the method are as follows.

The windowed second moment matrix of the image in-
tensity function f is defined by

Sf,g(u) =

∫
vv

>f(v)g(u − v)dv, (1)

where the function g is a positive window function. We
assume that the intensity function f ′ and the window func-
tion g′ are affine transformed versions of f and g so that
f ′(u) = f(A−1

u) and g′(u) = g(A−1
u)/|detA|. Thus,

the coordinate systems in both images are centred to the
points under consideration which causes the translational
part of the affine transformation to vanish. A change of vari-
ables in (1) gives the following transformation rule

Sf ′,g′(u) = ASf,g(A
−1

u)A>. (2)

Since the origin is the point of interest here, we use the sim-
plifying notations S

′ = Sf ′,g′(0) and S = Sf,g(0). The
positive definiteness of (1) together with (2) implies that

A = S
′1/2

RS
−1/2, (3)

where R is an arbitrary orthogonal matrix. Hence, given S

and S
′, the matrix A can be determined up to a rotation. The

idea in [3] is to use the affine transformation of the current
seed match to compute the local windows for a new can-
didate match, and estimate S and S

′ using these windows.
Then the affine transformation for the new match is com-
puted by (3) where the remaining rotational degree of free-
dom is determined from the epipolar lines of the matching
points. However, here we determine the rotation by using
orientation histograms of local image gradients [6]. That is,
we use the histograms to compute the dominant directions
of image gradients in the local neighborhoods of the new
match. Thereafter, given S and S

′ and a pair of correspond-
ing directions, d and d

′, the affine transformation can be
completely determined.

In practice, the computations are carried out in the nor-
malized coordinate frames which are illustrated in Fig. 1.
Let us consider the case where (x̂, x̂′) is the current seed
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Figure 2. Two images of a rigid scene containing two planes. The matches are shown for both the non-adaptive propagation method (left)
and the adaptive propagation method (right) and they are colored according to their Sampson distance from the known homographies [3].
The values over 5 are suppressed to 5, the noncommon image area has grayvalue 6 and the unmatched white area has grayvalue 7. The
parameter values used in the propagation were N =5, W =5, ε=1, z=0.8, τ =0, τa =0.25 and J =0.
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Figure 3. Non-rigid image registration. The distance between the matched point and its true position in the deformed image is used for the
color coding. The values over 4 are suppressed to 4. Top row: Matches propagated from the seed in the left using the basic mode with J =0
(81767 matches, 220 seconds), the adaptive mode with J = 0 (185027 matches, 627 seconds) and the adaptive mode with J = 1 (32570
matches, 264 seconds). Bottom row: Matches propagated from the seed in the right using the basic mode with J =0 (86910 matches, 246
seconds), the adaptive mode with J =0 (182726 matches, 622 seconds) and the adaptive mode with J =1 (34905 matches, 285 seconds).
The matches obtained with J =0 and J =1 are about equally accurate; the latter just appear more grayish since they are not as dense. The
median errors for the matches in the last three columns are 1.2, 1.5 and 1.7 pixels.

and (û, û′) is the candidate match under consideration. The
aim is to estimate the local affine transformation between
the original images at (u,u′) using the image patches of
size (2W + 1)× (2W + 1) around û and û

′. First, the
image patches are photometrically normalized and multi-
plied by a Gaussian window function [3]. Thereafter the
moment matrices Ŝ and Ŝ

′ are computed from the patches
and transformed to the original coordinate frames by S= Ŝ

and S
′ = AŜ

′
A

>, where A is the transformation used
in the normalization process. Second, the dominant gra-
dient directions d̂ and d̂

′ are computed from the patches
and transformed back to the original frames, i.e., d = d̂

and d
′ = Ad̂

′. The gradients are computed by convolv-
ing the patches with the derivatives of a Gaussian filter and
their magnitude-weighted orientations are stored in a his-
togram with 36 bins. The histogram is smoothed and the
dominant gradient direction is found by fitting a parabola
to the three values closest to the highest peak in the his-

togram [6]. Finally, the affine transformation for the new
seed match (u,u′) is computed from S,S′ and d,d′ as de-
scribed above.

The advantage of performing the computations in the
normalized frame is that the values of the Gaussian window
function and the derivatives of the Gaussian filter can be
calculated in advance since the window is always the same.
In addition, due to the separability of the isotropic Gaussian
filter the gradient can be computed efficiently with two 1D
convolutions. In summary, the image interpolation, illus-
trated in Fig. 1, is done only once at each propagation step
and this allows efficient propagation also in the non-rigid
case.

Finally, in order to make the adaptation more robust we
introduced a threshold τa for the minimum intensity vari-
ance in the local patches. That is, the adaptation is per-
formed only if the variance of the image intensity in the
neighborhood of a new match is sufficiently high. Further-



more, if either one of the orientation histograms is very flat
so that the peaks can not be reliably identified, the adapta-
tion is not performed.

3.2. Fast propagation by jumping
Due to the high resolution of the images the number of

quasi-dense matches may be unnecessarily large for appli-
cations. For example, points lying very close to each other
do not provide much additional information in surface re-
construction but make the computational cost of subsequent
processing high [5]. Hence, a resampling strategy was
used in [5] where a reduced set of point correspondences
was computed by fitting an affine transformation to sev-
eral quasi-dense matches inside small image patches. Here
we suggest an alternative approach where the match prop-
agation algorithm directly produces a reduced but uniform
set of correspondences. This is achieved by modifying the
propagation algorithm of Section 2 so that in step (iii) only
such seed matches are accepted whos (2J +1)× (2J +1)
neighborhood does not already contain matches. The mod-
ification causes the propagation to take larger steps and
hence proceed faster. The parameter J determines the jump
size. Although a very large value of J may reduce the adap-
tivity of the method, we found that usually a small value,
such as J =1, can be safely used for faster propagation.

3.3. Examples
The non-rigid matching method is illustrated with the ex-

amples in Figs. 2 and 3. First, in Fig. 2, we have the same
image pair which was used in [3] and is available at [15].
There the scene contains two planes for which the homogra-
phies between the views are known so that the matches can
be evaluated. The match propagation was started from a sin-
gle seed region which is illustrated by the ellipses in Fig. 2.
The last two columns in Fig. 2 show the propagation re-
sult obtained by using both the basic propagation mode and
the adaptive propagation mode. Only the adaptive method
is able to proceed into such image regions where the lo-
cal transformation differs from the initial one. The obtained
result is comparable to [3] although here the epipolar geom-
etry was not used to either constrain the matching or assist
the adaptation. This shows that our adaptation method is
stable enough when applied to a rigid scene.

In the second experiment, illustrated in Fig. 3, we intro-
duced a non-rigid deformation by displaying an image and
its deformed version on a flat screen display and taking a
photograph of both images. The homographies between the
images and their photographs were determined by display-
ing a calibration pattern on the screen. Since the artificial
image deformation and the homographies were known we
calculated the geometric transformation from the first pho-
tograph to the second one and used it as a ground truth for

evaluating the quasi-dense matches. The results are illus-
trated in Fig. 3. It can be seen that the non-rigid adaptation
clearly improves the matching. Both of the illustrated seed
regions propagate well and most of the false matches are
located in low-textured image regions where the propaga-
tion could be further prevented by increasing the threshold
τ . The computation times reported in Fig. 3 were obtained
by our current Matlab/MEX implementation which is not
optimal for efficiency.

4. Segmentation and recognition
This section proposes an approach which utilizes the

quasi-dense matches for segmenting and recognizing com-
mon objects in two images. The approach is based on
grouping the matches into geometrically consistent compo-
nents which are supposed to lie on smooth surfaces repre-
senting the objects. In addition, we introduce a measure for
evaluating the reliability of the obtained segments.

4.1. Match grouping
The match grouping, illustrated in Fig. 4, has two phases.

First, a set of tentative segments is made by forming a sin-
gle group from all the matches which have grown from the
same initial seed match. Second, the neighboring groups
are merged if the local affine transformations on the bound-
aries of the groups are sufficiently similar with each other
and in good agreement with the spatial arrangement of the
groups.

The tentative grouping phase is illustrated in the first col-
umn of Fig. 4. On the grounds of the properties of the match
propagation, described in Section 3, it is reasonable to as-
sume that the matches originated from a single seed lie on
a smooth surface. Here these surfaces are considered as ob-
jects and, as can be seen from Fig. 4, the tentative segments
are indeed located on single objects. However, there may
still be several segments on a particular object and the re-
maining task is to merge such segments.

The grouping of neighboring segments is based on con-
sidering such sets of three nearby matches where all the
matches are not yet in the same segment. The studied
sets are found by applying the Delaunay triangulation algo-
rithm [11] to all matches in both images and then discard-
ing such triangles where all the vertices already belong to
the same group. The geometric consistency of the remain-
ing triangles is examined, as described below, and for each
consistent triangle the segments associated to the vertices
are merged. The triangles before and after the consistency
check are illustrated in Fig. 4.

The geometric consistency of sets of three matches is
evaluated as follows: (a) the centroids of the three match-
ing points are translated to the origin in both images, (b) the
translated points from the image with a larger local scale



(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 4. The recognition and segmentation process illustrated step by step. (a) and (e) show the initial seeds (yellow ellipses) and the
quasi-dense matches; matches originating from different seed points are plotted with different colors. (b) and (f) show the result of the
Delaunay triangulation. (c) and (g) show the surviving triangles after the consistency check. (d) and (h) show the final segmentation results.

are mapped to the other image using the affine transforma-
tion matrices associated with each match during the propa-
gation, (c) the Euclidean distances from the resulting nine
points to their translated correspondences are computed, (d)
the maximum of all these distances (i.e. the maximum dis-
placement) is used as a measure for the geometric consis-
tency of the three matches. The segments joined by at least
one set of three matches, whose maximum displacement is
below a predetermined threshold, are merged. The thresh-
old for the maximum displacement was 5 pixels in the ex-
amples of Figs. 4 and 5.

The Delaunay triangulation is an efficient way for join-
ing neighboring segments. The computational complexity
of the algorithm is O(n log n) where n is the number of
points. Furthermore, performing the triangulation in both
images allows also to merge segments which are separated
by a mismatched segment inbetween them in either one of
the images. For example, the mismatch could be caused by
an occlusion which is present in the other image. However,
it is more unlikely that two segments of the same object
would be completely isolated from each other in both im-
ages by mismatched segments. Hence, our local approach
for segmentation is tenable in practice.

4.2. Recognition
After the match grouping the recognition system has to

determine which segments represent real objects and which
are false matches. To address this problem we evaluate the
obtained segments by computing their correlation weighted
areas in both images (i.e. the area covered by the correla-
tion window of each match in the segment is weighted with

the cross-correlation score obtained during the match prop-
agation) and taking the minimum of these as a reliability
measure. Typically the false matches have smaller cover-
age which implies that they are not considered as reliable as
the correct ones. For example, in the last column of Fig. 4
we have illustrated all the segments obtained at the group-
ing phase for our example image pair. The eight segments
with the largest correlation weighted areas correspond to the
eight objects in the images.

Often the recognition task is such that we are given two
images of which the first one contains a model object on a
uniform background and the other is a test image and we are
asked to determine whether the model object is present in
the test image [2]. Our approach above is directly applicable
also in this kind of recognition task. However, in this case
we may directly use the correlation weighted area in the
model image as a recognition criterion since we know that
the model image contains nothing else than the object. Fur-
thermore, if the model object is segmented from its uniform
background, we may multiply the correlation weighted area
with the relative coverage of the object area. This makes
the models of different sizes more comparable. However,
in general the model objects need not to be segmented, in
contrast to the approach in [2].

5. Experiments
In this section we present experiments which demon-

strate our approach in recognition and segmentation tasks.
The first experiment in Fig. 5 illustrates the general case
where the task is to find and segment the common objects
in two images. In the second experiment, shown in Figs. 6-



(a) (b)

(c) (d)
Figure 5. The segmentation results in the case of two images with
several common objects and background clutter.

8, the recognition performance is evaluated using the same
dataset as in [2].

The first image pair in Fig. 5 contains 14 common ob-
jects. The 14 segments, which were considered the most re-
liable matches, are illustrated with different colors. There is
one false match among the segments and it is the L-shaped
region in magenta. The only true object missing is the tea
bag which was not found due to few seeds on it. One can
observe that some obtained segments include parts of the ta-
ble in the background. This is because the table is the same
in both images and it is not completely uniform in intensity.
Yet, if necessary, the matching in relatively uniform regions
could be further prevented by increasing the thresholds for
the propagation. Overall, the segmentation result is fairly
accurate despite the occlusions and deformations present.

As the second test pair in Fig. 5 we have two images
taken from the ETHZ toys dataset [16]. Despite signifi-
cant background clutter in the images the method correctly
found the magazines as the two most reliable matches. The
segmentation of the magazine indicated by the blue line in
Fig. 5 is almost perfect, except for the small strongly folded
part at the lower left corner. The other segmentation illus-
trated with the red line is slightly less accurate leaving out
only the lower left corner, which is strongly folded and has
some illumination distortions.

In the last experiment we performed the same object
recognition task as in [2] using the ETHZ toys dataset [16].
In this dataset there are 9 model objects and 23 challenging
test scenes where one or more model objects are present.
Figs. 6 and 7 illustrate some samples of the model and test
images. The recognition task is to determine which model
objects are present in the test scenes and to find the corre-
sponding segmentations.

(a) (b) (c)

(d) (e) (f)
Figure 6. Six images of model objects in the ETHZ toys dataset.

The recognition was performed by applying our method
to all model and test image pairs. That is, the match propa-
gation was first performed with the values N =12, W =8,
ε = 1, z = 0.85, τ = 0.45, τa = 0.7 and J = 1 where-
after the matches were grouped using a threshold of 20
pixels for the maximum displacement criterion. The reli-
ability of the obtained segments was finally measured by
their correlation-and-coverage-weighted area as described
in Section 4.2. The weighted area of the most reliable seg-
ment was used as an evidence that the model under consid-
eration is present.

Some of the objects in the dataset had more than one
model view and in this case we computed the total evidence
as a sum of the evidences of the views. In addition, if the
magnification factor of the best matching segment was be-
low 0.06 the system was set to give a negative recognition
result independently of the evidence value. This removes
such false detections where the region in the model image
is very heavily downscaled. (The downscaling leads to a
loss of details and can thus cause erroneously high evidence
values when the object is not present at all.)

In order to quantify the recognition performance we
computed the ROC curve by altering the decision threshold
for the evidence value. Fig. 8 illustrates the resulting curve
(blue) and also the one produced in the same experiment in
[2] (black). It can be seen that our method gives almost as
good performance as the method in [2] without using any
color information. It is likely that the lack of color infor-
mation explains much of the difference between the curves.
We demonstrate the effect of incorporating color by taking
it into account in a naive way, i.e., by computing the 10×10
normalized color histogram for the best matching segment
in both images and then dividing the original evidence with
the intersection of the histograms. The ROC curve with the
new evidence is also plotted in Fig. 8 (red). It can be seen
that already this simple incorporation of color gives results
comparable to [2]. However, it would be relatively straight-
forward to utilize color directly in the match propagation
phase and this might improve the results further.
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Figure 7. Examples of segmentation results with the ETHZ toys dataset.
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Figure 8. ROC plot for the ETHZ toys dataset.

6. Conclusion
In this paper we proposed a non-rigid match propaga-

tion method which adapts to smooth deformations of the
imaged surfaces using only local properties of the images.
The experimental results show that the presented method
can be successfully used for image registration in the pres-
ence of notable geometric deformations. In addition, we
proposed a new approach for match grouping which directly
utilizes the local affine transformation estimates obtained
during the match propagation. The grouping allows to use
the quasi-dense approach for segmenting the common ob-
jects from the images. Furthermore, the groups of quasi-
dense matches can be directly used for object recognition.
The object recognition results obtained with a commonly
available dataset show that our approach is able to deal with
challenging viewing conditions, such as occlusion, clutter,
geometric deformations and large viewpoint changes.
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