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Abstract

The simultaneous segmentation of multiple objects is an
important problem in many imaging and computer vision
applications. Various extensions of level set segmentation
techniques to multiple objects have been proposed; how-
ever, no one method maintains object relationships, pre-
serves topology, is computationally efficient, and provides
an object-dependent internal and external force capabil-
ity. In this paper, a framework for segmenting multiple ob-
jects that permits different forces to be applied to different
boundaries while maintaining object topology and relation-
ships is presented. Because of this framework, the segmen-
tation of multiple objects each with multiple compartments
is supported, and no overlaps or vacuums are generated.
The computational complexity of this approach is indepen-
dent of the number of objects to segment, thereby permitting
the simultaneous segmentation of a large number of compo-
nents. The properties of this approach and comparisons to
existing methods are shown using a variety of images, both
synthetic and real.

1. Introduction

Active contours are extremely popular for image seg-
mentation in computer vision [14, 7]. Those that are im-
plemented using level sets — the so-called geometric de-
formable models (GDMs) [19] — permit flexible topologi-
cal changes and yield contours with no self-intersections. In
many computer vision applications, it is desirable to simul-
taneously segment multiple objects in a scene. Although
the traditional approach supports the simultaneous segmen-
tation of multiple isolated parts of the same object (by us-
ing a single level set with its “inside” in different locations),
this does not support the use of different forces for differ-
ent objects, the preservation of fixed topologies for differ-
ent objects, or the maintenance of neighborhood relation-
ships between different objects. It may also be desirable to
simultaneously segment objects having multiple compart-
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ments within them — a multi-object segmentation problem
that requires a preservation of both inclusion and geometric
relationships between the objects and compartments. Par-
ticularly in the segmentation of normal anatomy in biomed-
ical imaging, the above properties are highly desirable.

The extension of GDMs to the segmentation of multi-
ple objects and multi-compartment objects is not straight-
forward. Difficulties arise because the different forces (in-
ternal and/or external) for each object must remain coherent
to avoid overlap and vacuum between segmented regions.
Similarly, maintaining the topology and relationships dur-
ing segmentation is a complex and computationally inten-
sive task. Fig. 1 illustrates a simple geometry that actu-
ally represents a significant challenge. The three ellipses
are to be found in such a way that they remain connected,
do not overlap, their outer boundaries conform to the gray
level edges, and their inner boundaries are smooth. This is
a typical challenge in these multi-compartment problems,
and there is no existing method in level set literature solv-
ing them.

Figure 1. Ellipse example: to segment this image into three el-
lipses, different forces are needed on the external(blue) and inter-
nal(red) boundaries.

In this paper, we present a new framework called multi-
compartment geometric deformable model (MGDM), in
which the evolution of the level set functions represent-
ing any number of objects or compartments is recast into
the evolution of just two real-valued functions and two la-
bel functions. We emphasize that there is no computational
penalty for increasing the number of objects. Conventional
level set formulations can be carried out because the two
representations are equivalent on a narrow band around the
object or compartment boundaries. The topology of ob-
jects and the relationships between groups of objects are
preserved by using a multi-object simple point constraint
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instead of their zero level set [17]. The problem of object
overlap and vacuum is automatically solved due to the fact
that the evolving functions encode directly the partition of
the objects. Because two hierarchical labels associated with
objects are carried within the computation, it is straightfor-
ward to implement object-dependent forces, including dif-
ferent forces on different boundaries that connect specific
objects or compartments. The description of MGDM we
provide here is valid for two-dimensional images; it is nec-
essary to add a third real-valued function to realize the same
benefits in three dimensions.

2. Related Work

A number of approaches have been proposed for the si-
multaneous segmentation of multiple objects [13, 9, 1, 15,
4, 6, 11, 2, 10, 3, 22]. Most use N level set functions to seg-
ment N regions [4, 15, 10, 6, 3], introducing extra coupling
forces in order to penalize overlap and vacuum between re-
gions. [22] presents a multi-object curve evolution strategy
without involving further numerical parameters. However,
these methods do not guarantee no overlap or vacuum and
the strict controls of single object’s topology. A probabilis-
tic embedding was also proposed to avoid overlap and vac-
uum by labelling regions according to their maximum prob-
ability [11]. None of these methods guarantee the preserva-
tion of the topology of the collection of objects, including
their geometric relationships such as common boundaries,
although there are methods that guarantee topology preser-
vation of single objects [24, 20].

In [13], Chan and Vese introduced the so-called multi-
phase level set framework using the Mumford-Shah model
[8] to segment multiple objects with no overlap or vacuum.
In general, log N level sets are needed to describe N objects
and in two dimensions this number may be reduced to two
level set functions using the four color theorem. The basic
idea of the multi-phase approach is to use a combination
of level set functions to represent multiple objects (or com-
ponents). Although highly attractive from a computational
complexity point of view, the multi-phase approach has two
key limitations. First, its image-based external force term is
limited to region-based forces. Second, its internal forces
— a penalty on contour length — apply to the level set
functions rather than to the objects. Because of these limita-
tions, anomalous results such as that shown in Fig. 2 can be
produced. Here, the two level set functions have achieved
level sets with optimal lengths and areas, but the resulting
segmentation of the left-most ellipse is clearly wrong, and
would not have resulted if the boundary length penalty had
been applied to the objects rather than the level set func-
tions. We also note that because of these limitations, spe-
cific forces for different regions and different parts of the
same region cannot be used in the multi-phase framework.

(a) (b)

Figure 2. Multi-phase segmentation counterexample: a) two level
sets obtained with the multi-phase framework, b) the segmentation
of the left ellipse.

3. Description of MGDM

Our multi-compartment geometric deformable model
(MGDM) is designed to implement the most general multi-
object level set deformable model without having to explic-
itly evolve and maintain all the level sets. In this section,
we start by describing an alternate representation of multi-
ple objects that requires maintenance of only four functions.
These functions are shown to be equivalent to the original
level set functions in their narrow bands provided that there
is no point in the image domain touching more than three
objects. We then show how an evolution of these four func-
tions can be undertaken to solve the original multi-object
level set problem as well as maintaining object topologies
and relationships.

3.1. Multi-object Representation

Let Ω ⊂ �2 be an image domain in which N regions
(objects), O1, O2, . . . ON , are to be segmented. These ob-
jects do not intersect except on their boundaries and their
union comprises the entire domain Ω. The locations of the
regions are given by a label function L : Ω �→ L where
L = {1, 2, ..., N}. A domain Ω comprising four objects
is depicted in Fig. 3(a). For convenience in relating the
MGDM to conventional level set evolution equations, we
define N level set functions φ1, φ2, ..., φN as distance func-
tions having positive distances inside the respective region
and negative values outside. Likewise, the sum of the forces
governing the evolution of φi, i = 1, 2, ...N will be noted
as fi � ∂φi

∂t , i = 1, 2, ..., N .
We now define a new multi-object distance function

ϕL: Ω �→ � as

ϕL =
N∑

i=1

max{φi, 0} . (1)

This function is nonzero everywhere on Ω except on the
boundaries between regions. Simply stated, ϕL repre-
sents the distance to the nearest boundary, as illustrated in
Fig. 3(b).

For any point x ∈ Ω, if we are given the values of the
label function and the multi-object distance function, then
we are immediately able to recover the value of the level set
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Figure 3. Multi-object representation: a) object label function L;
b) level sets of ϕL; c) joint parts {Jij}, d) level sets of ϕF .

function of the object x is in. But since we are interested
in the evolution of the object boundaries, then we also need
to be able to recover the value of the level set function of
the neighboring object when x is near a boundary. This
motivates the need to look at pairs of objects.

Consider the shared boundary bij = ∂(Oi∩Oj) between
two adjacent objects Oi and Oj as well as the boundary of
their union Bij = ∂(Oi ∪ Oj). We define the joint part of
Oi and Oj as

Jij = {x ∈ Oi ∪ Oj | min
y∈bij

‖x − y‖ < min
z∈Bij

‖x − z‖},
(2)

If x ∈ Jij , then x is closer to the shared boundary between
Oi and Oj than to the boundary of their union. The n(n −
1)/2 joint parts of all object pairs partition Ω according to
each point’s proximity to shared boundaries, as illustrated in
Fig. 3(c). It is noted that joint part of two objects is empty
if they have no shared boundary.

In order to know what joint part a point belongs to, it is
necessary to store one additional label. We define the label
function for the first neighbor as follows:

F (x) = j, if x ∈ Oi ∩ Jij , (3)

for all i, j, i 	= j. With this notation, x is in Jij if
{L(x), F (x)} is equal to {i, j} or {j, i}.

Now consider a point x ∈ Jij . We define ϕF at x as the
difference between the distance from x to ∂(Oi ∪ Oj) and

φL(x). Using the definition of φL in Eq. (1) we can write

ϕF =
N∑

i,j=1,i�=j

max{φij , 0} − max{φi, φj , 0}, (4)

where φij is the level set function of Oi ∪ Oj . The isocon-
tours of ϕF are illustrated in Fig. 3(d). We note that ϕF is
not to be interpreted as the “multi-object distance function”
of the joint part. Rather, it is an artificial function designed
for the sole purpose of providing a compact representation
from which the required level set functions can be recon-
structed, as we explain next.

3.2. Level Set Function Equivalence

In this section, we show that φ1, φ2, . . . , φN can be di-
rectly computed in a narrow band around their level sets
from L, ϕL, F , and ϕF . The following scenario contains
the three cases that must be considered. Let Oj and Ok be
two distinct objects neighboring Oi such that Oj and Ok are
also neighbors. Let Om be an object different from Oi, Oj ,
and Ok . For explanatory purposes, it is convenient to define
dm(x) to be the minimum distance from x to the region
Om. Then from the geometry, it is straightforward to verify
that the following function equals the level set function of
Oi near its boundary

φ̃i(x) =




ϕL(x), x ∈ Oi;
−ϕL(x), x ∈ Oi ∩ Jij ;
−ϕL(x) − ϕF (x), x ∈ Oi ∩ Jjk and

di(x) < minm dm(x);
unknown, otherwise.

(5)
In fact, the region over which φi can be directly and exactly
computed includes all points inside Oi, and the region out-
side of Oi extending outward to one half the dimension of
its neighboring objects.

Since the unknown values are “far away” from the
boundaries that are evolving, we can make the approxima-
tion that the level set function value in an unknown area is
just −ϕL(x) − ϕF (x) (the same as the third case). Given
this, the three locations of x relative to Oi that are relevant
in this definition are determined from the label functions L
and F . In fact, Eq. (5) can be rewritten to provide the fol-
lowing expression for the level set function of Oi

φi =




ϕL, if L = i;
−ϕL, if L 	= i, and F = i;
−ϕL − ϕF , if L 	= i, and F 	= i.

(6)

We emphasize first that this function is a valid level set func-
tion and second that it is exactly equal to the original level
set function of the object itself and (at least) within a narrow
band around the object’s boundary.



In the example of Fig. 3, the value of φ1 is φ1(x) =
ϕL(x) for x ∈ O1. If x ∈ O1 ∩ J12, i.e., inside the in-
tersection of both yellow parts in Fig. 3(a) and Fig. 3(c),
φ1(x) = −ϕL(x). The same happens for x ∈ O1∩J13, i.e.,
the intersection of pink in Fig. 3(c) and green in Fig. 3(a).
If x ∈ O1 ∩ J23 and d1(x) < d4(x), i.e. the purple re-
gion left of the white dotted line in Fig. 3(c), φ1(x) =
−ϕL(x) − ϕF (x). Values of φ1 on the right half of the
rectangle cannot be recovered accurately, but they do not
affect the evolution in a narrow band scheme.

3.3. Evolution of ϕL and L

The relationship between φi, i = 1, 2, ..., N , φij , i, j =
1, 2, ..., N, i 	= j and the new functions ϕL, ϕF , L, F
being set, any curve evolution originally applied to φi,
i = 1, 2, ..., N can be transferred to ϕL, ϕF , L and F . The
evolution of ϕL and ϕF is motivated by the forces of sev-
eral objects, and the following evolution scheme efficiently
encodes the necessary coupling of the level set functions
without additional constraint forces.

At the boundary between two objects Oi and Oj , the la-
bel of each pixel can only switch between the two regions.
Eq. (6) requires the forces applied to φi and φj to be the
opposite of each other; thus, we can write

∂ϕL

∂t
=

1
2
(fi − fj), (7)

for any point where L = i and F = j. Note that a single
image sweep is needed, and the evolution forces for each
structure are not computed in the whole image but only in
the specific area as defined, unlike the methods using N
level set functions.

By definition, ϕL ≥ 0. Suppose that during the evolu-
tion ϕL(x) + ∂ϕL

∂t (x) < 0. In this case, L(x) should be
exchanged from i to j, and ϕL(x) is reset to be |ϕL(x)|.
However, in order to maintain the topology of the segmen-
tation, we further require x to be a simple point for both ob-
jects and any possible group of objects in the vicinity [17].

3.4. Evolution of ϕF and F

The evolution of ϕF follows the same principles, with
the difference that the label for the closest neighbor is un-
known. ϕF is related to the evolution of F . If L(x) = i and
F (x) = j, then x is closest to Oj over all the regions ex-
cept Oi. Therefore F (x) changes only when another neigh-
bor Ok becomes closer to x ∈ Oi than Oj . In terms of
the distance functions, it means φk > φj , which becomes
−ϕL − ϕF > −ϕL according to Eq. (6). Thus, we can
define the evolution of ϕF as

∂ϕF

∂t
=

1
2
(fj − maxk �=i,jfk), (8)

Here, the label of the second closest object k is unknown,
so it is necessary to search among all the possible neigh-
bors for the one with the highest increment. However, the
strict topology constraints ensure that the new neighbor can
only come from the subset of objects neighboring Oi and
Oj , namely Nij , which can be computed beforehand from
the initial contours. The topology of F should not be con-
strained, as it may change during the evolution even if the
topology of L is fixed.

Finally, the evolution of ϕF and ϕL are coupled: if F
changes from j to k at a given step, then the evolution of
ϕL should use the updated label of F . Therefore, the evolu-
tion algorithm must first evolve ϕF and then ϕL as detailed
below.

4. Algorithm

4.1. Narrow Band Evolution

The basic steps of the algorithm are as follows:

1. Given L, initialize ϕL, ϕF , and F , and compute Nij

∀i, j = 1, ..., N, i 	= j. Choose ε > 0.

2. ∀x s.t. L(x) = i, F (x) = j and ϕL(x) < ε, compute
fj and maxk∈Nij fk at x. Compute ∂ϕF

∂t using Eq. (8).

3. If ϕF + ∂ϕF

∂t < 0, set ϕF = |ϕF + ∂ϕF

∂t |, and update

F from j to k̂ = arg max fk.

4. Compute ∂ϕL

∂t using Eq. (7) with the updated F .

5. If ϕL + ∂ϕL

∂t < 0 and topology constraint allows,
switch L and F at x. Update ϕL to be |ϕL + ∂ϕL

∂t |.
6. Repeat Steps 2–5 until there is no change to L over a

sweep.

As in conventional level set methods, periodic reinitializa-
tion [18] of ϕL and ϕF should be done to prevent level set
“packing”.

4.2. Computational Complexity and Storage

The methods in [4, 15, 6, 10] must store N level set
functions, whereas MGDM must store only two distance-
related functions and two label functions. The multi-phase
approach of [13] requires storage of log N level set func-
tions in the piecewise-constant case unless a four color la-
beling is used.

The computational complexity is reduced thanks to the
structure of MGDM. We compare the complexity between
MGDM, the multi-phase framework [13], and the methods
in [4, 15, 6, 10] using a fast marching initialization [18] and
a narrow band evolution in Table 1, where n is the number
of grid points along a side, and ε is the narrow band width.
If we assume that each region has approximately the same



(a) (b)
Figure 4. Ellipse experiment: a) initialization, b) result of MGDM.

number of pixels, then the initialization complexity for ϕL

is O(N( n
N )2 log n

N ) = O(n2

N log n
N ). And that for ϕF is

O(N(N−1)
2 ( n

N )2 log n
N ) = O(n2 log n

N ). Thus the overall
initialization complexity of our approach is O(n2 log n

N ).
The other quantities are easy to derive. The complexity of
evolution still depends on the number of mutual neighbors
in Nij , which is often unrelated to the total number of ob-
jects in practice.

Table 1. Algorithm Complexity
Fast Marching Init. Narrow Band Evol.

N φ methods O(Nn2 log n) O(εNn)

Multi-phase O(n2 log n log N) O(εn log N)

MGDM O(n2 log n
N

) O(εn)

5. Experiments

In this section, we present several multi-object and
multi-compartment experiments including test cases and
medical images to show the advantages of MGDM.

In the first experiment, the three ellipse phantom image
of Fig.1 is modified for the comparison between MGDM
and the multi-phase model [13]. Essentially our framework
can correctly segment the phantom image in Fig.1; in fact,
the blue and red lines are the boundaries of our segmen-
tation result. Further, to compare our approach with the
multi-phase model that will not work in this case without
a internal boundary, the phantom image is modified so that
the three ellipses have different mean intensities. The image
is then smoothed with a Gaussian filter and the two meth-
ods are run with the same region forces and smoothness
term and using the same initialization as shown in Fig. 4(a).
Fig. 4 (b) shows that MGDM segments three ellipses with
a smooth boundary with respect to each ellipse, compared
to the multi-phase segmentation result presented in Fig. 2,
where the boundary of one of the ellipses is artificially large
because the two level sets do not coincide exactly. By con-
struction, MGDM avoids this issue entirely.

For the second experiment, we apply MGDM to segment
the fingers and associated palm of a “hand” image, as shown
in Fig. 5. To complicate matters, we introduce wiggles into
the initialization [Fig. 5(a)]. In this case, MGDM makes
full use of the relationship between regions by applying dif-

(a) (b) (c)
Figure 5. Hand experiment: a) initialization of the “fingers”; b) fi-
nal segmentation, c) enlarged region between the middle and ring
fingers.

(a) (b) (c)
Figure 6. Carpal bone segmentation: a) initialization, b) segmenta-
tion result, c) enlarged region of the boundary between two bones.

ferent levels of smoothing to different parts. Suppose the
label for background, thumb, index, middle, ring and lit-
tle finger are 1 to 6 respectively in this experiment. For
the regions with a good contrast between hand intensity and
background, i.e., F = 1 or L = 1, we use the region term of
[23] and a length smoothing term [21] with a weight of 0.2.
For the boundaries between fingers, we impose a stronger
smoothing weight of 0.35, and no region term. Fig. 5(b)
shows the segmentation result. All the boundaries between
fingers are smooth, while the boundaries between fingers
and background conform to the region information. The
middle and ring fingers are kept separate by the multi-object
topology constraint [Fig. 5(c)].

In the following experiments, we apply MGDM to real
medical images. Though the main challenge for medical
image segmentation is the blurry and noisy source image
and the low contrast between objects, MGDM renders sat-
isfactory results as it can combine all existing forces in the
level set literature. In the application to carpal bones in
Fig. 6, we obtain a satisfying segmentation result with the
combination of the GVF [5] external force, the region force
of [23] and the curvature smoothing force of [21]. At the
same time, the topology constraint prevents the carpal bones
from merging [Fig. 6(c)].

In the segmentation example of Fig. 7, a combination
of a balloon force [12] with the membership function from
[16] and a curvature smoothing force [21] is used. The joint
relationship between ventricles, thalamus and putamen is
well maintained, and the triple points among them was dealt



with well. Notice that the left and right part of the thalamus
does not touch, as enlarged between their boundaries with
the background in Fig. 7(c).

(a) (b) (c)
Figure 7. Subcortical segmentation: a) initialization, b) segmenta-
tion result, c) enlarged region of the thalamus boundaries.

6. Conclusion

A novel framework to simultaneously segment multiple
objects and objects with multiple compartments using level
set methods was presented. MGDM guarantees no object
overlap and vacuum between objects and can incorporate
any existing force in the level set literature while preserv-
ing the topology of all objects and groups of objects. As
well, different weights can be readily applied to the forces
on different objects and on different boundaries of any ob-
ject thanks to the notion of the joint part. Experiments on
simulated and real images validated the framework. Future
work will focus on extension to three dimensions and fur-
ther application to medical images.
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