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Abstract

We propose a novel parametric deformable model con-
trolled by shape and visual appearance priors learned from
a training subset of co-aligned images of goal objects. The
shape prior is derived from a linear combination of vectors
of distances between the training boundaries and their com-
mon centroid. The appearance prior considers gray levels
within each training boundary as a sample of a Markov-
Gibbs random field with pairwise interaction. Spatially ho-
mogeneous interaction geometry and Gibbs potentials are
analytically estimated from the training data. To accurately
separate a goal object from an arbitrary background, em-
pirical marginal gray level distributions inside and outside
of the boundary are modeled with adaptive linear combi-
nations of discrete Gaussians (LCDG). The evolution of
the parametric deformable model is based on solving an
Eikonal partial differential equation with a new speed func-
tion which combines the prior shape, prior appearance,
and current appearance models. Due to the analytical
shape and appearance priors and a simple Expectation-
Maximization procedure for getting the object and back-
ground LCDG, our segmentation is considerably faster than
most of the known geometric and parametric models. Ex-
periments with various goal images confirm the robustness,
accuracy, and speed of our approach.

1. Introduction

Parametric and geometric deformable models are widely
used for image segmentation. However, in many applica-
tions, especially in medical image analysis, accurate seg-
mentation with these models is a challenging problem due
to noisy or low-contrast 2D/3D images with fuzzy bound-
aries between goal objects (e.g. anatomical structures) and
their background; the similarly shaped objects with differ-
ent visual appearances, and discontinuous boundaries be-
cause of occlusions or similar visual appearance of adjacent

parts of objects of different shapes [1, 2]. Prior knowledge
about the goal shape and/or visual appearance helps in solv-
ing such segmentation problems [2].
Relationship to the prior works: Conventional paramet-
ric deformable models [3] and geometric models (e.g. [4])
based on level set techniques [5] search for strong signal
discontinuities (grayscale or color edges) in an image and
do not account for prior shape constraints. But the evolu-
tion guided only by edges and general continuity–curvature
limitations fails when a goal object is not clearly distin-
guishable from background. More accurate results, but at
the expense of a considerably reduced speed, were obtained
by restricting grayscale or color patterns within an evolving
surface [6]. Nonetheless, the accuracy remains poor without
prior knowledge of goal objects. At present, 2D/3D para-
metric and geometric deformable models with shape and/or
appearance priors learned from a training set of manually
segmented images are of the main interest.

Initial attempts to involve the prior shape knowledge
were built upon the edges. Pentland and Sclaroff [7] and
Cootes et al. [8] described an evolving curve with shape
and pose parameters of a parametric set of points matched
to strong image gradients and use a linear combination of
eigenvectors to represent variations from an average shape.
A parametric point model of Staib and Duncan [9] was
based on an elliptic Fourier decomposition of landmarks.
Model parameters ensure the best match between the evolv-
ing curve and points of strong gradients. Chakraborty et
al. [10] extended this approach to a hybrid model combin-
ing the region gradient and homogeneity information.

More efficient results were obtained by learning the pri-
ors from a training set of manually segmented images of
goal objects [11, 12, 13, 14, 1]. Pizer et al. [11] and Styner
et al. [13] segment 3D medical images by coarse-to-fine
deformation of a shape-based medial representation (“m-
rep”). A deformable model of Huang et al. [15] integrates
region, shape and interior signal features assuming an ap-
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proximate region shape is a priori known and aligned with
the image to initialize the model. Leventon et al. [12] and
Shen and Davatzikos [14] augment a level set-based energy
function guiding the evolution with special terms attracting
to more likely shapes specified with the principal compo-
nent analysis (PCA) of the training set of goal objects, while
Chen et al. [16] use a geometric model with the prior “av-
erage shape”. The most advanced level set-based geometric
model of Tsai et al. [1] evolves as zero level of a 2D map
of the signed shortest distances between each pixel and the
boundary. The goal shapes are approximated with a linear
combination of the training distance maps for a set of mu-
tually aligned training images. High dimensionality of the
distance map space hinders PCA, and to simplify the model,
only a few top-rank principal components are included to
the linear combination.

Prior appearance models have not been explicitly used
to guide the evolution of all above-mentioned models. Typ-
ically, the guidance was based on a simple predefined ap-
pearance model assuming significantly different gray level
means or variances in an object and background (see
e.g. [1]). More promising is to learn the appearance model
as well, although the segmentation in this case involves usu-
ally only pixel- or voxel-wise classification [17]. An alter-
native approach of Joshi [18] performs nonparametric warp-
ing of a goal surface to a deformable atlas. The atlas con-
tours are then transferred to the goal volume. But due to
no shape prior, the resulting boundaries need not approach
the actual ones. Speed of the iterative warpings of a whole
image volume is also quite low.

To overcome these problems, Paragios and Deriche [19]
and Cootes et al. [20] learned the joint probabilistic shape–
appearance prior models of goal objects with the PCA. A
few simpler such models have been successfully applied to
segment complex 3D medical images [21]. But segmen-
tation still was slow due to setting up pixel- or voxel-wise
model–image correspondences at each step. To accelerate
the process, Yang and Duncan [22] and Freedman et al.
[23] introduced probabilistic appearance priors accounting
for only low-order signal statistics. Yang and Duncan [22]
used a joint Gaussian probability model to describe vari-
ability of the goal shapes and image gray levels and de-
veloped optimization algorithms for estimating model pa-
rameters from a set of training images and conducting the
maximum a posteriori (MAP) segmentation. Freedman et
al. [23] derived a special level-set function such that its
zero level produces approximately the goal shapes and use
empirical marginal gray level distributions for the training
objects as the appearance prior to guide the alignment of a
deformable model to an image to be segmented. Foulon-
neau et al. [24] presented a new algorithm to constrain the
evolution of a region-based active contour with respect to a
reference shape. Their shape prior model includes intrinsic

invariance with regard to pose and affine deformations.
Our approach follows the same ideas of using both the

shape and appearance prior knowledge, but differs in the
three aspects. First, instead of using the level set frame-
work running into problems with linear combinations of
the distance maps, we use a simple parametric deformable
model. Both the model and each goal shape are represented
by piecewise-linear boundaries with a predefined number
of control points. Corresponding points are positioned on
roughly equiangular rays from the common center being
the centroid of the control points along each boundary. A
robust wave propagation is used to find correspondences in
an aligned pair of the boundaries. Secondly, visual appear-
ance of the goal objects is roughly described by characteris-
tic statistics of gray level co–occurrences. Grayscale object
pattern is considered as a sample of a spatially homoge-
neous Markov-Gibbs random field (MGRF) with multiple
pairwise interaction. The interaction parameters of MGRF
are estimated analytically. Third, the evolution is also
guided at each step with a first-order probability model of
the current appearance of a goal object and its background.

Basic notation:

◦ R = [(x, y) : x = 0, . . . , X − 1; y = 0, . . . , Y − 1] –
a finite arithmetic lattice supporting digital images and
their region maps.

◦ g = [gx,y : (x, y) ∈ R; gx,y ∈ Q] – a grayscale image
taking values from a finite set Q = {0, ..., Q− 1}.

◦ m = [mx,y : (x, y) ∈ R;mx,y ∈ L] – a region map
taking labels from a binary set L = {ob, bg}; each la-
bel mx,y indicates whether the pixel (x, y) in the cor-
responding image g belongs to a goal object (ob) or
background (bg).

◦ b = [pk : k = 1, . . . ,K] – a deformable piecewise-
linear boundary with the K control points pk =
(xk, yk) forming a circularly connected chain of line
segments (p1,p2), . . . , (pK−1,pK), (pK ,p1).

◦ d = [d2
k : k = 1, . . . ,K] – a vector description of

the boundary b in terms of the square distances d2
k =

(xk − x0)2 + (yk − y0)2 from the control points to
the model centroid p0 = (x0 = 1

K

∑K
k=1 xk, y0 =

1
K

∑K
k=1 yk), i.e. to the point at the minimum mean

square distance from all the control points.

◦ S = {(gt,mt,bt,dt) : t = 1, . . . , T} – a training set
of grayscale images of the goal objects with manually
prepared region maps and boundary models.

◦ |A| – the cardinality of a finite set A.



2. Shape Prior

To build the shape prior, all the training objects in S
are mutually aligned to have the same centroid and unified
poses (orientations and scales of the objects boundaries) as
in Fig. 1(a). For the definiteness, let each training boundary
bt ∈ S is represented with K control points on the polar
system of K◦ equiangular rays (i.e. with the angular pitch
2π/K◦) emitted from the common centroid p0. The rays
are enumerated clockwise, with zero angle for the first po-
sition pt,1 of each boundary. Generally, there may be rays
with no or more than one intersection of a particular bound-
ary, so that the number of the control points K may differ
from the number of the rays K◦.

(a) (b)

Figure 1. (a) Mutually aligned training boundaries and (b) search-
ing for corresponding points between the mutually aligned training
boundaries.

Because the training boundaries bt ∈ S; t = 1, . . . , T ,
share the same centroid p0, any linear combination d =∑T

t=1 wtdt of the training distance vectors defines a unique
new boundary b with the same centroid. Typically, shapes
of the training objects are very similar, and their linear com-
binations could be simplified by the PCA to escape singu-
larities when adjusting to a given boundary.

Let D = [d1 d2 · · ·dT ] and U = DDT denote the
K ×T matrix with the training distance vectors as columns
and the symmetric K ×K Gram matrix of sums of squares
and pair products

∑T
t=1 dt,kdt,k′ ; k, k′ = 1, . . . ,K of their

components, respectively. The PCA of the matrix U pro-
duces K eigen-vectors [ei : i = 1, . . . ,K] sorted by their
eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λK ≥ 0. Due to iden-
tical or very similar training shapes, most of the bottom-
rank eigenvalues are zero or very small, so that the cor-
responding “noise” eigenvectors can be discarded. Only
a few top-rank eigenvectors actually represent the training
shapes; the top distance eigenvector e1 corresponds to an
“average” shape and a few others determine its basic vari-
ability. For simplicity, we select the top-rank subset of the
eigenvectors (ei : i = 1, . . . ,K ′); K ′ < K by thresh-

olding:
∑K′

i=1 λi ≈ θ
∑K

i=1 λi with an empirical threshold
θ = 0.8 . . . 0.9.

An arbitrary boundary bc aligned with the training set
is described with the vector dc of the squared distances
from its control points to the centroid. The prior shape ap-
proximating this boundary is specified by the linear com-

bination of the training vectors: d∗ =
∑K′

i=1 w
∗
i ei ≡

∑K′

i=1(e
T
i dc)ei. Each signed difference ∆k = d∗k − dc,k

determines the direction and force to move the boundary bc

towards the closest shape prior b∗ specified by the distance
vector d∗.

Search for corresponding points is performed to suppress
local “noise” (spurious deviations) in the training bound-
aries. The corresponding points are found in the aligned
training boundaries by a robust wave-propagation based
search (see Fig. 1(b)). An orthogonal wave is emitted from a
point in one boundary, and the point at which the maximum
curvature position of the wave front hits the second bound-
ary is considered as the corresponding point (see Fig. 2).
The whole search algorithm is as follows:

1. Given a set of aligned training boundaries, pick any
one as the reference shape, A.

2. Represent the reference shape with K equiangular
points.

3. Find the corresponding point in each other training
boundary,B, for every point representing the reference
shape A:

(a) Find the intersection area between the shapes B
and A.

(b) Find the normalized minimum Euclidian distance
D(x, y) between every point (x, y) in the inter-
section area and the boundary A by solving the
Eikonal equation:

|∇T (x, y)|F (x, y) = 1 (1)

where T (x, y) is the time at which the front
crosses the point (x, y); the solution uses the
fast marching level sets at unity speed function,
F (x, y) = 1 [25].

(c) For every point representing the reference shape
A, generate an orthogonal wave by solving
the Eikonal equation using the fast marching
level sets at the speed function F (x, y) =
exp(D(x, y)). For more detail see [26].

(d) Track the point with the maximum curvature for
each propagating wave front (see Figs. 2); this
point is considered at any time as the correspond-
ing point to the starting one on the reference
shape A.

(e) The point at which the maximum curvature point
of the propagating wave hits the boundary B is
selected as the point corresponding to the starting
point of the reference shape A.

SIFT-based alignment: Just as the conventional level-set
based geometric models with the shape priors, e.g. in [1],
our approach depends on accuracy of mutual alignment of
similar shapes at both the training and segmentation stages.



Figure 2. The point 2 at which the maximum curvature point of
the wave hits the boundary B corresponds to the starting point 1
on the reference shape A.

(a–b) (a–c)
Figure 3. Corresponding points found by SIFT in each pair (a,b),
and (a,c) shown in red and yellow, respectively.

In the latter case the deformable model is initialized by
aligning an image g to be segmented with one of the train-
ing images, say, g1 ∈ S, arbitrarily chosen as a prototype.

First we use the scale invariant feature transform (SIFT)
proposed by Lowe [27] to reliably determine a number
of point-wise correspondences between two images under
their relative affine geometric and local contrast / offset sig-
nal distortions. Then the affine transform aligning g most
closely to g1 is determined by the gradient descent mini-
mization of the mean squared positional error between the
corresponding points.

Figure 3 shows correspondences found by SIFT in digital
natural images of starfish, zebras and magnetic resonance
images (MRI) of human kidneys. The resulting affinely
aligned goal shapes have roughly the same center and sim-
ilar poses (orientations and scales). Quality of such align-
ment is evaluated in Fig. 4 by averaging all the training re-
gion maps mt; t = 1, . . . , T , before and after the training
set S is mutually aligned.

3. Appearance Models

MGRF-based appearance prior. Our appearance prior
is a rough descriptor of typically complex grayscale pat-
terns of goal objects in terms of only second-order signal
statistics. Each goal image is considered as a sample of a
pairwise Markov–Gibbs random field (MGRF).

(bf)

(af)
Figure 4. Mutually aligned images shown in Fig. 3 (three upper
rows), and overlaps of the training region maps before (bf) and
after (af) the alignment.

Let N = {(ξi, ηi) : i = 1, . . . , n} be a finite set of
(x, y)-offsets specifying neighbors {((x + ξ, y + η), (x −
ξ, y − η)) : (ξ, η) ∈ N} ∧ R interacting with each
pixel (x, y) ∈ R. Let Cξ,η be a family of pairs cξ,η;x,y =
((x, y), (x + ξ, y + η)) in R with the offset (ξ, η) ∈ N ,
i.e. the family of translation invariant pairwise cliques of
the neighborhood graph on R. Let V be a vector of Gibbs
potentials for gray level co-occurrences in the neighbor-
ing pairs: VT = [VT

ξ,η : (ξ, η) ∈ N ] where VT
ξ,η =

[Vξ,η(q, q′) : (q, q′) ∈ Q2].
A generic MGRF with multiple pairwise interaction on

R is specified by the Gibbs probability distribution (GPD)

P (g) =
1
Z

exp
∑

(ξ,η)∈N

∑
cξ,η;x,y∈Cξ,η

Vξ,η(gx,y, gx+ξ,y+η)

≡ 1
Z

exp |R|VTF(g) (2)

Here, Z is the partition function, FT(g) is the vec-
tor of scaled empirical probability distributions of gray
level co-occurrences over each clique family: FT(g) =
[ρξ,ηFT

ξ,η(g) : (ξ, η) ∈ N ] where Fξ,η(g) =

[fξ,η(q, q′|g) : (q, q′) ∈ Q2]T and ρξ,η = |Cξ,η|
|R| is the rela-

tive size of the clique family.
The empirical probabilities are fξ,η(q, q′|g) =



|Cξ,η;q,q′ (g)|
|Cξ,η| where Cξ,η;q,q′(g) is the subfamily of

the pairs cξ,η;x,y ∈ Cξ,η supporting a co-occurrence
(g(x, y) = q, g(x+ ξ, y + η) = q′) in the image g.

To specify the appearance prior, let Rt = {(x, y) :
(x, y) ∈ R ∧ mt;x,y = ob} be a part of R supporting the
goal object in the training image–map pair (gt,mt) ∈ S.
Let Cξ,η;t ⊂ Cξ,η and Fξ,η;t denote the subfamily of the
pixel pairs in Rt with the coordinate offset (ξ, η) ∈ N
and the empirical probability distribution of gray level co-
occurrences in the training image gt over the subfamily
Cξ,η;t, respectively. The model of the t-th training object
has the GPD on the sublattice Rt:

Pt =
1
Zt

exp


|Rt|

∑
(ξ,η)∈N

ρξ,η;tVT
ξ,ηFξ,η;t


 (3)

where ρξ,η;t = |Cξ,η;t|/|Rt| is the relative size of Cξ,η;t

with respect to Rt.
The areas and shapes of the aligned goal objects are

similar for all t = 1, . . . , T , so that |Rt| ≈ Rob and
|Cξ,η;t| ≈ Cob;ξ,η where Rob and Cν,ob are the average car-
dinalities over the training set S. Assuming the indepen-
dent samples, all the training objects are represented with
the joint GPD:

PS ≈ 1
ZS

exp
(
TRob

∑
(ξ,η)∈N

ρob;ξ,ηVT
ob;ξ,ηFob;ξ,η

)
(4)

where ρob;ξ,η = Cob;ξ,η/Rob, and the empirical probability
distributions Fob;ξ,η describe the gray level co-occurrences
in all the training goal objects.

(a) |N ′| = 61 (b) |N ′| = 168 (c) |N ′| = 76
Figure 5. Relative interaction energies for the clique families in
function of the offsets (ξ, η) and the characteristic pixel neigh-
bors N ′ (white areas in the (ξ, η)-plane) for the training sets of 43
starfish (a), 67 zebra (b), and 1300 kidney (c) images.

We use here our novel analytical maximum likeli-
hood estimator for the Gibbs potentials of the pair-wise
MGRF [28]:

Vob;ξ,η(q, q′) = λρob;ξ,η[fob;ξ,η(q, q′)− fob(q)fob(q′)] (5)

where fob(.) and fob;ξ,η(q, q′) be a joint empirical proba-
bility distribution of pixel intensities and of intensity co-
occurrences, respectively. λ is the analytically computed

common scaling factor: λ ≈ Q2 if Q 	 1, fob(q) ≈ 1/Q
and ρob;ξ,η ≈ 1 for all (ξ, η) ∈ N . It can be omit-
ted, i.e., set to λ = 1, when only relative potential val-
ues are of interest, e.g. to rank relative Gibbs energies
Erel

ob;ξ,η of pairwise interaction in the goal objects, i.e. the
variances of the co-occurrence distributions: Erel

ob;ξ,η =∑
q,q′∈Q2 fob;ξ,η(q, q′)[fob;ξ,η(q, q′)−fob(q)fob(q′)]. Most

characteristic neighbors N ′ ⊂ N are selected as the prior
appearance descriptors in Eq. (5) by thresholding the rela-
tive energies [29]. Figure 5 shows distributions of the rela-
tive energies and the selected neighbors.

Under this prior description, a grayscale pattern within
each current deformable boundary b in an image g
is described by its relative Gibbs energy E(g,b) =∑

(ξ,η)∈N ′ VT
ob;ξ,ηFξ,η(g,b) whereN ′ is a selected subset

of the top-rank neighbors, and the empirical distributions
Fξ,η(g,b) are collected in b.

LCDG-models of current appearance: To more accu-
rately account for the current image appearance in addi-
tion to the learned shape and appearance priors, 1D em-
pirical marginal gray level distributions inside and outside
of an initial deformable boundary b are approximated with
linear combinations of discrete Gaussians (LCDG). A DG
Ψθ = (ψ(q|θ) : q ∈ Q) is defined as a discrete prob-
ability distribution with components integrating a contin-
uous Gaussian density over intervals related to successive
gray levels in Q, that is, ψ(0|θ) = Φθ(0.5), ψ(q|θ) =
Φθ(q + 0.5) − Φθ(q − 0.5) for q = 1, . . . , Q − 2, and
ψ(Q−1|θ) = 1−Φθ(Q−1.5) where Φθ(q) is the cumula-
tive Gaussian probability function with a shorthand notation
θ = (µ, σ2) for its mean, µ, and variance, σ2.

The numbers Kl; l ∈ L, of dominant DGs in each model
are determined by maximizing the Akaike Information Cri-
terion (AIC) of the corresponding empirical distributions.
Then the LCDG-models with positive dominant and sign-
alternate subordinate DGs are built with the EM-based tech-
niques introduced in [30]. The subordinate positive and
negative DGs approximate deviations of the empirical dis-
tribution from the dominant mixture. Let Kp; Kp ≥ Kl,
and Kn denote the total numbers of the positive and nega-
tive components. Then the LCDG model is as follows:

pw,Θ(q) =
Kp∑
r=1

wp,rψ(q|θp,r)−
Kn∑
l=1

wn,lψ(q|θn,l) (6)

where the non-negative weights w = [wp,., wn,.] meet the

obvious restriction
∑Kp

r=1 wp,r −
∑Kn

l=1 wn,l = 1. To iden-
tify this model, the numbers Kp − Kl and Kn of its sub-
ordinate components and the parameters w, Θ (weights,
means, and variances) of all the DGs are estimated first
with a sequential EM-based initializing algorithm produc-
ing a close initial LCDG-approximation of the empirical



distribution. Then under the fixed numbers Kp and Kn,
all other parameters are refined with a modified EM algo-
rithm that accounts for the alternating components. Each fi-
nal LCDG-model is partitioned into two LCDG-submodels
ppix,l = [ppix,l(q) : q ∈ Q], one per class l ∈ L, by associ-
ating the subordinate DGs with the corresponding dominant
terms such that the misclassification rate is minimal.

4. Model Evolution

The evolution bτ → bτ+1 of the deformable boundary
b in discrete time, τ = 0, 1, . . ., is determined by solving
the Eikonal equation |∇T (pk,τ )|F (pk,τ ); k = 1, . . . ,K,
where F (p) is a speed function for the control point p =
[x, y] of the current boundary. Our speed function depends
on the shape prior, the LCDG-model of current appearance,
and the MGRF-based appearance prior:

F (p) = e−β|∆|ppix,ob(gx,y)πx,y(gx,y|S) (7)

Here, ∆ is the signed distance between the current control
point p ∈ bτ and the like one in the closest shape prior
along the ray from the current boundary centroid. Note that
the sign of ∆ determines the direction of propagation as
shown in Fig. 6. The constant factor β determines the evo-
lution speed (0 < β < 1 for a smooth propagation). The
marginal probabilities ppix,ob(q) and ppix,bg(q) of the gray
value gx,y = q are estimated with the LCDG-submodels for
the object and its background, respectively. The prior con-
ditional probability πx,y(q|S) of the gray value gx,y = q
in the pixel p = (x, y), given the current gray values in
its neighborhood, is estimated in line with the MGRF prior
appearance model:

πx,y(gx,y|S) =
exp (Ex,y(gx,y|S))∑

q∈Q
exp (Ex,y(q|S))

(8)

whereEx,y(q|S) is the pixel-wise Gibbs energy for the gray
value q in the pixel p = (x, y), given the fixed gray values
in its characteristic neighborhood: Ex,y(q|S) =

∑
(ξ,η)∈N′

(Vob;ξ,η(gx−ξ,y−η, q) + Vob;ξ,η(q, gx+ξ,y+η))

In total, the proposed segmentation algorithm is as follows:

1. Initialization (τ = 0):

(a) Find the affine alignment of a given image g to a
selected prototype g1 ∈ S using the SIFT corre-
spondences and gradient optimization.

(b) Initialize the deformable model with the training
boundary b1 for g1.

(c) Find the current appearance LCDG model.

2. Evolution (τ ← τ + 1):

(a) Evolve the parametric deformable model bound-
ary based on solving the Eikonal PDE with the
speed function shown in Eq. (7).

(b) Terminate the process if the overall absolute
deformation

∑K
k=1 |dk,τ+1 − dk,τ | ≤ α (a

small predefined threshold); otherwise return to
Step 2a.

3. Segmentation: transfer the final boundary to the initial
(non-aligned) image g by the inverse affine transform.

Figure 6. Illustration of the propagation of a parametric de-
formable model using fast marching level set [25].

5. Experimental Results and Conclusions

The performance of the proposed parametric deformable
model was evaluated on a large number of intricate digi-
tal images such as starfish and zebras with the visually ob-
vious ground truth (actual object boundaries) and dynamic
contrast-enhanced MRI (DCE-MRI) of human kidneys with
the ground truth presented by a radiologist. The DCE-MR
images are usually noisy, with continuously changing and
low contrast. About 33% of images of each type were used
to learn the priors.

Basic segmentation stages of the algorithm are shown in
Fig. 7. To show the effect of each model (shape, learned
prior appearance model, and current appearance model) in
the final segmentation results, we calculated the pixel-wise
energy for each pixel in the image as shown in Figs. 7(e, f,
g, h, i). It is clear from Figs. 7(e, f, g, h, i) the pixel-wise
energies for the object (starfish) are higher than any other
pixels appearing in the background, which confirms good
guidance for the evolution of the deformable model. Fig-
ure 7(e) shows the pixel-wise Gibbs energy for each pixel
in the given image. The segmentation based only on the
learned prior appearance model (Gibbs energy) is shown in
Fig 7(f). The major drawback of using only Gibbs energy as
a guidance for the deformable model evolution is the error
in the segmentation which occurs at the edges of the learned
object due to the Gibbs interaction model. The current ap-
pearance model is used to reduce the blurring effect at the
edges and increase the contrast as shown in Figure 7(g). It is
clear from Fig. 7(h) the segmentation based on learned prior
and current appearance models still contains errors around
the edges of the starfish object, which can be minimized by
adding the shape prior model to these two pervious mod-
els as shown in Fig. 7(i, j). Figures 8 and 9 highlight the



(a) (b) (c)

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

9
x 10

−3

q 

Background 

Object 

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
Figure 7. Chosen training prototype (a); an image to be segmented
(b); its alignment to the prototype (c); LCDG-estimates (d) of
the marginal distributions ppix,ob and ppix,bg; pixel-wise Gibbs
energies (learned prior appearance model)(e), segmentation re-
sult using learned prior appearance model (initialization shown in
blue color and final segmentation shown in red color of the im-
age aligned to the training prototype (f), pixel-wise Gibbs energy
(learned prior appearance model) and LCDG energy (current ap-
pearance model) (g), segmentation results based on learned prior
and current appearance models (h), segmentation results based on
learned prior shape, and prior and current appearance models im-
posed in the energy domain (i) and in image domain (j). The final
result (k) after its inverse affine transform to the initial image (b)
(the total error 0.74% compared to the ground truth), and the final
segmentation (h) with the algorithm in [1] (the total error 11.6%).
Note that our results obtained using 525 control points describing
starfish shape.

(a) (b) (c) (d)

Figure 8. (a) an image to be segmented (note that the starfish is oc-
cluded by a leaf), (b) segmentation results based on learned prior
and current appearance models imposed on the energy domain,
and the final segmentation results based on learned prior shape,
and prior and current appearance models imposed in the energy
domain (c) and in the image domain (d) (the total error 1.27%
compared to the ground truth). Note that our results obtained us-
ing 525 control points describing starfish shape.

advantages of using the learned prior shape model in ad-
dition to the learned visual appearance models in case the
object is occluded by another object as shown in Fig. 8, or
two overlapping objects having the same visual appearance

(a) (b)

(c) (d)
Figure 9. (a) an image to be segmented (note that the two zebras
are overlapping and have the same visual appearance), (b) seg-
mentation results based on learned prior and current appearance
models imposed on the energy domain, and the final segmenta-
tion results based on learned prior shape, and prior and current ap-
pearance models imposed in the energy domain (c) and in image
domain (d) (the total error 2.03% compared to the ground truth).
Note that our results obtained using 927 control points describing
zebra shape.

Our algorithm in [1]

Error: 0.67% 1.5 % 4.1% 7.4%

Figure 10. More segmentation of two kidney DCE-MR images
with our approach and the algorithm in [1] vs. the ground truth:
the final boundaries and the ground truth are in red and green, re-
spectively. Note that our results obtained using 140 control points
describing kidney shape.

models as shown in Fig. 9. Additional experimental results
for kidney images are shown in Figure 10. Due to space
limitations, more results for starfish, zebra and kidney im-
ages and comparisons with other approaches (e.g. active
shape model, . . . ) are provided on our website1.

Experiments with different natural images provide sup-
port for the proposed parametric deformable model guided
with the learned shape and appearance priors. Our approach
assumes that (i) the boundaries of the training and test ob-
jects are reasonably similar to within a relative affine trans-
form and (ii) SIFT reliably detects corresponding points to
automatically align the goal objects in the images in spite
of their different backgrounds. Although these assump-
tions restrict an application area of our approach compar-
ing to the conventional parametric models, the latter typi-
cally fail on the above and similar images. More accurate
level set-based geometric models with linear combinations
of the training distance maps as the shape priors also rely
on the mutual image alignment. Compared to these models,
our approach escapes some of theoretical inconsistencies,

1 http://uofl.edu/speed/bioengineering/faculty/
bioengineering-full/dr-ayman-el-baz/elbazlab.html.



is computationally much simpler and faster, and has similar
accuracy on high-contrast images, but notably better perfor-
mance on low-contrast and multimodal ones.
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