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Abstract

We propose a novel step toward the unsupervised seg-
mentation of whole objects by combining “hints” of partial
scene segmentation offered by multiple soft, binary mattes.
These mattes are implied by a set of hypothesized object
boundary fragments in the scene. Rather than trying to find
or define a single “best” segmentation, we generate multi-
ple segmentations of an image. This reflects contemporary
methods for unsupervised object discovery from groups of
images, and it allows us to define intuitive evaluation met-
rics for our sets of segmentations based on the accurate and
parsimonious delineation of scene objects. Our proposed
approach builds on recent advances in spectral clustering,
image matting, and boundary detection. It is demonstrated
qualitatively and quantitatively on a dataset of scenes and is
suitable for current work in unsupervised object discovery
without top-down knowledge.

1. Introduction

It is well known that general scene segmentation is an
ill-posed problem whose “correct” solution is largely de-
pendent on application, if not completely subjective. Ob-
jective evaluation of segmentations is itself the subject of
significant research (see [31] for a recent review) . Here we
consider instead the more specific problem of whole object
segmentation; i.e., our goal is to accurately and concisely
segment the foreground objects or “things” without nec-
essarily worrying about the background or “stuff” [1] —
without the use of top-down object knowledge. As we will
explain, we use hypothesized boundary fragments to sug-
gest partial segmentation “hints” to achieve this goal. Once
the objects of interest are defined (which admittedly could
itself involve some subjectivity), it becomes somewhat eas-
ier to define natural and intuitive measures of segmentation
quality on a per-object basis.
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Figure 1. Starting with an image and hypothesized boundary
fragments (only highest-probability fragments shown for clarity,
though many more are used), we generate a large set of segmen-
tation “hints” using automated matting. Combining information
from those mattes into an affinity matrix, we can then generate a
segmentation for each of the foreground objects in the scene.

Furthermore, segmentation results are intimately tied to
the selection of the parameter controlling the granularity of
the segmentation (e.g., the number of segments/clusters, or
a bandwidth for kernel-based methods). Instead of seek-
ing a single perfect segmentation, the integration of multi-
ple segmentations obtained over a range of parameter set-
tings has become common [9, 12, 17, 21, 29]. In such ap-
proaches, segmentation is treated as a mid-level processing
step rather than an end goal. This reduces the pressure to
obtain — or even define — the one “best” result, while also
side-stepping the problem of parameter selection.

We are motivated by approaches such as [21], in which
Russell et al. showed that it is possible to discover objects
in an unsupervised fashion from a collection of images by
relying on multiple segmentations. Systems using segmen-
tation in this way, effectively as a proposal mechanism,
should benefit from an underlying segmentation method
which accurately and frequently delineates whole objects.
Thus we will present a novel segmentation strategy de-
signed to outperform existing methods in terms of two inter-
related and intuitive measures of object segmentation qual-
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ity. First, we take into account accuracy in terms of pixel-
wise, per-object agreement between segments. Second, we
also consider conciseness in terms of the number of seg-
ments needed to capture an object.

Following the classical Gestalt view as well as Marr’s
theories, we recognize that a key cue in differentiating ob-
jects from each other and their background lies in the dis-
covery of their boundaries. Therefore we use hypothesized
fragments of boundaries as input for our segmentations.
Certainly there exists substantial prior work in directly ex-
ploiting boundary reasoning for object/ scene segmentation
and figure-ground determination, e.g. [18] and references
therein. Recently, however, Stein et al. [26] have argued
for the importance of detecting physical boundaries due to
object pose and 3D shape, rather than relying on more typ-
ical, purely appearance-based edges, which may arise due
to other phenomena such as lighting or surface markings.
They have demonstrated improved boundary detection us-
ing cues derived from a combination of appearance and
motion, where the latter helps incorporate local occlusion
information due to parallax from a dynamic scene/ camera.
We employ this method for generating the necessary bound-
ary information for our approach.

Not only do boundaries indicate the spatial extent of ob-
jects, however, they also suggest natural regions to use in
modeling those objects’ appearances. The pixels on either
side of a boundary provide evidence which, though only lo-
cal and imperfect, can offer a “hint” of the correct segmen-
tation by indicating discriminative appearance information.

In practice, we use the output offered by recent α-
matting approaches as an approximate “classification”
which realizes these segmentation hints. And though the
individual mattes only suggest binary discrimination (usu-
ally “foreground” vs. “background”), we can nevertheless
segment arbitrary numbers of objects in the scene by utiliz-
ing the collective evidence offered by a large set of mattes.

Recently, there has been a surge of interest and impres-
sive results in interactive matting [2, 4, 6, 11, 22, 28]. Using
only a sparse set of user-specified constraints, usually in the
form of “scribbles” or a “tri-map”, these methods produce a
soft foreground/ background matte of the entire image. As
initially demonstrated in [3], such methods can potentially
be automated by replacing user-specified “scribbles” with
constraints indicated by local occlusion information.

In the proposed approach, we use each hypothesized
boundary fragment to provide the matting constraints.
Based on the combination of the set of mattes suggested
by all of the fragments, we then derive an affinity measure
which is suitable for use with any subsequent clustering al-
gorithm, e.g. Normalized Cuts (NCuts) [24]. Through this
combination of individually-weaker sources of information
(i.e. fragmented boundaries and impoverished, binary mat-
tes), we relieve the pressure to extract the one “perfect”
matte or the “true” set of extended boundary contours, and
yet we are still able to segment multiple objects in the scene

accurately and concisely. Though beyond the scope of this
work, it is our hope that such improved segmentation strate-
gies will benefit methods which rely on multiple segmenta-
tions to generate, for example, object models from unla-
beled data.

2. Segmentation “Hints” via Multiple Mattes

As discussed in Section 1, we will use image matting to
produce segmentation “hints” for generating affinities use-
ful in segmentation via clustering. After first providing an
overview of matting, we will explain how we use bound-
ary fragments to imply multiple mattes for estimating these
affinities.

2.1. α-Matting
In a standard matting approach, one assumes that each

observed pixel in an image, I(x, y), is explained by the
convex combination of two unknown colors, F and B. A
soft weight, α, controls this combination:

I(x, y) = α(x, y)F (x, y) + (1 − α(x, y)) B(x, y) (1)

We will use this model as a proxy for a classifier in our
work. In this formulation, then, pixels with an α-value near
one are likely part of the F “class”, while those with an
α-value near zero are likely part of the B “class”. Values
near 0.5 indicate mixed pixels whose “membership” may
be considered unknown. Typically, F and B correspond
to notions of “foreground” and “background”, but we will
explain in the next section that these semantic assignments
are not necessary for our approach.

Simultaneously solving for F , B, and α in (1) is of
course not feasible. In general, a user specifies a small set
of pixels, often referred to as “scribbles” or a “tri-map”,
which are then constrained to belong to one class or the
other. These hard constraints are then combined with as-
sumptions about α (e.g., smoothness) to find a solution at
the unspecified pixels [2, 4, 6, 11, 22, 28]. We have adopted
the approach proposed by Levin et al. [11], which offers ex-
cellent results via a closed-form solution for α based on rea-
sonable assumptions about the local distributions of color in
natural images.

Note that methods also exist for constrained “hard” seg-
mentations, e.g. [5] — potentially with some soft matting
at the boundaries enforced in post-processing [20] — but as
we will see, using fully-soft α-mattes allows us to exploit
the uncertainty of mixed pixels (i.e. those with α values near
0.5) rather than arbitrarily (and erroneously) assigning them
to one class or the other. In fact, we follow the conventional
wisdom of avoiding early commitment throughout our ap-
proach. Hard thresholds or grouping decisions are avoided
in favor of maintaining soft weights until the final segmen-
tation procedure. In addition to retaining the maximum
amount of information for the entire process, this method-
ology also avoids the many extra parameters required for
typical ad hoc decisions or thresholds.



2.2. Multiple Mattes → Affinities
In an automated matting approach, the goal is to provide

a good set of constraints without requiring human interven-
tion. Since object boundaries separate two different objects
by definition, they are natural indicators of potential con-
straint locations: F on one side and B on the other. In [3],
T-junctions were used to suggest sparse constraints in a sim-
ilar manner. The benefit of matting techniques here is their
ability to propagate throughout the image the appearance
information offered by such local, sparse constraints. The
middle of Figure 1 depicts a sampling of mattes generated
from the differing constraints (or “scribbles”) implied by
various boundary fragments.

A remaining problem is that the approach described
thus far only offers a binary (albeit soft) decision about a
pixel’s membership: it must belong to either F or B, which
are usually understood to represent foreground and back-
ground. How then can we deal with multi-layered scenes?

We recognize that the actual class membership of a par-
ticular pixel, as indicated by its α value in a single matte,
is rather meaningless in isolation. What we wish to cap-
ture, however, is that locations with similar α values across
many different mattes (whether both zero or one) are more
likely to belong to the same object, while locations with
consistently different values are more likely to be part of
different objects. While existing methods, such as Interven-
ing Contours [7, 8, 10], may attempt to perform this type of
reasoning over short- and medium-ranges within the image
using standard edge maps, our use of mattes simultaneously
factors in the boundaries themselves as well as the global
appearance discrimination they imply. Furthermore, matte
values near 0.5 carry a notion of uncertainty about the rela-
tionship between locations.

Using each of the NF potential boundary fragments in
the scene to generate an image-wide matte yields an NF -
length vector, vi, of α-values at each pixel i. If we scale
the α-values to be between +1 and −1 (instead of 0 and
1), such that zero now represents “don’t know”, then the
agreement, or affinity, between two pixels i and j can be
written in terms of the normalized correlation between their
two scaled matting vectors:

Aij =
vT

i Wvj

|vi||vj | , (2)

where W is a diagonal matrix of weights corresponding to
the confidence of each fragment actually being an object
boundary. Thus mattes derived from fragments less likely
to be object boundaries will not significantly affect the final
affinity. Note that this combines all hypothesized fragments
in a soft manner, avoiding the need to choose some ideal
subset, e.g., via thresholding. Figure 2 provides an exam-
ple schematic describing the overall process of employing
boundary fragments to suggest mattes, which in turn gener-
ate an affinity matrix.

The value of Aij will be maximized when the matting

vectors for a pair of pixels usually put them in the same
class. When a pair’s vectors usually put the two pixels in
opposite classes, the affinity will be minimized. The nor-
malization effectively handles discounting the “don’t know”
(near-zero) entries which arise from mattes that do not pro-
vide strong evidence for one or both pixels of the pair.

We have now defined a novel matting-based affinity mea-
sure which can be used with any off-the-shelf clustering
technique. In addition to incorporating boundary knowl-
edge and global appearance reasoning, a unique and note-
worthy aspect of our affinities is that they are defined based
on feature vectors in a space whose dimension is a function
of the image content — i.e. the number of detected frag-
ments, NF — rather than an arbitrarily pre-defined feature
space of fixed dimension.

3. Detecting Boundary Fragments

In the previous section, we constructed mattes based on
hypothesized boundary fragments. We will now explain the
source of these hypotheses. While one could use a purely
appearance-based edge detector, such as Pb [13], as a proxy
for suggesting locations of object boundaries in a scene,
this approach could also return many edges corresponding
to non-boundaries, such as surface markings, yielding extra
erroneous and misleading mattes. While it would be naı̈ve
to expect or require perfect boundary hypotheses from any
method, we still wish to maximize the fraction that do in-
deed correspond to true object boundaries.

Recently, Stein et al. demonstrated improved detection
of object/ occlusion boundaries by incorporating local, in-
stantaneous motion estimates when short video clips are
available [26, 27]. Their method first over-segments a scene
into a few hundred “super-pixels” [19] using a watershed-
based approach. All super-pixel boundaries are used as po-
tential object boundary fragments (where each fragment be-
gins and ends at the intersection of three or more super-
pixels). Using learned classifiers and inference on a graphi-
cal model, they estimate the probability that each fragment
is an object boundary based on appearance and motion cues
extracted along the fragment and from within each of the
neighboring super-pixels. The resulting boundary probabil-
ities provide the weights for W in (2). An example input
image and its boundary fragments (shown in differing col-
ors), can be found on the left side of Figure 1. For clarity,
only the high-probability fragments are displayed, though
we emphasize that all are used.

For each fragment, we can now generate an image-wide
matte according to [11] as described in Section 2. The
super-pixels on either side of a fragment naturally designate
spatial support for the required labeling constraints. Since
super-pixels generally capture fairly homogeneous regions,
however, we have found it better to expand the constraint
set for a fragment by using a triplet of super-pixels formed
by also incorporating the super-pixels of the two neighbor-
ing fragments most likely to be boundaries. This process is
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Figure 2. Each potential boundary fragment found in the original image (three shown here) implies a set of constraints (F and B) used to
generate a matte. Vectors of matting results at each location in the image (vi and vj) can be compared in a pairwise fashion to generate an
affinity matrix, A, suitable for clustering/ segmentation.

illustrated in Figure 3. Note also that our approach avoids
any need to choose the “right” boundary fragments (e.g. by
thresholding), nor does it attempt to extract extended con-
tours using morphological techniques or an ad hoc chaining
procedure, both of which are quite brittle in practice. In-
stead we consider only the individual short fragments, with
an average length of 18 pixels in our experiments.

We employ the technique proposed in [26, 27] in order
to improve our performance by offering better boundary de-
tection and, in turn, better mattes. As mentioned above,
that approach utilizes instantaneous motion estimates near
boundaries. We are not, however, incorporating motion es-
timates (e.g. optical/ normal flow) directly into our segmen-
tation affinities [23, 32], nor is our approach fundamentally
tied to the use of motion.1
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Figure 3. The F and B constraint sets for a given fragment are
initialized to its two neighboring super-pixels (left). To improve
the mattes, these constraint sets are expanded to also include the
super-pixels of the fragment’s immediate neighbors with the high-
est probability of also being object boundaries (right).

4. Image Segmentation by NCuts

Given our pairwise affinity matrix A, which defines a
fully-connected, weighted graph over the elements in our
image, we can use spectral clustering according to the Nor-
malized Cut Criterion to produce an image segmentation
with K segments [24].2 To obtain a set of multiple segmen-
tations, we can simply vary this parameter K.

1Separate experiments using Pb alone to supply the weights in W
yielded reasonable but slightly worse results than those presented in Sec-
tion 6. This suggests that both the better boundaries from [26, 27] and the
matting-based affinities presented here are useful.

2Certainly other techniques exist, but NCuts is a one popular one that
also offers mature, publicly-available segmentation methods, facilitating
the comparisons in Section 6. Our work is not exclusively tied to NCuts.

Using the boundary-detection approach described above,
we not only obtain a better set of hypothesized boundary
fragments and probabilities of those fragments correspond-
ing to physical object boundaries (i.e. for use in W from
(2)), but we can also use the computed super-pixels as our
basic image elements instead of relying on individual pix-
els. In addition to offering improved, data-driven spatial
support, this drastically reduces the computational burden
of constructing Aij , making it possible to compute all pair-
wise affinities between super-pixels instead of having to
sample pixelwise affinities very sparsely.

The benefit here is more than reduced computation, how-
ever, particularly when using the popular NCuts technique.
Other authors have noted that non-intuitive segmentations
typical of NCuts stem from an inability to fully populate
the affinity matrix and/or the topology of a simple, four-
connected, pixel-based graph [30]. By computing affinities
between all pairs of super-pixels, we alleviate somewhat
both of these problems while also improving speed.

We will not review here all the details of spectral clus-
tering via NCuts, given a matrix of affinities; see [14] for
specifics of the method we follow. We compare the segmen-
tations obtained using NCuts on our matting-based affini-
ties to two popular approaches from the literature, each of
which also uses NCuts and offers an implementation online.
First is the recent multiscale approach of Cour et al. [7],
in which affinities are based on Intervening Contours [10].
Second, we compare to the Berkeley Segmentation Engine
(BSE) [8, 13], which relies on a combined set of patch-
based and gradient-based cues (including Intervening Con-
tours). Note that different methods exist for the final step of
discretizing the eigenvectors of the graph Laplacian. While
the BSE uses k-means (as do we, see [14]), the multiscale
NCuts method attempts to find an optimal rotation of the
normalized eigenspace [34]. Furthermore, both methods
compute a sparsely-sampled, pixelwise affinity matrix.

5. Evaluating Object Segmentations

In this section, we will present an intuitive approach for
determining whether one set of segmentations is “better”



than another generated using a different method. For the
eventual goal of object segmentation and discovery, we pro-
pose that the best set of segmentations will contain at least
one result for each object in the scene in which that ob-
ject can be extracted accurately and with as few segments
as possible. Ideally, each object would be represented by a
single segment which is perfectly consistent with the shape
of that object’s ground truth segmentation. We leave the
problem of identifying the object(s) from sets of multiple
segmentations to future work and methods such as [21].

Thus, we define two measures to capture these concepts:
consistency and efficiency. For consistency, we adopt a
common metric for comparing segmentations, which con-
veniently lies on the interval [0, 1] and captures the degree
to which two sets of pixels, R and G, agree based on their
intersection and union:

c(R,G) =
|R ∩ G|
|R ∪ G| . (3)

Here, R = {A,B,C, . . . } ⊆ S is a subset of segments
from a given (over-)segmentation S, and G is the ground
truth object segmentation.

At one extreme, if our segmentation were to suggest a
single segment for each pixel in the image, we could always
reconstruct the object perfectly by selecting those segments
(or in this case, pixels) which corresponded exactly to the
ground-truth object’s segmentation. But this nearly-perfect
consistency would come at the cost of an unacceptably high
number of constituent segments, as indicated in the right-
most example in Figure 4. At the opposite extreme, our
segmentation could offer a single segment which covers the
entire object, as shown in the leftmost example. In this case,
we would achieve the desired minimum of one segment to
capture the whole object, but with very poor consistency.

Number of
Segments Required

1
3

6

250+

Inreasing Segmentation Consistency

Figure 4. The tradeoff between segmentation consistency (or ac-
curacy) and efficiency (or the number of segments required to
achieve that consistency). As desired consistency increases, so too
does the number of segments required to achieve that consistency.

Thus we see that there exists a fundamental tradeoff be-
tween consistency and the number of segments needed to
cover the object, or efficiency.3 Therefore, when evaluat-

3It may be helpful to think of these measures and their tradeoff as being
roughly analogous to the common notions of precision and recall, e.g., in
object recognition.

ing the quality of a scene’s (over-)segmentation S, we must
take into account both measures. We define the efficiency
as the size of the minimal subset of segments, R, required
to achieve a specified desired consistency, cd, according to
the ground truth object segmentation, G:

ecd
(S,G) = min |R|, such that c(R,G) ≥ cd. (4)

Note that with this definition, a lower value of e(S,G) im-
plies a more efficient (or parsimonious) segmentation.

We can now specify cd and compute the corresponding
ecd

, which is equivalent to asking, “what is the minimum
number of segments required to achieve the desired consis-
tency for each object in this scene?” By asking this question
for a variety of consistency levels, we can evaluate the qual-
ity of a particular method and compare it to other methods’
performance at equivalent operating points.

Note that we can avoid a combinatorial search over all
subsets R possibly required to achieve a particular cd by
considering only those segments which overlap the ground
truth object and by imposing a practical limit on the number
of segments we are willing to consider (selected in order of
their individual consistency measures) [27].

Referring once again to Figure 4, the middle two ex-
amples indicate that we can achieve a reasonable level of
consistency with only three segments, and if we raise the
desired consistency a bit higher (perhaps in order to cap-
ture the top of the mug), it will require us to use a different
segmentation from our set which covers the mug with six
segments. In general, the best method would be capable of
providing at least one segmentation which yields a desired
high level of consistency with the minimum degree of over-
segmentation of any particular object.

6. Experiments

For each of a set of test scenes, we have labeled the
ground truth segmentation for foreground objects of inter-
est, which we roughly defined as those objects for which
the majority of their boundaries are visible. Since we em-
ploy [26]’s method for boundary information, we also use
their online dataset of 30 scenes. From those scenes, we
have labeled ground truth segmentations for 50 foreground
objects on which we will evaluate our approach.

We generate a set of segmentations for each scene by
varying K between 2 and 20 while using either our matting-
based approach, multiscale NCuts [7], or the BSE ap-
proach [8, 13]. Recall that the two latter methods com-
pute affinities in a pixelwise fashion. To verify that any
improvement offered by our approach is not solely due to
our use of super-pixels, we also implemented a baseline
approach which computes affinities from pairwise compar-
isons of L*a*b* color distributions within each super-pixel,
using the χ2-distance.

For our proposed approach, we use each of the individ-
ual boundary fragments from [26] to suggest constraints for
mattes as described in Section 2.2. In practice, we ignore



those fragments with an extremely low probability (< 0.01)
of being boundaries, since the resulting mattes in those
cases would have almost no effect on computed affinities
anyway. From an initial set of 350-1000, this yields ap-
proximately 90-350 fragments (and mattes) per image for
computing pairwise, super-pixel affinities according to (2).

We first selected a set of ten desired consistency levels,
from 0.5 to 0.95. Then for each labeled object in a scene and
for each segmentation method, we pose the question, “what
is the minimum number of segments required to achieve
each desired consistency in segmenting this object?” We
can then graph and compare the methods’ best-case effi-
ciencies as a function of the desired consistencies.

A typical graph is provided at the top of Figure 5, in
which bars of different colors correspond to different seg-
mentation methods. Each group of bars corresponds to a
certain consistency level, and the height of the bars indi-
cates the minimum efficiency (i.e. number of segments re-
quired) to achieve that consistency. Thus, lower bars are
better. Bars extend to the top of the graph when a method
could not achieve a desired consistency with any number of
segments. Thus we see that our approach is able to achieve
similar consistency with fewer segments — until cd reaches
0.85, at which point all methods fail on this image. Not sur-
prisingly, the relatively simplistic appearance model of the
color-only baseline tends to over-segment objects the most.

We can also examine the actual segmentations produced
by each method at corresponding desired consistency lev-
els, as shown at the bottom of Figure 5. For the input image
and selected ground truth object shown we provide for each
method the segmentations which use the minimum number
of segments and achieved at least the desired consistency
indicated to the left of the row. Also shown are the super-
pixels used for our method and the color-distribution ap-
proach, along with a high-probability subset of the bound-
ary fragments used in the proposed approach. (We display
only a subset of the fragments actually used simply for clar-
ity.) Below each segmentation are the actual consistencies
and efficiencies (i.e. number of segments) obtained. Note
how our method achieves comparable consistencies with
fewer segments — even when other methods may not be
able to achieve that consistency at all. More results are pro-
vided in Figures 6-7 and in the supplemental material.

Not surprisingly, when the desired consistency is low,
any method is usually capable of capturing an object with
few segments. But as the desired consistency increases, it
becomes more difficult, or even impossible, to find a small
number of segments to recover that object so accurately.
Finally, as the desired consistency becomes too high, all
methods begin to fail. We find, however, that for many ob-
jects our matting-based approach tends to maintain better
efficiency (i.e. decreased over-segmentation) into a higher-
consistency regime than the other methods.

To capture this more quantitatively over all objects, we
can compute the difference between the number of seg-

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10

Not Possible

Desired Object Segmentation Consistency

# 
S

eg
m

en
ts

 R
eq

ui
re

d

Segments Required to Achieve Specified Consistency

 

 
Color Distribution Affinity
Multiscale NCuts
Berkeley Segmentation Engine (BSE)
Proposed Matting−Based Affinity

Input Image Ground Truth Object Super−Pixels
High−Probability

Boundary Fragments

c=0.71, e
c
=5.00

c d ≥
 0

.7
0

Color
Distribution

c=0.79, e
c
=3.00

Multiscale NCuts

c=0.71, e
c
=2.00

BSE

c=0.71, e
c
=1.00

Our Proposed
Matting Affinity

c=0.81, e
c
=9.00

c d ≥
 0

.8
0

Not Possible Not Possible c=0.81, e
c
=3.00

Figure 5. Top: A typical graph of segmentation efficiency vs. con-
sistency for a set of desired consistency levels. Our method is able
to achieve similar object segmentation consistency with fewer seg-
ments. Bottom: The corresponding input data (first row) and the
resulting segmentations at two consistency levels (2nd, 3rd rows),
as indicated by cd = {0.70, 0.80} to the left of each row. For
clarity, only high-probability boundary fragments used by our ap-
proach are shown, using a different color for each fragment. For
visualization, the individual segments corresponding to the object,
i.e. those used to compute the c and e values displayed below
each segmentation, have been colored with a red-yellow colormap,
while background segments are colored blue-green.

ments our method requires at each consistency level and the
number required by the other methods. We would like to
see that our method often requires significantly fewer seg-
ments to achieve the same consistency. Certainly, there are
some “easier” objects for which the choice of segmentation
method may not matter, so we would also expect to find that
our method regularly performs only as well as other meth-
ods. But we also must ensure that we do better much more
often than worse. Furthermore, we expect the potential ben-
efit of our approach to be most obvious within a reasonable
range of desired consistency: all methods will tend to per-
form equally well at low consistencies, and all methods will
tend to fail equally often at very high consistencies.

Figure 8 offers evidence that our approach does indeed
outperform the other methods as desired. As expected, we
perform just as well (or poorly) as other methods for many
of the objects, particularly at very low or very high desired
consistency. But we require several fewer segments per ob-
ject in a significant number of cases. Furthermore, our ap-
proach rarely hurts; we do not often require more segments
than the other methods.
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Figure 6. Another example showing our method’s ability to
achieve comparable consistency with fewer segments.

Discussion & Conclusion

Debate continues over whether high-level reasoning, e.g.
object recognition, should precede figure-ground percep-
tion [15], or if purely bottom-up, local reasoning can ac-
count for this process [16, 25]. Our work takes the more
bottom-up perspective, since knowledge of specific objects
is not required (unlike [18]), but our use of matting in-
corporates more powerful, semi-global reasoning as com-
pared to purely-local methods. Our experiments indicate
that by maintaining “soft” reasoning throughout, and by
combining multiple, individually-imperfect sources of in-
formation in the form of fragmented boundary hypotheses
and oft-uncertain mattes, our novel method for addressing
object segmentation yields promising results for use in sub-
sequent work on unsupervised object discovery or scene un-
derstanding. While here we have evaluated our affinities in
isolation, as compared to existing methods, it is certainly
possible that combining multiple types of affinities would
offer further improvement.

Using boundaries and mattes as described simultane-
ously implies the grouping and separation of super-pixels
on the same or opposite sides of a given boundary, re-
spectively. We performed preliminary experiments with
the technique described in [33] to incorporate separately
such “attraction” and “repulsion” evidence via spectral clus-
tering, rather than simply treating the two as equivalent
sources of information with opposite signs. This often
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Figure 7. Another example like those in Figures 5-6. Note only
one of the three objects in the scene is shown here.

yielded very good results, but it was fickle: when it failed,
it often failed completely. Future research in this direction
is certainly warranted, however.
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