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Abstract

In this paper, we propose a novel approach to model
shape variations. It encodes sparsity, exploits geometric re-
dundancy, and accounts for the different degrees of local
variation and image support. In this context we consider a
control-point based shape representation. Their sparse dis-
tribution is derived based on a shape model metric learned
from the training data, and the ambiguity of local appear-
ance with regard to segmentation changes. The resulting
sparse model of the object improves reconstruction and
search behavior, in particular for data that exhibit a hetero-
geneous distribution of image information and shape com-
plexity. Furthermore, it goes beyond conventional image-
based segmentation approaches since it is able to identify
reliable image structures which are then encoded within the
model and used to determine the optimal segmentation map.
We report promising experimental results comparing our
approach with standard models on MRI data of calf muscles
- an application where traditional image-based methods fail
- and CT data of the left heart ventricle.

1. Introduction

Segmentation is a fundamental problem in image pro-
cessing, medical image analysis and computer vision. In
the most general case one would like to create a partition
of the image in regions with similar features. However,
such a problem is ill-posed mostly because observations are
defined at the pixel level, while the conceptual grouping -
or segmentation - refers to the notion of an entire object.
Knowledge-based methods tackle this demand by first de-
termining some prior density on the space of solutions and
then constraining the solution in a new image to this den-
sity. Such a process involves three key aspects: (i) shape
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representation, (ii) modeling of shape variations and (iii)
inference from new data.

The vast majority of existing approaches are explicit
(landmark-based), and deduct critical points along with an
interpolation strategy towards describing the entire shape.
Examples are active shape models [6], spline-driven repre-
sentations [2], the triangulation of surfaces [11], or wavelet-
based representations [16], to name a few. The selection
of the landmarks as well as the interpolation strategy is an
important challenge towards recovering the least possible
complex representation with the best possible geometric re-
construction of the object under consideration.

Once the representation has been been defined, the next
step consists of learning a manifold on the resulting space
from a set of training examples. Linear subspaces, paramet-
ric as well as non-parametric densities have been consid-
ered to model shape variation through the observed global
distribution of the landmarks within the training examples.
Multi-variate Gaussians, as well as kernel-based represen-
tations of fixed and variable bandwidth are examples for the
representation of the density.

During search, the inference step consists of recovering
an instance of the learnt representation which is part of the
model manifold and is best supported by the observed im-
age features. Boundary-based methods are seeking the opti-
mal instance of the model guided by image-discontinuities,
region-driven approaches aim to separate the global inten-
sity characteristics of the object from the background, while
feature-driven methods seek to learn patterns of support in
the image. One can refer to a number of surveys published
for deformable models [15], markov random field-driven
[21], active appearance models [5] and minimal paths and
fast marching techniques [20]. Often, these three steps are
treated independently. Once the representation has been de-
termined, an assumption on the statistical model is made
and the parameters of the manifold are determined from
the training set. This manifold is then used along with the
image features for object extraction. One should make the
following observations: a strong dependency exists (i) be-
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tween the representation and the model since by changing
the distribution of control points, the model can be very dif-
ferent with regard to its representative capabilities; (ii) be-
tween the representation and the segmentation since image
features are often computed based on the representation,
and (iii) between the model and the segmentation (for ex-
ample manifold-enhanced vs manifold-enforced methods).

The aim of this paper is to propose a novel inte-
grated approach that addresses the above-mentioned inter-
dependencies between tasks, and uses them to improve the
model representation. We propose a unified modeling ap-
proach for both shape and appearance in computer vision as
well as in medical imaging.

The method obtains a sparse model of objects or anatom-
ical structures that takes the local statistical modeling and
appearance behavior in the training set into account. We
compare the reconstruction and search behavior with stan-
dard shape models, that neglect these properties, and repre-
sent objects, regardless of the reliability and complexity of
shape and texture behavior in the training population. The
model based segmentation is based on a sparse set of land-
marks that can be uniquely identified in new data during
search. The model is built based on a set of training exam-
ples for which expert annotations are available. It integrates
knowledge about local appearance, shape variability and the
ambiguity of image data to achieve a segmentation perfor-
mance equal to or superior to a medical expert.

The remainder of the paper is organized as follows: in
Sec. 2 the optimal shape representation and model construc-
tion are presented. Sec. 3 deals first with the inference and
the optimal use of image support, while afterward we intro-
duce the application context, that is the segmentation, and
report experimental results. Finally Sec. 4 concludes the pa-
per with discussion and different openings.

2. Sparse Shape Models

Sparse shape models learn a representation and a corre-
sponding reconstruction mechanism from a set of training
examples. The sparse model is built based on the statisti-
cal behavior of the training shapes and the distribution of
appearance information in the training data. In the follow-
ing we will formulate the framework, and explain how to
derive an optimal sparse representation from training exam-
ples. Subsequently the method for the reconstruction of the
entire modeled structure from the sparse representation, and
the search procedure will be explained.

Let us consider without loss of generality a shape repre-
sentation that consists of a finite set of landmarks. Given
a set of n training volumes and their corresponding seg-
mented structure

I1, I2, . . . , In. (1)

our knowledge about the data comprises m landmark posi-

(a) (b) (c) (d)
Figure 1. Sparse shape models: Calf muscle: (a) colour coded
density in the shape diffusion map according sparse landmark dis-
tribution (b). Left ventricle: (c) shape diffusion map density and
(d) sparse sub-sampling.

tions in each of the examples, that are located at consistent
positions with regard to the object or structure of interest.
The number of landmarks can be high, up to a dense sam-
pling of shape surfaces. Landmarks are not constraint to
anatomically salient points, but can be distributed on man-
ually segmented training examples by methods like those
proposed in [7, 12]. The landmark positions can be found
using a number of approaches, like for example the mini-
mum description length criterion. Landmarks do not have
to be located on a single surface or manifold, but can define
arbitrary structures and deformation fields [19]. For each
example Ii, the landmarks are located at the positions

Vi = 〈xi
1,x

i
2, . . .x

i
m〉. (2)

where xi ∈ R
d. We call Vi ∈ R

dm a shape, and denote the
set of shapes in the training set by

V = {V1,V2, . . . ,Vn}. (3)

This data defines a shape manifold, that can be associated
with geometric and image support. The local image infor-
mation and manifold geometry can be used to reduce the
number of landmarks. This should happen while satisfy-
ing two conditions: (i) the preservation of the maximum
amount of information about the shapes in the training set,
i.e., the reconstruction ability, and (ii) the optimal use of
the image information during inference in new data. This is
equivalent with recovering a reduced rank representation

V̂ = {V̂1, V̂2, . . . , V̂n}. (4)

where V̂i ∈ R
d(m′), and m′ � m. V̂i consists of a land-

marks subset defining the shape, and a corresponding re-
construction function P : R

d(m′) → R
dm, V̂i �→ V1 + R

where R is a residual error, that should be minimal.
We will first discuss how to obtain this representation V̂

based on the shape and appearance behavior in the training
set, in order to obtain optimal search ability. we consider
here a multivariate Gaussian shape model as used in [7].

2.1. Shape Maps and Redundancy

We view finding an optimal shape representation as an
optimal sampling with respect to the variations being ob-



served in the training data. It should have low density in
regions that behave in a redundant manner, and high den-
sity in regions that exhibit uncorrelated deformation behav-
ior in the training set. Analogously to a uniformly dis-
tributed sampling in real space, which covers the object
evenly, the sparse representation has to cover the object
evenly with regard to the information contained in each
sampling point. To achieve this, we have to capture the
coherence of the behavior of shape regions in the training
examples. In [13] shape maps are introduced. They provide
for a shape population metric, that captures the interdepen-
dencies in the behavior of landmarks. We use the concept of
shape maps to derive an optimal sampling. Let us consider
a Markov chain consisting of m nodes, each correspond-
ing to one landmark, and edges with a value pk(i, j) be-
tween the nodes that correspond to the minimal description
lengths [17] of models encompassing the two landmarks i
and j and k − 2 other landmarks. The description length
L is the number of bits, that are necessary to communi-
cate a model M, the data D (in our case landmark posi-
tions) encoded with help of this model, and a residual er-
ror: L(D,M) = L(M) + L(D|M) + R. The data term
is associated with the reconstruction error, while the model
term penalizes over-fitting through the use of expensive (in
terms of number of parameters) models. In our case it pro-
vides information about the compactness of models describ-
ing the joint variation of the landmarks i and j, or equiva-
lently about the redundancy in their position information
in the training set. We expect low values for edges be-
tween landmarks, that behave in a coherent way. If dk(i, j)
is the minimal description length [7], then the normalized
graph Laplacian construction [3] allows us to construct a
reversible Markov chain from the symmetric graph defined
by the nodes and edges p(i, j) = k(i, j)/

∑
j k(i, j), where

k(i, j) = e−
dk(i,j)

ε . This Markov chain is given by the non-
symmetric matrix P with entries p(i, j), or its powers P t

that correspond to an increasing time in the chain, and to the
according propagation of probabilities. The Markov chain
captures the shape variation behavior by connecting groups
of coherent landmarks with high-valued edges, while hav-
ing low value edges between landmarks, that share only
limited mutual information. The pairwise relation between
landmarks is captured by the according diffusion distance.
An eigenvalue analysis of P allows to generate a diffusion
map [4] - or shape map - a metric space, in which a diffusion
distance parameterized by t

Dt(i, j) =
∑

u

(pt(i, l) − pt(j, l))2

π(l)
, π(i) =

d(i)∑
j d(j)

,

(5)
becomes the Euclidean distance between the images of i
and j, Ψt(i) and Ψt(j),

‖Ψt(i) − Ψt(j)‖ = Dt(i, j). (6)

(a) (b)

Figure 2. Image support: a. muscle surface, b. left ventricle.

Once the shape map is generated, the density estimation can
be performed using an Euclidean approach. The i landmark
has an image in the map, which we denote by Ψi = Ψt(i),
while t is used to describe the entire space. In such a con-
text, the diffusion map S, is a metric space and therefore
we can estimate the density dΨi of the landmark images
Ψi ∈ S for each point. The density relates to the num-
ber of landmarks, that can be encoded by the same model
while retaining low description length. It is a measure of
redundancy [22], since a model that represents the shape
variation of a set of landmarks with images Ψi in a small
neighborhood in S is compact - according to the generation
of the Markov chain - and indicates that the mutual informa-
tion that landmarks carry about each other is high. In Fig. 1
shape diffusion maps, and densities are depicted for a set of
calf muscles, and a set of left ventricles. A detailed deriva-
tion of shape maps is given in [13]. We aim for a sampling,
in which each of the landmarks i carries an equal amount of
mutual information about about other landmarks k, which
have diffusion map images Ψk in its neighborhood. This
would result in a uniform distribution of images Ψi in S.

To conclude: the shape map assigns each landmark a po-
sition Ψi. The distance between Ψi and Ψj in the shape
map corresponds to the coherence of the behavior of land-
marks in the training set. We aim at a uniform sampling
in the shape map, so that the mutual information landmarks
carry about each other is evenly distributed. The next step
is to add appearance information to the map.

2.2. Image support

The shape map represents the shape variation structure
of the training examples. The appearance information, that
is used during search, is not distributed evenly on the en-
tire object, too. In the case of muscle MRIs only a small
ratio of the surface carries distinctive appearance (Fig. 3),
that allows for a separation between background and fore-
ground. To account for this variability we calculate the im-
age support at each landmark position during training. If
we can assign a value to a landmark relating to the distinc-



Figure 3. Surface of a calf muscle: image support on the outer and
inner part, and the sparse model points.

tiveness of the local texture in the training set V we can
further differentiate the representation V̂ . Conceptually, the
model should use landmarks with salient appearance for the
inference from the data, while reconstructing the remaining
parts of the shape according to a reconstruction mechanism
based on the shape prior.

For each landmark i we denote by gi the image support
in the training set. g relates to the chosen search strategy.
Since we employ local texture patches, we derive g based
on the distinctiveness of the texture at the landmark posi-
tion. In Fig. 2 the image support for calf muscles, and left
ventricles is depicted. We calculate the correlation of tex-
ture appearance in the vicinity of landmark positions in the
training set. For distinctive features, the correlation can be
expected to show a peak at the correct position. Let b(xj

i ) be
the learned texture patch at the correct landmark position xi

in the training example Ij , and for landmark positions in a
local neighborhoodN let Qj

i (x) be the correlation between
the patch b(x) and b(xj

i ) normalized within the neighbor-
hood, i.e.

∫
x∈N Qj

i (x) = 1, then the image support is

gi =
n∑

j=1


 Qj

i (x)∫
x∈N\xj

i
Qj

i (x)


 . (7)

That is, for a landmark in V the image support is calcu-
lated from the local appearance behavior at the correspond-
ing positions in the training set.

2.3. Sparse sampling of the data

Given a metric space S that captures the statistical shape
behavior, an according density dΨi and an image support gi

for each landmark we obtain a sparse sampling by minimiz-
ing the integral of absolute gradient in the map S,

C(V̂) =
∫
S,i∈V̂

|∇(dΨi/γgi)|, (8)

by choosing a subset of landmarks. That is, the function
reaches a minimum if an even distribution of landmark im-
ages weighted by gi is obtained. This distribution favors

landmarks that have high image support in the training set,
while integrating the statistical shape modeling and recon-
struction properties of individual landmarks.

Given a diffusion map S, a set of object landmarks im-
ages Y0 = {Ψ1, . . .Ψm} ⊂ S, Ŷ0 = ∅, and the accord-
ing densities dΨ1 , . . . dΨm , and a value r, we perform the
sparse sampling in the following iterative way: 1. choose
i : dΨi = max({dΨj : Ψj ∈ Yt}); 2. set Yt+1 =
Yt \{Ψi∪Ψj : ‖Ψj −Ψi‖ ≤ r/γgi}, Ŷt+1 = Ŷt ∪Ψi, and
iterate until Y = ∅. The value r controls the mean density
of the sparse representation.

This results in a set Ŷ and a corresponding set of land-
marks V̂ that forms the sparse model representation, in
which the mutual information between landmarks and the
appearance information at landmark positions is distributed
evenly. In the following we will explain how to reconstruct
the entire object X from the sparse representation X̂ us-
ing the diffusion map S. In Fig. 3 a sparse sampling for
calf muscles is depicted together with the color coded im-
age support.

2.4. Reconstruction

The reconstruction of the shape consists of inferring the
positions of the entire shape Vi = 〈xi

1,x
i
2, . . .x

i
m, 〉 from

the sparse representation V̂i = (xi)Ψi∈Ŷ . We assume
that we model the shape variation locally by a multi vari-
ate Gaussian with axes along the principal components of
the distribution. Furthermore, without loss of generality we
can consider that we can derive a covariance matrix Σ for
the position variation of each subset of landmarks in the
shape after Procrustes alignment. The alignment discards
the influence of global displacements of the local landmark
configuration.

For a landmark xi not in the sparse representation the
reconstruction can be formulated in the following way: We
choose the l nearest neighbors of Ψi in Ŷ (i.e. the land-
marks, that exhibit the highest coherence of behavior in the
training set and are part of the sparse representation). The
use of the closest neighbors in the shape map ensures a re-
construction based on the functionally closest related land-
marks as opposed to spatial neighbors. The model learnt
from the training data for this sub-set Vi,j

′ of landmarks or
reconstruction kernel comprises a mean µ and a covariance
matrix Σ. The shape vector is partitioned into the observed
part Vi,j

a of the sparse representation and the missing part
Vi,j

m (i.e. one or several missing landmarks). Accordingly
we partition the covariance matrix into sub matrix corre-
sponding to the observed values or coordinates Σaa, and
the submatrix corresponding to the missing values Σmm,
the submatrix describing their relation is Σam = Σma�,

Σ =
(

Σaa Σam

Σam� Σmm

)
. (9)



Now we can estimate the values of the remaining shape
landmarks by a linear regression model:

Vi,j
m = µm +(Vi,j

a −µa)B+e,B = Σaa−1Σam. (10)

B is the regression matrix, Xm is the conditional maximum
likelihood estimate of the missing part of the shape vector,
and e is a residual error. See [18] for a concise explana-
tion of imputation. Therefore in the case of a linear model,
the local sparse reconstruction function is given by equation
(11). It allows to reconstruct the entire object shape from
the sparse representation, while using the relations learnt
from the training set to define local reconstruction kernels
in the map S.

V′
i,j �→


 V′

i,j

Vi,j
m


 (11)

2.5. Inference from new data

Let us now consider a new data set where the goal is to
determine the position of the object being modeled. Such
an inference process often involves the definition of an ob-
jective function that seeks for an admissible solution being
supported from the observations. In a standard shape model
inference approach, the positions of landmarks in new data
are estimated by an energy minimization that involves both
shape prior and appearance costs.
The search with the sparse model representation V̂, the
according reconstruction function P , and the appearance
models (bi)i = 1, . . . , N for each landmark is performed
in an iterative manner. Based on a coarse initialization the
landmark positions of V̂ are updated according to the ap-
pearance model. For each landmark the position with high-
est probability with regard to a local texture patch is cho-
sen. Then the shape is constraint by either a local or global
statistical shape constraint. In our work we use a multivari-
ate Gaussian. However, alternatives, like spherical wavelets
[16], or elasticity based constraints [19] can be utilized in
a similar manner. After convergence the entire shape V is
reconstructed from V̂ by the sparse reconstruction function.

3. Experimental Validation

3.1. Application Context

In medical image analysis often the assumption of con-
sistent global region statistics is violated within organs. The
work was motivated by the highly heterogeneous distri-
bution of visual information in muscle MRI data (Fig. 4).
Standard segmentation methods fail, due to the ambiguous
texture and the sparse distribution of salient image infor-
mation for example within the leg. The majority of work
on anatomy segmentation is focused on brain, liver or heart

(a) (b) (c)

Figure 4. MRI data of calf muscles: (a) healthy (b) and unhealthy
case, (c) manual expert annotation of individual muscles.

data [14, 1]. They are often based either on the detection
of prominent edges between organs or on the separation of
intensities due to the reflectance properties of the different
tissues in the human body. The segmentation of individual
muscles within a muscle compound poses new challenges
to automatic segmentation systems. The sparse distribution
of regions where image information allows for a reliable
separation of neighboring substructures, makes the use of
prior shape knowledge mandatory, and motivates the de-
velopment of models, that make optimal use of statistical
models of shape and appearance acquired during training.

In Fig 4, magnetic resonance imaging (MRI) slices of
the human calf are depicted [10]. The distribution of re-
liable image information at the boundaries between indi-
vidual muscles is un-even, and parts can only be estimated
from prior shape knowledge. Since this distribution is fairly
consistent over a population it can be learned, and integrated
in a sparse model that makes optimal use of both the shape
prior and the image information.

(a) (b)

Figure 5. Standard reference segmentation of respectively (a) pap-
illary muscles of the left ventricle and (b) human calf muscle.

In [8] a hybrid image-based modeling approach is pre-
sented, with a predefined reference model and using a
free-form deformation approach to morph a high resolution
model to fit a low-resolution model created from MR data.
The Statistical Shape Model (SSM) proposed by Cootes [5]
were used to capture and represent the variation in shape of
a set of training sets. From a set of training data the mean
shape and its most significant modes of variation are deter-
mined. In [9] two-dimensional slices where utilized, to rep-
resent the shapes, and a sub-set of these slices was chosen
by means of a criterion capturing image and model support.



The sparse representation of shapes presented is based on
a finite set of landmarks, that can be identified repeatedly
on different examples of an anatomical structure. The use
of landmarks extends this concept to the differentiation be-
tween arbitrary regions of on the object surface.
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(b) Heart Data

Figure 6. Reconstruction: accuracy of the shape reconstruction
with different sparsity levels: uniform sub-sampling vs. weighted
sub-sampling on muscle and heart data.

3.2. Experimental Set-up

To evaluate the performance of the proposed method we
report experiments on two data sets:

1. A set of 4 calf muscles of healthy control patients: for
each volume 20 slices of 7mm of thickness, and with
voxel spacing of 0.5859x0.5859x7 mm were acquired
with a 1.5 T Siemens scanner. Standard of reference
annotation by clinical experts for the Medial Gastroc-
nemius (MG) muscle, was available (Fig. 5). Corre-
spondences for a set of 895 landmarks on the muscle
surfaces were obtained by an MDL optimization.

2. A set of 24 CT volumes of the heart, with an approx-
imate voxel spacing of 1.5 mm, for which 90 anatom-
ical standard of reference landmarks, and a set of 726
control points for the left ventricle was available.

For both data sets we evaluated the reconstruction and
search behavior of sparse models. To assess the shape
representation of the sparse sampling, we sub-sampled the
shapes with landmarks either evenly distributed in the real
space, or evenly distributed in the shape map, while neglect-
ing appearance. The goal is to understand how the sparse
sampling based on the density in the shape map affects the
reconstruction of missing landmarks.

To evaluate the search behavior we compared sparse
shape models with a standard shape model search in an ac-
tive shape model manner, based on an even sampling of the
object surface, and gradients in the volumes.

M1 M2 M3 M4
Standard model: 34.77 31.56 49.06 35.74
Sparse model: 4.61 13.41 7.65 12.46

Table 1. Calf muscle segmentation: landmark error after finished
search standard model, and a sparse model for 4 example data.

3.3. Results

Reconstruction results are shown in Fig. 6. With an equal
ratio of missing landmarks (X-axis) the sparse sampling
based on the shape map consistently outperforms uniform
sub-sampling in the object space. The advantage becomes
more pronounced with very high ratios of missing land-
marks that hae to be reconstructed. This indicates that a
high amount of relevant information can be captured in a
small sub-set of landmarks, when the modeling relations
between them are considered by means of the shape map.

The search behavior of sparse models was evaluated on
both data sets. A sparse representation was built based on
both shape model and image support. Models were initial-
ized with minimal overlap to the target shape, and the ac-
curacy of the final result was quantified by means of the
mean landmark error between standard of reference annota-
tion and search result. The sparse model was able to recover
the shape with superior accuracy. In Tab. 1 mean landmark
errors after search convergence for standard shape models,
and sparse shape models are reported. In the muscle data the
standard search approach failed due to the ambiguous tex-
ture in large regions of the target shape. In Fig. 7 examples
for standard and sparse model search are depicted. An inter-
esting observation was that in the case of calf muscle image
support and diffusion map density gave complementary dis-
tributions. That indicates, that it is worthwhile to use both
informations for the representation building but raises the
question of an appropriate weighting, and its dependence on
the data variability. This will be subject of ongoing research
on more exhaustive data sets. For the heart data, the search
was initialized with minimum overlap. Standard search re-
sults in a mean error of 20.86 voxels, while sparse models
obtain a mean landmark error of 6.43 voxels.

4. Conclusion

In this paper we propose a knowledge-based segmen-
tation framework. In contrast to existing approaches the
method uses the statistical shape modeling and texture be-
havior in a training set to derive a sparse representation and
reconstruction mechanism. It adapts to heterogeneous dis-
tributions of redundancy in the shape variation, and sparsely
distributed distinctive texture in the data. During search for
structures in new data, the model is used with a patch based
local appearance representation to locate and segment ob-
jects. We report experimental results on two complex data



(a) (b)

(c) (d)

Figure 7. Model search result for MRI calf (upper row) and heart
muscle (lower row) data, green: standard of reference segmenta-
tion, red: search results for a. and c. standard gradient search
approach, and uniform sampling, b. and d. sparse shape models.

sets, and compare the method with existing approaches.
The proposed representation can by employed with other
shape modeling and search methods. The formulation based
on model compactness makes a transfer of the shape behav-
ior mapping to other models straightforward. Future work
will focus on the determination of the sparse model com-
plexity, that takes the limited training data into account to
estimate a feasible number of parameters, and an integration
with model learning approaches, that learn the locations in
non-annotated data in a weakly- or unsupervised manner.
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