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Abstract

We propose a shape population metric that reflects the
interdependencies between points observed in a set of ex-
amples. It provides a notion of topology for shape and
appearance models that represents the behavior of individ-
ual observations in a metric space, in which distances be-
tween points correspond to their joint modeling properties.
A Markov chain is learnt using the description lengths of
models that describe sub sets of the entire data. The ac-
cording diffusion map or shape map provides for the metric
that reflects the behavior of the training population. With
this metric functional clustering, deformation- or motion
segmentation, sparse sampling and the treatment of outliers
can be dealt with in a unified and transparent manner. We
report experimental results on synthetic and real world data
and compare the framework with existing specialized ap-
proaches.

1. Introduction

Models of shape and appearance are powerful tools in
various domains. An example are active appearance mod-
els [7] that have been used in medical imaging applications
[2], or face tracking [11]. Sparse shape models [12] have
been used for liver segmentation, and spherical wavelet
shape models were introduced in [16] for brain segmen-
tation. This family of methods necessitates an involved
and usually supervised learning phase that establishes cor-
respondences over a large set of training data. Due to the
complexity of relevant data, recently the automatic learning
of models has attracted interest. Examples are the investi-
gation of systematic behavior as opposed to purely elastic
deformation in the context of group-wise registration and
brain atlases [3, 10], or autonomous model learning [13].

The main limitation of these models relates to the choice
of topology and parameterization. During learning and
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Figure 1. Data for which a prior choice of a parameterization man-
ifold can introduce a bias: the highly correlated symmetric struc-
ture of face data, a stent-graft in the thoracic aorta exhibiting inco-
herent deformation behavior.

search, they either use an a priori chosen topology to pa-
rameterize correspondences and deformation [9], or deform
the entire volume [8] in a continuous non-rigid manner.

This strategy has difficulties to model certain aspects of
natural shape variation, like the presence of discontinuities,
articulated structures, high variability of local deformation
behavior, or functional properties, that are not reflected
properly in a diffeomorphic deformation field. A prior sub-
division is not feasible for data with varying elasticity prop-
erties, or compound non-rigid structures (soft tissues and
implants in anatomical structures). It would neglect the sub-
tle mutual interactions in the data, while a model that does
not account at all for the compound nature of the data is
likely to suffer from poor generalization behavior [14].

The determination of the intrinsic topology of observa-
tions is a necessary prerequisite for the building of mod-
els, that are free of a bias, that would empede their analytic
value. An example where this is of particular importance
are population studies [10]. A related task is the tracking
of multiple objects and motion segmentation, which typi-
cally relies on assumptions about the behavior of individual
components, like rigidity, and aims to derive sub-divisions
of trajectory bundles from sequences [18, 21].



In summary, shape modeling involves two aspects, 1. the
parameterization and 2. the modeling of shape variations.
While significant research effort has been carried out to-
wards modeling variations, this is not the case for the pa-
rameterization. An a priori choice of parameterization in-
troduces a strong bias in the modeling process. The most
natural approach is to determine the parameterization from
the data itself to maximize the compactness of the model
while simplifying the statistical modeling of shape varia-
tions.

In this paper we propose a metric that captures the mu-
tual coherence of landmark behavior from a population of
training examples. A shape map can be learnt in a simple
manner from the data by a construction related to diffusion
maps [6, 15]. It is a space in which the joint modeling prop-
erties of landmarks are reflected in their Euclidean distance.
That is, instead of expressing the relation between individ-
ual points of a single observation, it captures the behavior,
the interactions, and the inter-dependencies of landmarks
in an entire population of observations. Instead of using
spatial distances or similarities, it uses the compactness of
small sub-models to probe the data for systematic depen-
dencies of groups of landmarks.

This leads to several novel properties that let the shape
map serve as exploration instrument, or analysis method
that can enhance model building: it establishes functional
relations within a deformable structure from multiple ob-
servations. By this it captures the individual modeling be-
havior of sub-model systems independent from their spatial
distribution. Shape maps bridge the gap between statisti-
cal shape models and diffusion maps. The resulting shape
population metric solves several questions in a unified man-
ner: how to discover topology (in terms of dependency)
in the data from observations instead of imposing a priori
manifolds. How to detect sub-structures, and their mutual
relations. How to perform segmentation, determine recon-
struction kernels, quantify redundancy, and detect outliers,
based on statistical behavior. This is crucial for the sta-
tistical modeling, analysis, and reconstruction of complex
and compound structures. It enables algorithms to improve
model building by focusing on coherent sub-models, and
enables the topology to emerge from the observed data.

The reminder of this paper is organized as follows: In
Sec. 2 we explain the model compactness measure. Based
on this the metric of joint modeling behavior is introduced
in Sec. 3. In Sec. 4 several applications and an experimental
validation are discussed, while the last Sec. 5 concludes the

paper.

2. Description Length and Shape Models

We will first explain the information theoretic prelim-
inaries for the learning of a shape map. To probe the
landmark set for dependencies we calculate the description

lengths of multivariate Gaussian shape variation models,
that capture the deformation of landmark sub sets, after they
have been aligned by Procrustes analysis.

2.1. Modeling Shape Variation

To analyze the model structure, we observe shape mod-
els that encompass subsets of the entire data, and model
only local non-rigid shape variation. Global translation,
rotation or scale change are neglected. Given a set of
m landmarks in n d-dimensional data examples: x; =
(@2l g) e (Thyy - T, g) Whered = 1,...,n, we
first align these examples and then calculate the description
length of a multivariate Gaussian modeling the remaining
non-rigid shape variation. The shape alignment eliminates
variability in a set of examples, that is due to translation,
rotation and scale. Given n sets of landmarks, X1, ..., X;,,
first, each example x; is translated so that the centroid is 0,
and scaled, so that ||x;|| = 1. Finally the rotational differ-
ences of the sets xo,...,X, are aligned to x; (where the
choice of x; is arbitrary, and does not influence the shape
model) using a singular value decomposition of the matrix
x; x1 [4], i.e. UDVT = x[x;. Then VU is the ro-
tation matrix, that by x;, = VUTx; minimizes the Pro-
crustes distance of x/, to x;. By modeling the aligned shapes
x1,...,%, (where x| = x1) only non-rigid shape variation
remains, and global translation, scale and rotation do not af-
fect the model complexity. The aligned shapes are modeled
by a multivariate Gaussian with model mean X and covari-

ance matrix X.. PCA is applied on the set {x},i = 1,...,n}
creating a new coordinate system that represents each of the
vectors by np

The modes e; are the eigen\j/ectors of the covariance ma-
trix sorted according to decreasing eigenvalue A;. X' is the
mean shape and n, can be chosen to represent a certain
amount of variation in the data. The eigenvalues \; cor-
respond to the variance of the data in the direction e;, and
az- are the coefficients that correspond to one example x;.

2.2. Compactness of multi variate Gaussian models

To quantify the compactness of the shape models captur-
ing the variation of a set of landmarks, we calculate their
description length. The description length comprises the
cost L of communicating a model M itself and the data
D (i.e. the landmark positions) encoded with the model:
L(D,M) = L(M) + L(D|M). It can be calculated from
the individual univariate Gaussians.

For each dimension j of the eigenspace used to encode
the data we can apply Shannons theorem [20] to the ac-
cording one-dimensional distribution. We quantize the co-
efficients ag» that are strictly bounded by R;, by the step
size Ay, which is related to the pixel/voxel-size. For



each training sample x; the new discrete coordinates &j- =
EArm, k € Z with —R;/2 < a; < R;/2 are modeled by
a Gaussian distribution with coefficient mean value p1; = 0
and standard deviation o; = \/E .

For each dimension j of the eigenspace used to encode
the data the transmission costs of the model L(M,,) are the
quantized eigenvector, ¢; and the quantization parameter J
for the direction e;. L(D|Me,,) is the cost of transmitting
the data i.e. the quantized coefficients a’ of the training set
with respect to the direction e;.

The description length for the data encoded with an n,,
dimensional eigenspace is the sum of the transmission costs
for the data encoded using the eigenvectors (€;);=1,...n,
together with the cost of the residual error

np
L(x1,....%,) = (L(Me) + L(DIMe))) + R, (2)
j=1
where
Omax — Omin
L(Me,) + L(D|Me,) = logy( 722 11
j
n 2 n n J2
108y 65| — nlogy Ay, + 5 loga(2707) + 5 + =2

J
with 0,4, = R/2 and 0,5, = 2A 1, R is the residual er-
ror that remains after fitting the training set with the model.
An extensive derivation of the description length calculation
for Gaussian models is given in [9]. Note that the descrip-
tion length can be applied to any model, and a multivariate
Gaussian is chosen as an illustrative example. The descrip-
tion length reflects the complexity of the representation, and
therefore we can use it in the following step, to describe the
coherence of behavior for sets of landmarks.

3. Markov Chains and Shape Maps

We will first explain the steps necessary for the construc-
tion of the shape map, and will then outline its properties.

Given a set of n example shapes, each consisting of po-
sitions for m landmarks as described in Sec.2.1, we want
to derive a metric on the set of landmarks, that reflects their
joint modeling behavior, or the coherence of deformation
of groups of landmarks. To do this we first learn a Markov
chain, that captures these relations between pairs of land-
marks, using the description length to evaluate the landmark
coherence. From this we derive the shape map, in which
each landmark is mapped to a point, and in which the Eu-
clidean distance between points relates to the complexity
of their optimal joint model. The temporal ordering of ex-
amples or connectivity is neglected entirely in this process.
The most related work is [6] in which diffusion maps have
been explained in detail.

The Markov chain consists of m nodes X, and pair-
wise relations d(¢, 7). Each node corresponds to one land-
mark, and therefore carries information about n instances,
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Figure 2. Learning the Markov chain, and the resulting shape map.

A model family M = (M, ®) parameterized by ® allows
us to formulate a notion of systematic shape variation with
regard to this family. This mutual systematic dependency
serves as a measure of affinity between landmark behavior.

A Kkernel describing systematic behavior We define
di (i, ) for two landmarks and kernel size k based on the
minimum description length of models encompassing the
two landmarks ¢ and j and k£ — 2 other landmarks:

dp:{1,2,...,n}? - R (5)
dy(i,7) = minp (L(M)]i, j € M and #M = k) (6)
where the model M with cardinality #M =

#{h1,...,hi,} =k represents the sub vectors
comprising a sub set of landmarks of the obser-

vations (Xghhm’hk})izl,...,n, where Xghl"”’hk}
((x';th e xﬁud) e <mﬁzk,1 e mﬁk,d»- Accord-
ingly L(M) denotes the description length

,C((x;.{hl""’h’“})i:l,__m) as defined in Sec.2.2, and
1, CM & i € {hy,..., hg} for M. Thatis, d(i, j)
is the minimum of the description lengths of all models
representing ¢ and j, and arbitrary £ — 2 other entries of
the observations. Note that therefore dy (4, j) does not only
depend on the behavior of the two landmarks ¢ and j, but
on the behavior of a larger sub set that can be described
by the least complex joint model. With increasing k
only larger coherent sub-sets will benefit in terms of the
distance in the shape map. This can have a positive impact
on the robustness. dj, is non-negative di(i,j) > 0, and
symmetric i.e. di(i,j) = di(j,¢). That is the nodes X
and edges weighted according to dj between the nodes
build a symmetric graph (X, dy). In practice we estimate
dj, by randomly choosing sub-sets of the data, calculating
the according value dj (4, j) for all pairs in the sub-set and
keeping the minimum of all samples for (%, j) (Fig. 2).

Creating a Markov chain that reflects the model struc-
ture Using this relation, one can form a Markov chain that




encompasses the notion of compactness in the entire set of
landmarks. The normalized graph Laplacian construction
[5] allows us to construct a reversible Markov chain from
the kernels

_ (i)

k(i,j) =e (7

by defining

i) = S ki) and plid) =Sl ®

This new kernel is no longer symmetric, but satisfies

> p(ig) =1. ©)
J

Therefore it can be interpreted as the probability of the tran-
sition from node i to node j in one time step, or a transition
kernel of a Markov chain. It gives a diffusion operator

Pf(x) = alz,y)f(y)du(y), (10)

and its powers P! that allow to propagate information
through the Markov chain according to the transition ker-
nels. P is the Markov matrix with the entries p(, 7). The
probability of the transition from any node ¢ to another node
j in t timesteps is given by the according kernel p; (i, j).
This allows to analyze the data at multiple scales i.e to prop-
agate the relations between pairs of nodes.

A distance that captures coherence The operator P de-
fines the geometry on the set of landmarks we are looking
for. It can be mapped to an Euclidean geometry by an eigen-
value decomposition of P. According to P* we can define
a family of diffusion distances parameterized by ¢ on the set
of landmarks

D.(i,j) = Z (pe(i,1) — pe(4,1))?

=1,....m 71'([)

where 7(i) = d(i)/_; d(j) is the probability of 7 in the
unique stationary distribution (the uniqueness is fulfilled if
the graph is connected). D, is an L? distance between the
posterior distributions of reaching ¢ or j from all points [ in
the graph. It captures the connectivity in the Markov chain,
summing over all possible paths from ¢ to j. The distance
Dy is low if there is a large number of paths of length ¢ with
high transition probabilities between the nodes ¢ and j. In
terms of the joint model this signifies high compactness for
a representation that encompasses landmarks ¢ and j.

An eigenvalue decomposition of the operator P results
in a sequence of eigen values A1, Az ... and corresponding
eigen functions W1, Uy, . .. that fullfill P¥; = \;¥,. In [6]
the authors explain how a diffusion map, the space spanned
by the eigenfunctions of a Markov chain relates to the ge-
ometry determined by a diffusion distance D;.
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Figure 3. Synthetic example: a. trajectories of 4 boxes, rotating
against each other, while changing aspect ratio individually; b. es-
timated Markov matrix; c. clusters in the space map; d. landmarks
corresponding to the 4 clusters: separation of the boxes

Shape maps: a geometry of modeling behavior We use
this to create a shape map ¥, : X — R", that embeds each
node (landmark) ¢ = 1,...,m in the Markov chain into a
w dimensional Euclidean space

AW (4)
AW (i
i W, (1) 2 Q,AU (12)

Aoy W ()

in which the diffusion distance in Eq. 11 corresponds to the
euclidean distance

[W:(7) — ®i(4)]| = Ds (3, ). (13)

Thereby the functional relations between landmarks are
translated into spatial distances in the shape map (Fig. 2).

We can perform standard density estimation, clustering,
or the definition of neighborhoods in this space. Such a pro-
cess captures relations between the behavior of landmarks
in the population of examples, since the underlying Markov
chain was built by description length kernels.

The diffusion distance D is able to derive large scale re-
lations based on pairwise connections in the Markov chain,
by using higher values for ¢. This property can be ex-
ploited when estimating the Markov chain on large struc-
tures. When only spatial neighbors are used for the pair-
wise relations, the relations between landmarks that are not
captured in this calculation can be estimated through the
propagation when running the Markov chain, i.e. increas-
ing t. The time in the Markov chain corresponds to a simple
scaling of the shape map dimensions. It allows us to handle



Figure 4. Stent-graft segmentation: a. ground truth, b. spatial
segmentation, c. deformation segmentation with shape maps.

a certain amount of non-linear behavior of groups of land-
marks even if we just use a linear model for the pair-wise
relations. In our experiments we did not consider spatial
neighborhoods during the estimation process, in order to
avoid its influence in judging the value of the purely func-
tional relations between landmark behavior.

4. Using Shape Maps - Experiments

The shape map is a metric space in which we can per-
form clustering, and density measurements. Furthermore,
we can use the neighorhood relations to guide operations in
the real population, like the reconstruction of missing val-
ues, for new examples. We will illustrate these aspects and
applications of the shape map metric in experiments on syn-
thetic and real world data sets from various domains: 1. a
synthetic set of landmarks on 4 rectangles, each of them
changing aspect ratio, while they rotate against each other.
2. A sequence of landmarks on a talking face. 3. Frames of
a gated CT sequence of a stent-graft in the thoracic aorta. 4.
Two motion segmentation data sets with rigid motions and
outliers [17]. Spatial relations in the data were neglected
during the shape map estimation.

4.1. Deformation segmentation

We segment the set of landmarks, accounting for its
shape variation behavior. The segmentation separates sub
structures that have high intra-set coherence, while being
comparably independent from other parts of the data. This
can be realized by spatial clustering in the shape map. We
performed k-means clustering in the shape map for the ex-
periments. The cluster centers in the shape map correspond
to points that have equal probability of being generated by
the same model, like all other members of the cluster.

In Fig. 3.a a synthetic example is depicted. It consists of
75 examples of four boxes that rotate independently from
each other, while changing their individual aspect ratios.
The Markov matrix in Fig.3.b reflects the dependencies

31 0 0 0 0 0 0 1 22
0 45 0 0 1 0 0 0 1
0 0 29 0 0 0 16 23 0
0 0 0 39 0 28 O 0 0
0 0 0 0 25 0 0 0 0
0o 21 0 9 0 14 0 0 0
0 0 0 0 0 0 54 0 0
8 0 19 0 0 0 0 15 0

20 3 0 0 0 0 0 0 27

Spatial segmentation

50 0 0 0 0 0 0 0 4
0 43 0 0 1 0 0 0 2
0 0 68 0 0 0 0 0 0
0 0 0 56 0 8 0 0 0
0 0 0 0 21 O 0 0 0
0 0 0 0 0 43 0 0 0
0 0 6 0 0 0 46 0 0
4 0 0 0 0 0 0 36 0
0 0 0 0 0 0 0 0 46

Shape map segmentation

Table 1. Confusion matrices for 8 stent segments and a static part
of the spine.

within the boxes, and the resulting shape map exhibits four
compact clusters shown in Fig. 3.c. They correspond to the
landmarks located on the four individual boxes, as depicted
in Fig. 3.d.

A stent-graft in the thoracic aorta was tracked in a se-
quence of 8 frames acquired during the cardiac cycle. Dur-
ing the sequence the entire stent-graft deforms non-rigidly,
and changes topology due to individual segments touching
each other either during the entire sequence or only for a
few frames. In Fig. 1 one example is depicted. For 451 land-
marks positions in all frames are known. Landmarks were
located on 8 stent segments and a close static structure on
the spine, therefore we expected 9 separable sub-structures
in the data. The ground truth segmentation was annotated
manually for validation. Spatial and shape map clustering
was performed. The spatial clustering resulted in a success
rate of 62%, while the shape map clustering resulted in a
success rate of 94%. In Fig.4.a the ground truth annota-
tion, and the results from spatial (Fig.4.b) and shape map
clustering (Fig. 4.c) are displayed for 9 clusters. In Tab. 1
quantitative results are reported. The spatial segmentation
does not result in usable segments, while the shape map seg-
mentation separates the individual - and less elastic parts -
of the stent-graft.

4.2. Density estimation and spatial relations

We can estimate the density in the shape map by a Gaus-
sian kernel. It corresponds to the quantity and affinity of
landmarks that exhibit coherent behavior in the population,
in terms of that a model that captures this set is compact.
Therefore the density can by used for a determination of the
number of clusters, by enforing positions of cluster centers



Figure 5. Stent-graft deformation: density in the shape map: high
density regions correspond to landmarks of individual stent seg-
ments that exhibit coherent deformation behavior. The isolated
cluster corresponds to landmarks not located on the stent-graft,
but on a static part of the spine.

in high density regions of the shape map. On the other hand
the local density in the shape map gives a means of confi-
dence of cluster membership, and allows for the detection
of outliers, by rejecting points in low density regions. In
Fig. 5 two views of the density in a three-dimensional shape
map of the stent-graft data is depicted. It shows the dense
clusters formed by the 8 segments and the static part of the
spine. Pairs of segments at both ends of the stent-graft form
narrow cluster pairs, indicating their less elastic connection.
Note that the structure forms a rather flat two-dimensional
manifold.

4.3. Modeling, reconstruction and tracking

Furthermore the shape map and its density distribution
allows for a reduction of the shape representation dimen-
sionality. Utilizing landmarks corresponding to evenly dis-
tributed nodes in the shape map reduces the redundancy in
the landmark set, since only few examples are necessary to
represent dense areas, that correspond to highly redundant
behavior in the training set. When building a model or re-
constructing missing data in new observations, the metric
in the shape map gives a neighborhood relation, that can
be used for reconstruction based on local neighborhoods in
the shape map i.e. from landmarks, that are most related
in terms of behavior. This can be viewed as a notion of
topology emerging from the behavior of observed data. It is
valuable in work concerned with the autonomous building
of models, where the correct determination of the underly-
ing structure that generates the observation is a prerequisite
for accurate models with good generalization behavior.

Landmarks on the face of a talking person were tracked
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Figure 6. Modelling of a face based on 75 randomly chosen frames
from a sequence of a talking person. Colors correspond to sub-
models. In a. and b. the saturation encodes the density in the shape
map. High saturation corresponds to high density. Left: original
space, center: shape map. On the right the density is color coded
on images of the landmarks in the first 3 shape map dimensions.

(Fig. 1, [1]), and 75 frames were randomly chosen from
the sequence to test the algorithm. In Fig.6.b the result-
ing shape map is depicted together with the mean shape
(Fig. 6.a). Clustering was performed dividing the face into
4 zones. Note that spatial relations are not used during the
shape map calculation. The density in the space map is vi-
sualized by the saturation of the cluster labels. In Fig.6.c
the first 3 dimensions of the shape map are shown, illus-
trating the structure that reflects the shape variation. Highly
correlated clusters are located at the eyes, and the mouth.
For four landmarks in the center of the face the coherence
with other parts is particularly low.

To assess the the value of shape maps for the reconstruc-
tion of missing data, we performed imputation [19] of miss-
ing landmarks in the box data set. 34 examples were used
for training. In the remaining examples missing landmarks
were reconstructed from the other landmark positions in a
leave-one-out manner. The configuration diameter is appr.
80px. Reconstruction with the full covariance matrix fails
due to the non-linear displacements, and yields a mean po-
sition error of 17.46px. Local reconstruction from a sub-
set of 5 closest spatial neighbors yields a mean error of
14.90px. When one instead uses the 5 closest neighbors
in the shape map, the reconstruction error is reduced to
2.46px, since this allows to use the most affine landmarks in
terms of modeling behavoir, which can not be derived from
spatial information.

4.4. Motion segmentation and point matching

To evaluate the applicability of shape maps for motion
segmentation, we performed experiments on the desk and
office data sets in [17], depicted in Fig.7 and Fig.8. For
both data sets the annotation, and trajectories are depicted
in the top frame. The shape map segmentation result is
depicted in the center frame, with colors indicating clus-
ter identity and saturation encoding the density in the shape
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114 0 0 1 11113 0 0 0
2 0 50 0 0 2 0 8 0 0
3 0 0 48 1 3 0 0o 76 2
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Table 2. Confusion matrix for motion segmentation of 3 different
objects with outliers: left: desk data, right: office data.

map for each landmark. The lower frame shows the clus-
ters in the shape map. For two images showing a desk from
different viewpoints, 149 corresponding points were anno-
tated on 3 different independently moving objects, and 51
outliers with incorrect correspondences were added. Shape
maps with £ = 3 and € = 1500 were built for both the set
without outliers, and the set with outliers. Outliers were de-
tected based on the density in the shape map. Landmarks
with a density less than one standard deviation below mean
density were rejected. On the set without outliers, cluster-
ing in the shape map results in correct separation between
the 3 objects. For data with outliers the resulting confu-
sion matrix is given in Tab.2 (left). Note that there is no
confusion within the objects, but only between objects and
outliers. On a second data set office (Fig. 8) 3 objects and
outliers were segmented with shape maps with the same pa-
rameters, resulting in the confusion matrix in Tab. 2 (right).
Again, the 3 objects are segmented correctly, while outliers
are included occasionally. For both data sets no task spe-
cific model was used (like e.g. rigid motion). The shape
map was built based on multivariate Gaussian sub-models
like in the previous examples. The Gaussian model, and
its tolerance towards deviation from a rigid motion are sus-
pected to be the reason for the inclusion of outliers, that
deviate only slightly from the rigid motion. However, the
local density in the shape map proves to be a good indicator
of outliers with regard to shape behavior.

5. Conclusion

We propose a metric that reflects the shape modeling be-
havior of observed landmarks in a population of examples.
Shape maps are learnt based on a Markov chain that cap-
tures the complexity of sub-models in the data, and deter-
mines modeling relations between landmarks. The resulting
metric allows to perform tasks like deformation or motion
segmentation, the determination of redundancy, the rejec-
tion of outliers, and the use of functional affinity in a sim-
ple Euclidean frame work. The description length based
learning of the shape map can be applied to any modeling
framework. The work is aimed at understanding the fine
and often subtle granularity of shape and model behavior.
The neighborhood relations in the shape map reflect the in-
trinsic geometry of the data behavior and can support the
autonomous building of models, where the proper use of
underlying structures is essential for accurate and represen-
tative models. The potential of the approach is illustrated
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Figure 7. Motion segmentation of rigid objects with outliers from
2 images from different viewpoints desk data: annotation and
trajectories; automatically labeled motion components and den-
sity in the eigenspace, used for outlier detection; clusters in the
eigenspace. Data from [17].

on examples from different domains. Future work will fo-
cus on the study of non-linear manifolds in the shape map,
to further reduce the complexity of the representation, and
on the application to different domains, like brain activity,
where the description length based approach can provide
for a more specific structure representation, than correlation
measures.
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