
Smoothing-based Optimization

Marius Leordeanu
Carnegie Mellon University

Pittsburgh, PA
mleordea@andrew.cmu.edu

Martial Hebert
Carnegie Mellon University

Pittsburgh, PA
hebert@ri.cmu.edu

Abstract

We propose an efficient method for complex optimization
problems that often arise in computer vision. While our
method is general and could be applied to various tasks,
it was mainly inspired from problems in computer vision,
and it borrows ideas from scale space theory. One of the
main motivations for our approach is that searching for the
global maximum through the scale space of a function is
equivalent to looking for the maximum of the original func-
tion, with the advantage of having to handle fewer local
optima. Our method works with any non-negative, possibly
non-smooth function, and requires only the ability of eval-
uating the function at any specific point. The algorithm is
based on a growth transformation, which is guaranteed to
increase the value of the scale space function at every step,
unlike gradient methods. To demonstrate its effectiveness
we present its performance on a few computer vision ap-
plications, and show that in our experiments it is more ef-
fective than some well established methods such as MCMC,
Simulated Annealing and the more local Nelder-Mead opti-
mization method.

1. Introduction
Many problems in computer vision require the opti-

mization of complex nonlinear and possibly non-differential
functions. Probably the two most popular algorithms used
in such cases are Markov Chain Monte Carlo (MCMC) and
Simulated Annealing (and their variants). While these al-
gorithms have global optimality properties, in practice they
lack efficiency as they require a large number of samples.
Variants of MCMC are commonly used in various vision
applications such as segmentation [26], object recognition
[27] and human body pose estimation [25]. Other diffi-
cult optimization problems such as learning graph match-
ing [7] are approached by optimizing an upper bound of the
original cost function. We propose an efficient method for
such optimization problems. One of our main ideas is that
searching for the global maximum through the scale space

Figure 1. Many different vision tasks invlove the optimization of
complex functions: A. Learning the parameters for graph match-
ing (Quadratic Assignments Problem) B. Automatically extracting
object masks, given an input bounding box

of a function [18] is equivalent to looking for the optimum
of the original function, but with the added benefit that we
have to avoid fewer local optima. Our method works with
any non-negative, possibly non-smooth function, and re-
quires only the ability of evaluating the function at any spe-
cific point. In order to better explain our algorithm we first
discuss the observations that motivated its development.

2. Motivation
There are two main ideas that inspired the design of our

algorithm. Even though at a first glimpse they seem unre-
lated, their connection becomes obvious once we explicitly
present our algorithm.

2.1. Smoothing for optimization

Functions with many local optima have been always a
problem in optimization. Most optimization algorithms are

1
978-1-4244-2243-2/08/$25.00 ©2008 IEEE

Figure 2. At higher levels of smoothing less and less local optima
survive. Even for a relatively small variance (=10), most of the
noisy local optima disappear while the significant ones survive

local and prone to get stuck in local optima. There are not
many choices of algorithms that attempt to find the global
optimum, or even an important optimum, of highly non-
linear and non-differentiable functions. Algorithms such
as Graduated Non-convexity [6] address the non-convexity
problem by modifying the original function and adding to
it a large convex component such that the sum will also be
convex. Starting from an initial global optimum, and track-
ing it as the influence of the convex component is slowly
reduced, the procedure hopes to finally converge to the orig-
inal global optimum. Our idea of smoothing is similar:
the more we smooth a function (the larger the variance of
the Gaussian kernel) the less local optima the function will
have. Instead of corrupting the original function by adding
a foreign convex function such as it is the case with Grad-
uated Non-convexity [6], blurring uses the function’s own
values to obtain a similar and most probably a better effect
(Figure 2). There is only one caveat with the smoothing
approach. Since the Gaussian kernel has infinite support,
to smooth the function at a single point one would have to
visit the entire space, and would thus find the global opti-
mum by exhaustive search! So, even though the idea sounds
interesting, it is in fact impossible to apply in its pure form.
Fortunately, as we will show later, in practice things are not
nearly as impractical as they might seem. But before we
focus on the practical aspects of our algorithm, let us first
convince ourselves that we have the theory to support it.

The results from scale space theory [18] show that for
most functions local optima disappear very fast as we in-
crease the variance of the Gaussian blurring. Also, the local
optima that survive at higher levels of smoothing can usu-
ally be traced back to significant local optima in the original
function. Moreover, any nonnegative function with com-
pact support will end up with a single global maximum for
a large enough variance of smoothing [20].

Figure 3. Refining our knowledge (red dashed line) about the op-
timum of the function we want to optimize (blue line). At each
iteration the mean of the Gaussian represents our current guess,
while its variance the uncertainty. By the tenth iteration we are
very close to the true optimum and also very certain about where
it is (very small variance)

In Figure 2 the original function is extremely wiggly
and any gradient based technique would immediately get
stuck in a local maximum. However, as soon as we blur
the function with a relatively small sigma, most noisy local
optima vanish. Finally, for a large enough sigma there is
only one global optimum which can be traced back to the
original global optimum. The unique global maximum of a
blurred function cannot always be traced back to the origi-
nal global optimum, nevertheless, for most functions, it will
be traced back to a significant local optimum, which consti-
tutes an important progress compared to local optimization
techniques. So, if we could somehow have access to the
values of our smoothed function in the neighborhood of our
current position, we would know where to move next to ap-
proach a more important optimum.

2.2. Updating our knowledge

Our second motivation, which is seemingly unrelated to
the smoothing idea, is to represent our knowledge of where
the optimum of our complex function is with a multidimen-
sional Gaussian. At any point in time, we want to eval-
uate the complex function at points where this Gaussian
(which represents our current knowledge) has high proba-
bility mass and use those evaluations to update our current
Gaussian in a way that will get us closer to the optimum we
are looking for. In Figure 3 we present this idea by running
our algorithm on a one dimensional function. The function
is sampled in a region where the Gaussian has high proba-
bility. Based on those evaluations the variance can increase
or decrease. At the final iteration we are indeed very close
to the true optimum and our search (sampling) space is min-
imal (very small variance). This idea is related to the Cross

Entropy Method for optimization [23]. Even though techni-
cally very different, both ideas are based on sampling from
a distribution that is sequentially refined until it converges
around the optimum. Other more distantly related work in-
cludes importance sampling algorithms for Bayesian Net-
works [8, 24], where a function, that is relatively inexpen-
sive to draw samples from, is sampled in order to estimate
marginals (expressed as integrals that are hard to compute
exactly). The samples obtained are used to continuously
refine the sampling function in order to obtain better and
better estimates of these marginals.

3. Algorithm
The two motivations described above are seemingly un-

related, but the connection between them becomes clear
once we look in detail at our algorithm. Before describing
the algorithm, we present the following theorem on which
it is based:

Theorem 1: Let f : Rn → R+ be a non-negative
multi-dimensional function. Let its scale space func-
tion (its smoothed version) be defined as F (µ, σ2I) =∫

g(x;µ, σ2I)f(x)dx, where g is a multidimensional Gaus-
sian (of dimension n) with mean µ and covariance matrix
σ2I . Given the pair (µ(t), σ(t)) at time step t, we de-
fine (µ(t+1), σ(t+1)), at the next time step t + 1, by the
following update rules (i refers to dimension indices, and
g(t)(x) = g(x;µ(t), σ(t))):

1. µ(t+1) =
∫

xg(t)(x)f(x)dx∫
g(t)(x)f(x)dx

.

2. σ(t+1) =
√

1
n

∫
(
∑n

i=1(xi−µi)2)g(t)(x)f(x)dx∫
g(t)(x)f(x)dx

.

Then, the following conclusions hold:

a). F (µ(t+1), σ(t)) ≥ F (µ(t), σ(t)).

b). F (µ(t), σ(t+1)) ≥ F (µ(t), σ(t)).

A summary of the proof is included in Appendix A.
This theorem basically states that the update steps 1 and

2 represent growth transformations [3, 13] for the function
F . They provide a specific way of updating the Gaussian
which represents our knowledge about the optimum at any
specific time step. This gives us the connection to our sec-
ond motivation. Also, the updating steps are in the direction
of the gradient of the scale space function F , and thus pro-
vide us with a way of traveling not only through the original
search space but also through scale. This gives us the link
to the first motivation based on smoothing. One of the cru-
cial differences between our method and the one proposed
by Kanevsky [13], is that our method works with any non-
negative function f that could be arbitrarily complex and
non-differentiable. As we show later, all we need is the
ability to evaluate the function f at any specific point.

The smaller σ the more F approaches the original func-
tion f . It is clear that the global optimum of F is the same
as the global optimum of f . So optimizing f is practically
equivalent to optimizing F . The difference is, as we dis-
cussed in Section 2.1, that it is much easier to avoid the local
spatial optima in F . In fact, the Gaussian scale-space func-
tion F has a strong smoothing property, that corresponds to
the extremum principle for parabolic differential equations
(see [14] and [19] for more details). This basically states
that for any strictly positive scale σ > 0, when the spa-
tial derivatives (with respect to µ) vanish, the derivatives
with respect to scale (σ) cannot be zero. As a consequence,
the scale space function F does not have any local optima
(with respect to both σ and µ), for any σ > 0. This means
that, except for some pathological cases, the updates given
by our algorithm will converge to an optimum of F when
σ = 0 (σ will converge to 0), which is in fact equivalent to
an optimum of the original f .

The theorem above is the basis of our method. Probably
its most interesting feature (as we found in our experiments
in Section 4.1) is its ability to update σ automatically, which
grows if we need to escape from valleys and shrinks if we
reach the top of an important mountain on the function’s
surface (we know from the extremum principle [14] that σ
will indeed shrink once we are close to such optima). As
mentioned before, the main bottleneck consists of comput-
ing efficiently the update steps 1 and 2.

Since they cannot be computed exactly (because we can
only evaluate f at a given point and do not want to search
the whole space) we will resort to methods commonly used
for estimating integrals. One well-known possibility is the
Monte Carlo Integration method [21], the other one is the
Gaussian quadrature [11] method, which could be more ef-
ficient in practice in spaces of lower dimensions, because it
requires less function evaluations.

Our algorithm is an implementation of the above theo-
rem. Below we present the version of the algorithm that
uses Monte Carlo Integration sampling, but, as we men-
tioned above, Gaussian quadrature could also be used and
is often more efficient in practice:

1. Start with initial values of µ(0) and σ(0), set t = 0.

2. Draw samples s1, s2, ..., sm from the normal distribu-
tion N(µ(t), (σ(t))2I).

3. Set: µ(t+1) =
∑m

k=1 skf(sk)∑m
k=1 f(sk) .

4. Set: σ(t+1) =

√
1
n

∑m
k=1(

∑n
i=1(s

(k)
i −µ

(t)
i)2)f(sk)∑m

k=1 f(sk) .

5. If σ(t+1) < ε stop.

6. t = t+1. Go back to step 2.

Figure 4. A. All algorithms can run for a maximum of 3000 sam-
ples. B. the algorithms were run for a maximum of 30000 samples.
C. Our algorithm, without the ability of changing its initial covari-
ance matrix (with no sigma adaptation), for different initial σ(0).
D. Our algorithm, with different starting σ(0) (shown on the X
axis in degrees) with sigma adaptation. The mean score obtained
over 300 experiments is shown in plot D. The rest of the plots
show histograms of the scores obtained over 300 experiments. All
algorithms have the same computational cost per sample, since one
sample requires just one evaluation of the score function

Notice that we apply the update steps for µ and σ at the
same time, even though our theorem gives theoretical guar-
antees only if we apply them sequentially. Even if that is of
theoretical concern that should be explored in future work,
we found that in practice this does not hurt the performance,
but on the contrary, it actually makes the algorithm more
efficient because it requires less function evaluations (the
number of samples is reduced in half, since the same sam-
ples can be used for both updates).

Our algorithm is also related to the Mean Shift algorithm
[10], [9], since both algorithms can adapt the mean and the
kernel size. However, the difference between the two algo-
rithms is substantial. Mean Shift has samples drawn from
f(x) and uses a kernel k(x) to weight the samples. In our
case, we cannot draw samples from f(x), because the func-
tions we want to optimize are very complex, so instead we
draw samples from g(x) and use instead f(x) to weight
these samples. Also in the case of Mean Shift it is not pos-
sible to evaluate f(x) exactly at a specific point, whereas in
our case it is. It seems like the two algorithms are comple-
mentary to each other.

Figure 5. Left: the score function evaluated every 0.02 degrees of
θz in [0, 90]. The other angles were kept constant. Notice how
wiggly the function is due to the fact that the mask is discrete in
practice. Right: the value of the smoothed function for each iter-
ation of our algorithm. Notice that it is mainly monotonic which
agrees with the theory. Monotonicity fails very rarely, but this hap-
pens only because the updates are approximations to the ones in
the theorem. The plots belong to the first 10 random experiments

4. Experiments

4.1. Experiments on Synthetic Data

In the first set of experiments we compare the per-
formance of our algorithm to two well established meth-
ods commonly used in complex optimization problems:
Markov Chain Monte Carlo (MCMC) and Simulated An-
nealing (SA). While MCMC is not specifically designed for
optimization, it has been successfully used for this purpose
in the vision literature. SA on the other hand has guaranteed
optimality properties in a statistical sense. Given enough
samples, both MCMC and SA are guaranteed to find the
global maximum, but often the number of samples required
is very large, thus neither method is particularly efficient.

For this experiment we used synthetic data. Given a
square of known dimensions, with the location of its 3D
center known, we rotate it in 3D by θt = (θx, θy, θz) and
obtain its projection on the XY plane as a binary mask Iθt .
The algorithms are provided only with this mask, their task
being to find the θ∗ which maximizes the overlap between
the mask given Iθt

and Iθ∗ . More precisely, the score that
all algorithms have to maximize is:

f(θ∗) =
(

N(Iθt ∩ Iθ∗)
N(Iθt

∪ Iθ∗)

)10

(1)

Here N(Iθt
∩ Iθ∗) is the area of the intersection of the

two masks, and N(Iθt
∪ Iθ∗) is the area of their union. We

raise the function to the 10th power because it is too flat
otherwise and it slows down equally the convergence rate
of all algorithms (this procedure is not uncommon in opti-
mization).

This score function is periodical with infinitely many lo-
cal and, of course, global maxima. The global maxima ob-
viously have the known value of 1. The resolution of the
image mask is such that an exhaustive search of the an-
gles space in the intervals [0, 90] would require around 1010

samples (the function is sensitive to changes in angles as
small as 0.02 degrees).

In Figure 4, plot A, we compare our method against
MCMC, standard Simulated Annealing (SA), Metropolis-
SA (MSA), and Nelder-Mead method as the fminsearch
(FMIN) function from the Matlab optimization toolbox (for
fminsearch we used as the cost function 1− f(θ) since it is
a minimizing procedure, but the results showed here were
only in terms of f(θ)). All algorithms except fminsearch are
limited to a maximum of 3000 function evaluations (sam-
ples). The plot shows the histogram of the maximum scores
obtained over 300 experiments. Each algorithm ran on the
same problems, with the same starting points and ground
truth θt. For each experiment, both the starting point and
the ground truth were chosen randomly in the degree space
[0, 360] (in each dimension of θ). For MCMC, SA and MSA
we chose the variance of the proposal distribution that gave
the best performance. The worst performer was fminsearch,
as expected, since it is a local method and the score function
has a lot of local optima (see Figure 5). Our algorithm out-
performed all the others (Figure 4). Even when we allowed
MCMC, SA and MSA to run for 10 times more samples
(function evaluations), their performance was still inferior
to ours (plot B). Of course, for a sufficiently large number
of samples MCMC, SA and MSA will always find the right
solution, but the point of this experiment was to consider
the efficiency of the different algorithms.

In the next experiment (plot C) we wanted to emphasize
that one of the main strengths of our algorithm is its capac-
ity to change the covariance of its sampling distribution. On
the one hand we see that if we keep this covariance fixed its
performance degrades considerably, for a wide range of σ
(the starting covariance matrix was diagonal, with diagonal
elements equal to σ) (Figure 4, plot C). On the other hand,
if we allow this covariance to change, the starting value of
σ is not very relevant (Figure 4, plot D). Except when the
starting σ is very small (< 5 degrees), the mean score ob-
tained over the same 300 experiments does not vary much.
From this we can draw the conclusion that our algorithm is
most often able to adapt its covariance correctly during the
search, regardless of its starting value.

4.2. Learning Graph Matching

Graph matching, also known as the quadratic assign-
ment problem (QAP) is a problem frequently encountered
in computer vision. The task is formulated as an optimiza-
tion problem, with the goal of finding the assignments that
maximize a quadratic score, given the constraints that one

Figure 6. All the features in the first image were correctly matched
to the features from the last image (House sequence).

feature from one image can match only one other feature
from the other image, and vice-versa:

x∗ = argmax(xT Mx) (2)

Here x∗ must be a binary vector such that x∗ia = 1 if
feature i from one image is matched to feature a from the
other image, and x∗ia = 0 otherwise. As stated before,
each feature from one image can match only one feature
from the other, and vice-versa. This problem is NP hard, so
most research on this topic focused mainly on developing
efficient algorithms for finding approximate solutions, such
as the graduated assignment (GA) [12], the spectral match-
ing [15] or linear approximations [5] algorithms . However,
as in graphical models, it is not only important to find the
optimal solution, but it is also very important to have the
right function to optimize. In this case the matrix M con-
tains the second order potentials, such that M(ia, jb) mea-
sures how well the pair of features (i, j) from one image
agrees in terms of geometry and/or appearance with their
matched counterparts (a, b) from the other image. Using
the right function M(ia, jb) is crucial for obtaining correct
correspondences. Most work on this problem uses pairwise
scores M(ia, jb) that are designed manually. Unlike in the
graphical models literature where the learning issue is ad-
dressed abundantly, to the best of our knowledge there has
only been one paper [7] published on learning the quadratic
assignment pair-wise potentials using the performance of
the algorithm as the score function to optimize’ . This
is mainly because learning for graph matching is a harder
problem than learning for graphical models, because the
matching scores used in QAP are not normalized probabil-
ity distributions.

The function we want to optimize for learning is similar
to the one in [7]:

f(w) =
m∑

i=1

n(i)
c (w) (3)

Here n
(i)
c is the number of correct matches for image

pair i, and i iterates over the training image pairs (total of
m image pairs), and w is the vector of parameters that de-
fine the pairwise scores. Then, the optimization problem is
formulated as:

w∗ = argmax(f(w)) (4)

We use our algorithm on two tasks that are the same
as the ones in [7]. We used exactly the same image se-
quences both for training and testing [2, 1], and the same
features, which were manually selected by [7]. For solv-
ing the quadratic assignment problem we used the spectral
matching algorithm [15], instead of the the graduated as-
signment [12], because it is faster. The goal of these exper-
iments was not to directly compare the two learning algo-
rithms, but rather to show that our algorithm is suitable for
this problem also. The algorithm in [7] is specifically de-
signed for a certain class of score functions, whereas our al-
gorithm can work with any pairwise score M(ia, jb) . The
algorithm in [7] optimizes a convex upper bound to the cost
function, while in our case we attempt to optimize directly
f(w).

The type of pair-wise potential that we want to learn is:

Mia;jb = exp(w0 + w1
|dij − dab|
|dij + dab|

+ w2|αij − αab|) (5)

Here dij and dab are the distances between features (i, j)
and (a, b) respectively, while αij and αab are the angles be-
tween the X axis and the vectors ~ij and ~ab, respectively.
As in [7] we first obtain a Delaunay triangulation and allow
non-zero pairwise scores Mia;jb if and only if both (i, j)
and (a, b) are connected in their corresponding triangula-
tion. The pair-wise scores we work with are different than
the ones in [7] because we wanted to put more emphasis on
the second order scores. The authors of [7] make the point
that after learning there is no real added benefit from us-
ing the second order potentials, and that linear assignment
using only appearance terms (based on Shape Context) suf-
fices. We make the counter argument by showing that in
fact the second order terms are much stronger once distance
and angle information is used (which they did not use). Our
performance is significantly better even when we do not use
any appearance terms (Figure 1). With only 5 training im-
ages used, we obtain almost 100% accuracy, more than 15%
better than what they achieve using the exact same training
and testing pairs of images.

4.3. Finding Object Masks

Next we present an application (Figures 7, 1) of our al-
gorithm that is related to GrabCut [22] and Lazy Snapping
[17]. The user is asked to provide the bounding box of
an object, and the algorithm has to return a polygon which

Table 1. Matching performance on the hotel and house datasets. In
the first three columns the same 5 training images from the House
dataset were used. For the fourth column 106 training images from
the House sequence were used. SC stands for Shape Context [4]

Datasest Ours [7] [7]
No SC (5) SC (5) SC (106)

House 99.8% < 84% ≈ 95%
Hotel 94.8% < 87% < 90%

Figure 7. The masks of objects are automatically found, given their
ground truth bounding boxes

should be as close as possible to the true object boundary.
This is just another instance of the foreground-background
segmentation problem. In computer vision most segmen-
tation algorithms approach this task from bottom up. The
problem is usually formulated as a Markov Random Field
[16] with unary and pairwise terms that use information
only from a low, local level, and do not integrate a global
view of the object, which would be needed for a better seg-
mentation. Here we present a simple algorithm for obtain-
ing object masks that is based on the global statistics of
the foreground vs. the background. The main idea is that

a good segmentation is the one that finds the best separa-
tion (in terms of certain global statistics) between the fore-
ground and the background. In this case we use color like-
lihoods derived from color histograms (of the initial fore-
ground and background defined by the bounding box given)
as the global statistics of either foreground or background.
Starting from the bounding box provided by the user, the al-
gorithm has to find the polygon that best separates the color
likelihood histogram computed over the interior of the poly-
gon (foreground) from the corresponding histogram com-
puted over its exterior (background). The function to op-
timize looks very simple but it is non-differentiable, highly
non-linear and highly dimensional, so the task could be very
difficult:

f(x, I) = 1− hf (x, I)T
hb(x, I) (6)

Here x are the vertices of the polygon, hf (x, I) and
hb(x, I) are the foreground and background normalized
color likelihood histograms, given the image I . The likeli-
hood of color c is computed as l(c) = Nf (c)

N(c) , where Nf (c)
is the number of pixels of color c inside the initial bounding
box and N(c) is the total number of pixels of color c in the
image.

Our segmentation algorithm is very simple and can be
briefly described as follows:

1. initialize x with the bounding box provided by the user

2. find x∗ = argmaxx(f), by using the algorithm from
Section 3 without changing the number of polygon ver-
tices

3. if x∗ does not improve significantly over the previous
solution stop.

4. add new vertices at the midpoints of the edges of x∗

5. go back to step 2

As long as the color distribution of the foreground is dif-
ferent from the background, this algorithm works well, be-
ing very robust to local variations in color or texture, unlike
MRF based algorithms whose unary and pairwise terms are
more sensitive to such local changes (see Figures 7, 1).

5. Conclusions
We have presented an efficient method for optimization,

which could be an interesting alternative to well-established
methods such as Markov Chain Monte Carlo or Simulated
Annealing. The experiments we presented here were not ap-
plication driven, but they are nevertheless encouraging and
make us believe that this method has a lot of potential, and
is worthy of more research and testing. As future work we
will further explore its theoretical properties and limits as
well as its practical application to different vision problems.

6. Acknowledgements
This research was supported in part by an Intel Graduate

Fellowship and by NSF Grant IIS0713406.

References
[1] vasc.ri.cmu.edu/idb/html/motion/hotel/index.html.
[2] vasc.ri.cmu.edu/idb/html/motion/house/index.html.
[3] L. Baum and G. Sell. Growth transformations for functions

on manifolds. In Pacific Journal of Mathematics, 1968.
[4] S. Belongie, J. Malik, and J. Puzicha. Shape context: A

new descriptor for shape matching and object recognition.
In NIPS, 2000.

[5] A. Berg, T. Berg, and J. Malik. Shape matching and object
recognition using low distortion correspondences. In ECCV,
2006.

[6] A. Blake and A. Zisserman. Visual Reconstruction. MIT
Press, 1987.

[7] T. Caetano, L. Cheng, Q. Le, and A. J. Smola. Learning
graph matching. In ICCV, 2007.

[8] J. Cheng and M. J. Druzdzel. Ais-bn: An adaptive impor-
tance sampling algorithm for evidential reasoning in large
bayesian networks. In Journal of Artificial Intelligence Re-
search, 2000.

[9] D. Comaniciu and P. Meer. Mean shift: A robust approach
toward feature space analysis. PAMI, 24(5):603–619, 2002.

[10] D. Comaniciu, V. Ramesh, and P. Meer. The variable band-
width mean shift and data-driven scale selection. In ICCV,
2001.

[11] W. P. et al. Numerical Recipes in C. Cambridge University
Press, 1999.

[12] S. Gold and A. Rangarajan. A graduated assignment algo-
rithm for graph matching. In PAMI, 1996.

[13] D. Kanevsky. Extended baum transformations for general
functions. In Acoustics, Speech, and Signal Processing,
2004.

[14] A. Kuijper, L. Florack, and M. Viergever. Scale space hierar-
chy. In Journal of Mathematical Imaging and Vision, 2003.

[15] M. Leordeanu and M. Hebert. A spectral technique for cor-
respondence problems using pairwise constraints. In ICCV,
2005.

[16] S. Z. Li. Markov Random Field Modeling in Computer Vi-
sion. Springer, 1995.

[17] Y. Li, J. Sun, and C. T. H. Shum. Lazy snapping. 2004.
[18] T. Lindeberg. Scale-space behaviour of local extrema and

blobs. In Journal of Mathematical Imaging and Vision, 1992.
[19] T. Lindeberg. Scale-space theory in computer vision. In The

Kluwer International Series in Engineering and Computer
Science, 1994.

[20] M. Loog, J. J. Duistermaat, and L. M. J. Florack. On the
behavior of spatial critical points under gaussian blurring. In
International Conference on Scale-Space and Morphology in
Computer Vision, 2001.

[21] N. Metropolis and S. Ulam. The monte carlo method. In
Journal of the American Statistical Association, 1949.

[22] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Inter-
active foreground extraction using iterated graph cuts. In
SIGGRAPH, 2004.

[23] R. Rubinstein. The cross-entropy method for combinatorial
and continuous optimization. In Methodology and Comput-
ing in Applied Probability, 1999.

[24] R. D. Shachter and M. A. Peot. Simulation approaches to
general probabilistic inference on belief networks. In Uncer-
tainty in Artificial Intelligence, 1989.

[25] C. Sminchisescu and B. Triggs. Fast mixing hyperdynamic
sampling. In JIVC, 2004.

[26] Tu and S. C. Zhu. Image segmentation by data driven markov
chain monte carlo. In PAMI, 2002.

[27] Tu and S. C. Zhu. Image parsing: unifying segmentation,
detection and recognition. In IJCV, 2005.

7. Appendix
7.1. Appendix A: Proof of Theorem 1, Conclusion a

Let the inverse covariance matrix be Λ = Σ−1. Then we
have

g(t)(x) = e−
1
2 (x−µ(t))T Λ(x−µ(t))

To simplify notations we omit the normalizing constant
since it does not depend on µ. We will use the following
inequality which holds for any u and v:

eu+v ≥ (1 + u)ev

Let us define: δ = µ(t+1) − µ(t), then:

g(t+1)(x) = e−
1
2 (x−µ(t+1))T Λ(x−µ(t+1))

= e−
1
2 (x−µ(t)−δ)T Λ(x−µ(t)−δ)

Now using our inequality we have:

g(t+1)(x) ≥ (1 + (x− µ(t))T Λδ − 1
2
δT Λδ)g(t)(x)

Since f is non-negative the inequality carries over to F :

F (µ(t+1)) ≥
∫

(1 + (x− µ(t))T Λδ − 1
2
δT Λδ)g(t)(x)f(x)dx

Remembering that δ =
∫

(x−µ(t))g(t)(x)f(x)dx∫
g(t)(x)f(x)dx

we have:

∫
(x− µ(t))T Λδg(t)(x)f(x)dx =

(
∫

(x− µ(t))g(t)(x)f(x)dx)T Λ(
∫

(x− µ(t))g(t)(x)f(x)dx)∫
g(t)(x)f(x)dx

=

δT Λδ

∫
g(t)(x)f(x)

Substituting this into the initial inequality in F we ob-
tain:

F (µ(t+1)) ≥
∫

(1 +
1
2
δT Λδ)g(t)(x)f(x)

This concludes the proof:

F (µ(t+1)) ≥
∫

g(t)(x)f(x) = F (µ(t))

7.2. Appendix B: Proof of Theorem 1, Conclusion b

It can be easily shown that the partial derivative
∂F (µ,σ)

∂σ = 0 when σ is a fixed point of the update step
2 of the theorem, and thus satisfies the equation σ =√

1
n

∫
(
∑

i=1n(xi−µi)2)g(x;σ)f(x)dx∫
g(x;σ)f(x)dx

. Also, it is straightfor-
ward to check that the update step 2 of the theorem is taken
in the direction of the gradient. Therefore, conclusion b will
be satisfied if the partial derivative mentioned above is never
0 in the interval between σ(t) and σ(t+1). (Without loss of
generality we can assume that σ(t+1) > σ(t)).

We give here the sketch of a proof by reduction ad ab-
surdum. Let us assume that there exists σ∗ ∈ (σ(t), σ(t+1))
such that

σ∗ = S(σ∗) =

√
1
n

∫
(
∑n

i=1(xi − µi)2)g(x;σ∗)f(x)dx∫
g(x;σ∗)f(x)dx

(7)
To simplify notations, we omit µ, which remains con-

stant during this step. Here S(σ) is basically the update
function; it tells us which is the next sigma given σ. From
the assumption made it is clear that S(σ∗) = σ∗ and
S(σ(t)) = σ(t+1), while σ∗ ∈ (σ(t), σ(t+1)). It follows
that:

S(σ∗)− S(σ(t))
σ∗ − σ(t)

=
σ∗ − σ(t+1)

σ∗ − σ(t)
< 0 (8)

From the intermediate value theorem it follows that the
derivative of S with respect to σ has to be negative some-
where inside (σ(t), σ(t+1)). That means there exists a point
σ− where:

∫
(

n∑
i=1

(xi − µi)2)2g(x;σ−)f(x)dx

∫
g(x;σ−)f(x)dx−

(
∫

(
n∑

i=1

(xi − µi)2)g(x;σ−)f(x)dx)2 < 0

But this is impossible by the Cauchy-Schwarz inequality,
which gives us the contradiction that concludes the proof.

