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Abstract

This paper examines the issue of scale in modeling tex-
ture for the purpose of segmentation. We propose a scale
descriptor for texture and an energy minimization model
to find the scale of a given texture at each location. For
each pixel, we use the intensity distribution in a local patch
around that pixel to determine the smallest size of the do-
main that can be used to generate neighboring patches.
The energy functional we propose to minimize is comprised
of three terms: The first is the dissimilarity measure us-
ing the Wasserstein distance or Kullback-Leibler divergence
between neighboring patch distributions; the second maxi-
mizes the entropy of the local patch, and the third penalizes
larger size at equal fidelity. Our experiments show the pro-
posed scale model successfully captures the intrinsic scale
of texture at each location. We also apply our scale descrip-
tor for improving texture segmentation based on histogram
matching [15].

1. Introduction
A “texture” is a region of the image that exhibits sta-

tionary – or cyclostationary – statistics of some sort. If
one were to compute the histogram in a region around each
pixel, there would be some function of this histogram that
is either constant (in practice slowly-varying) or periodic
as we move the pixel within the texture. Because the local
statistics are pooled from a region around each pixel, a fun-
damental question in the definition, design, or classification
of texture is the area of this region, or “scale”. Some statis-
tics are only stationary when computed at a certain scale,
but not at larger and/or smaller scales. The “right” scale
thus defines the texture and plays an important role, recog-
nized early in the pioneering work of Julesz [10, 11], with
many subsequent attempts to define “elementary texture el-
ements”.
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DMS-0610079

Textures are important in the analysis of images, as they
provide a mid-level representation that is robust to the ac-
tual realization (pixel values) [8, 6, 18, 21], so that “seg-
ments” of the image that have a consistent texture can be
used as “tokens” [14, 16, 22]; this is also important in image
modeling, compression and synthesis [27, 7, 17]. An arse-
nal of different analytical tools has been brought to bear in
the analysis of textures, from statistical models to filtering
methods, to geometric approaches. Zhu et al. [27] model
texture as a Markov random field (MRF), or equivalently
the Gibbs distribution. Efros and Leung [7] observe that
textures range in between regular (repeating) and stochastic
(without explicit textels) and many synthesis methods often
fail in preserving the geometric structures. Their synthesis
method is based on a statistical non-parametric model that
preserves spatial locality. Inspired by Julesz, Zhu et al. and
Wu et al. [25, 23] take a mathematical approach and iden-
tify a texture by an equivalence class of statistical features.
They later connect this idea with MRF texture models by a
minimax entropy scheme [26].

In this work, we address the issue of scale in textures
head-on. As Zhu et al. [24] point out, the basic texture ele-
ment, also referred to as “texton” in the MRF literature and
considered a fundamental token for pre-attentive visual per-
ception [11], remains a vague concept in need of a better
formalization. We provide a characterization of scale that
is not restricted to simple statistics, but instead – in a gen-
erative framework – we see it as the generator, or “seed,”
of a texture using any generative model. Rather than tex-
ture modeling and classification, therefore, we focus our at-
tention entirely on determining the size a texton in a given
image.

The scale descriptor in this work corresponds to the tex-
ton size or texture scale. Many previous works define scale
in relation to certain diffusion operators or filters. Lindeberg
[12] associates scale with the size of intensity gradient and
uses the Gaussian kernel to examine the local scale at each
pixel. Brox and Weickert [3] and Strong et al. [20] define
scale based on the region size a pixel belongs to. They ob-
serve that under the total variation regularization, the inten-
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sity change in a pixel is inversely proportional to the region
size. In [3], scale is defined as the time taken for a feature to
disappear under the TV flow and is applied to accomplish
difficult texture segmentation. In [20], scale is the inverse
of the intensity change under the TV denoising model [19].
SIFT [13] describes local features in an image by taking the
difference of blurred images that are obtained by convolv-
ing with Gaussian filters with different variances. These
definitions of scale do not take into account the neighbor-
hood statistics so that they cannot provide an intrinsic tex-
ture scale that measure the smallest repetitive pattern lo-
cally. For regular (or repeated) textures, scale is the size
of the smallest image patch that generates a texture by re-
peating the patch side by side. Wolf et al. [22] use a patch
matching criterion to find texture edges and then incorpo-
rate it into a region-based active contour model for texture
segmentation. Their texture map is successful for segmen-
tation but does not reveal any sign of the correct texton size.
For stochastic textures, the spatial relation may not be found
and thus may not be obtained by simply stitching textons to-
gether. Instead, we take a non-parametric approach and use
the entire distribution of the patch to find a texton’s size.

For stationary textures, the intrinsic scale is the size of
the smallest domain where the distribution is close to that
of any other domain of the same size within the texture.
Because in practice the statistics may not be strictly sta-
tionary, but slowly-varying instead, in practice we look for
the smallest local patch whose probability density function
(pdf) is similar to the one computed on its neighboring local
patches (which we later call “neighboring patch” for short).

We introduce an intrinsic scale in modeling of texture
and use it to improve segmentation models. The intrinsic
scale is not uniform across the image domain. This is in
contrast to many schemes for texture segmentation where
local pdfs are compared, for instance using the Wasser-
stein distance [15], but they are computed on a local do-
main the size of which is fixed throughout the image. If
the selected size is smaller than the texton, these schemes
over-segment the texture; if it is too large, the segmenta-
tion may not be accurate because local patches cross over
texture boundaries. Not only is the texton size not constant
across regions, it may even vary within a texture region, al-
beit slowly. We believe that by automatically finding the
intrinsic scale, histogram-based segmentation will improve
its performance. Additionally, the scale can also be added
into the data term to distinguish two textons with the same
pdf but different scales. Huang et al. [9] also use scale as
feature for segmentation. They use a pdf of a local patch
to find a best natural scale of textons. However, our model
is different in two ways. The first is that our scale finds
the intrinsic scale of a texture which is obtained by the size
of texton whereas their scale gives a local feature for seg-
mentation but is not necessarily the size of a texton that is

a basic element of texture. The second is that our segmen-
tation model is a convex minimization problem in a vari-
ational framework, in which initialization can be arbitrary,
whereas they use a probabilistic model that requires proper
initializations along with a feature given by filter response.

2. Texture Scale
2.1. Notations

Let I : Ω ⊂ R
2 → [0, 1] be an observed gray-scale

image. Define the local patch Rx,r around the pixel point
x = (x1, x2) ∈ Ω with size r (“radius” in analogy to cir-
cles) by:

Rx,r = {z ∈ Ω | max
1,2

{|x1 − z1|, |x2 − z2|} < r}. (1)

Define the neighboring patch of the local patch by:

Nx,r = Rx,3r\Rx,r. (2)

The local histogram, hR(y), on R counts the number of
pixels whose intensity is y ∈ [0, 1]:

hR(y) =
∫
R

δ(y − I(x))dx, (3)

where δ is Dirac’s Delta. The probability density function
(or normalized histogram), PR, on R is the probability of a
pixel having value y ∈ [0, 1]:

PR(y) =

∫
R δ(y − I(x))dx∫

R dx
. (4)

In this paper, histograms are normalized. The cumulative
distribution function, FR, describes the probability of a
pixel having value less than y, for all y ∈ [0, 1]:

FR(y) =
∫ y

0

PR(t)dt. (5)

The Wasserstein distance with exponent 1 between two
probability density functions P1 and P2 is:

DW (P1, P2) =
∫ 1

0

|F1(y) − F2(y)|dy, (6)

where F1 and F2 are the corresponding cumulative distribu-
tion functions. The Kullback-Leibler divergence DKL from
P1 to P2 is:

DKL(P1||P2) =
∫ 1

0

P1(y) log
P1(y)
P2(y)

dy. (7)

The entropy of P is:

H(P ) = −
∫ 1

0

P (y) log P (y)dy. (8)
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(a) Texture (b) Energy plot
Figure 1. Synthetic texture example: (a) Local patch at ‘X’ (in-

side the red box) and neighboring patch (between red and blue).

(b) Energy vs. patch size. Red: histogram difference using the

Kullback-Leibler divergence. Green: histogram difference using

the Wasserstein distance. Blue: entropy of the local patch his-

togram

2.2. Description of the scale model

Our proposed scale descriptor is derived by energy min-
imization of the following model:

inf
r

D(PRx,r
, PNx,r

) − αH(PRx,r
) + βr(x), (9)

where α and β are positive design parameters. In the first
term, D is an appropriate measure of the dissimilarity be-
tween two probability distributions; for example, we use
both the Wasserstein distance DW and the Kullback-Leibler
divergence DKL in this paper. The first term of this energy
functional measures the difference between the pdf on the
local patch and the pdf on the neighboring patch. Minimiz-
ing the difference finds a size whose local patch satisfies the
histogram matching criterion. The second term maximizes
the entropy of PRx,r , the complexity of the histogram on
the local patch. This term avoids selecting homogeneous
patches as textons despite their small difference in the pdf
with their neighborhood. The third term penalizes the size
r to find the smallest one among all the ones that satisfy
the criterion. To understand the proposed model, we show a
synthetic texture example and plot the first and second terms
versus the patch size r, at the indicated pixels. Fig.1 (a)
shows a local patch (in red) around pixel ‘X’ and a neigh-
boring patch (in between the blue and red curves). In (b), we
look at how the first and second terms of (9) change with re-
spect to r. The green and red curves are the first terms with
the Wasserstein distance and Kullback-Leibler divergence,
respectively. The blue curve is the entropy of the histogram
on the local patch, whose maxima (patch being most com-
plex) appear periodically when r is a multiple of the texton
size. Minima (satisfy histogram matching criterion) appear
periodically at multiples of r. Therefore, the correct scale
should be the smallest one among all arguments of the min-
imum. In this example, the texton size is 1, or a 3×3 patch.

The entropy term is redundant in this example but is nec-
essary in general when there are homogeneous areas within
the texton.

Fig.2 is an example consisting of two synthetic textures,
on which we select two pixels (A, B and C, D), one closer
to the texture edge than the other. From the energy plots,
we see that the entropy increases rapidly with the patch size
as soon as the patch begins to overlap both texture regions.
Therefore, measuring the complexity of a local patch his-
togram alone is not sufficient to find the scale. The distance
between the histograms on the local patch and neighbor-
ing patch also increases rapidly as the local patch begins
to overlap both textures, indicating the correct texton size
has already been passed. This shows an appropriateness of
using the histogram matching criterion.

The proposed model (9) finds the local scale of a texture.
However, it may not be accurate at locations near texture
edges, due to the nature of patches. Fig.3 (a) marks three
locations, one at the left texture, one near the texture edge,
and one on the right texture. The histogram differences by
both Wasserstein distance in (c) and Kullback-Leibler diver-
gence in (d) attain local minima periodically because both
local and neighboring patches are almost symmetric about
the texture edge when the patch size is large. Therefore,
histogram comparison must be modified in order to find the
correct scale especially for the pixels in the vicinity of the
boundary of different textures. We propose the following
modification of model (9):

inf
r

D∗(PRx,r , PNx,r ) − αH(PRx,r ) + βr(x) (10)

and

D∗(PRx,r , PNx,r ) = min
i

D(PRx,r
, PNx,r,i

), (11)

and Nx,r,i is a sub-neighboring patch within Nx,r whose
size is r. For computational efficiency, 8 sub-neighboring
patches are pre-defined as follows:
{R(x1+2r,x2+2r),r,R(x1,x2+2r),r,R(x1−2r,x2+2r),r,R(x1−2r,x2),r,

R(x1−2r,x2−2r),r,R(x1,x2−2r),r,R(x1+2r,x2−2r),r,R(x1+2r,x2),r}.
Numerically, the proposed models are solved in the dis-

crete setting, instead of the standard PDE method that de-
rives the Euler-Lagrange equations of the energy function-
als (9) and (10), followed by steepest descent. This is be-
cause r is a discrete variable. Moreover, as also seen in
the energy plots, the proposed model has many local min-
ima, thus the steepest descent method does not find a global
minimum.

3. Texture Segmentation
In this section, we utilize scale and propose an unsuper-

vised texture segmentation model. Our model is adapted
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(f) KL divergence (g) KL divergence
Figure 2. Image consisting of two synthetic textures. (a) Mark two

locations A, B on the left texture and two locations C, D on the

right. (b) Entropy vs. size of local patch at A and B. (c) Entropy

vs. size of local patch at C and D. (d) Histogram difference vs.

size with Kullback-Leibler divergence at A and B. (e) Histogram

difference vs. size with Kullback-Leibler divergence at C and D.

(f) Histogram difference vs. size with Wasserstein distance at A

and B. (g) Histogram difference vs. size with Wasserstein distance

at C and D

from the histogram based segmentation [15], a two-phase
nonparametric region-based active contour that uses local
histograms as image features. The model partitions the im-
age domain into two regions so that the local histograms
within each region are homogeneous. In [15], the local his-
tograms have a uniform patch size and we propose to use an
adaptive scale. In addition, we use scale as an image feature
in the segmentation model. We give an example to show
that scale plays an important role. Fig.4 (a) is an image con-
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(c) Wasserstein (d) KL divergence
Figure 3. Image consisting of two synthetic textures. (a) Mark

three locations A on the left texture, B near the texture edge and B

on the right. (b) Entropy vs. size of local patch at each location. (c)

Histogram difference vs. size with Kullback-Leibler divergence at

each location. (d) Histogram difference vs. size with Kullback-

Leibler divergence at each location.

(a) Texture (b) Intensity

(c) Scale 1 (d) Scale 4
Figure 4. (a) Image consisting of two synthetic textures with the

same histogram but different scales. (b) Segmentation by using

intensity [5]. (c) Histogram based segmentation with scale r = 1.

(d) Histogram based segmentation with scale r = 4.

sisting of two textures with the same histogram but different
scales. The segmentation result in (b) is by the two-phase
piecewise constant active contour model [5], indicated by
the intensities black and white. The partition is within tex-
tons and does not distinguish textures, because two textures
have the same intensity mean. In (c), we show the parti-



tion using histogram-based segmentation model with global
scale r = 1. The partition captures the inner texture but also
includes partial outer texture, because the scale is too small
for the outer region. In (d), the global scale r = 4 is large
enough and two textures are considered the same because
they have the same histogram. To distinguish them, scale
has to be added as an image feature in the segmentation
model.

Our proposed model uses scale for characterizing his-
tograms and also as an image feature, as shown in the fol-
lowing:

min
0≤u≤1,P1,P2,r1,r2

∫
Ω

|∇u| (12)

+
∫

Ω

[λ1DW (P1, Px,r(x)) + λ2(r1 − r(x))2]u(x)dx

+
∫

Ω

[λ1DW (P2, Px,r(x)) + λ2(r2 − r(x))2](1 − u(x))dx,

where λ1 and λ2 are positive parameters. Minimizing this
energy functional separates the image domain into two so
that the local histograms within each region are homoge-
neous and the scale intensities are homogeneous within
each region. The first term penalizes the total length of the
object boundary. The second and third are fidelity terms.
The partition can be obtained by the following thresholding:
Ω = {u ≤ 0.5} ∪ {u > 0.5}. P1 and P2 are the optimal
histograms in each region; r1 and r2 are the approximated
scale constants in each region.
The minimization of (12) can be approximated by a three-
step scheme, using the methods in [15] and [2]. First, we fix
u, r1, and r2 and minimize with respect to F1 and F2. The
optimality conditions yield

∫
u(x)

F1(y) − Fx,r(x)(y)
|F1(y) − Fx,r(x)(y)|dx = 0

and
∫

[1 − u(x)]
F2(y) − Fx,r(x)(y)
|F2(y) − Fx,r(x)(y)|dx = 0,

respectively, for each 0 ≤ y ≤ L. Therefore,

F1(y) = weighted median of Fx,r(x)(y)
with weight u(x), (13)

and

F2(y) = weighted median of Fx,r(x)(y)
with weight (1 − u(x)). (14)

Second, fixing u, F1, and F2 and minimizing with re-
spect to r1 and r2 gives
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(a) Brodatz texture (b) Entropy
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(e) Local scales (f) KL divergence
Figure 5. Brodatz texture image. (a) Mark three locations A, B,

and C. (b) Entropy vs. size of local patch at A, B, and C. (c)

Selected scales by our proposed model using Wasserstein distance

at A, B, and C. (d) Histogram difference vs. size with Wasserstein

distance at A, B, and C. (e) Selected scales by proposed model

using Kullback-Leibler divergence at A, B, and C. (f) Histogram

difference vs. size with Wasserstein distance at A, B, and C. (g)

Histogram difference vs. size with Kullback-Leibler divergence at

A, B, and C.

r1 =
∫

Ω

r(x)u(x)dx/

∫
Ω

u(x)dx, (15)

and

r2 =
∫

Ω

r(x)(1 − u(x))dx/

∫
Ω

(1 − u(x))dx. (16)

Third, fixing F1 and F2, minimization in u can be solved
efficiently by using the methods in [4] and [2]. The regular-
ization term and the data terms in (12) can be decoupled by
adding a new variable v in a convex term:



min
u,0≤v≤1

∫
Ω

|∇u(x)|dx +
1
2θ

∫
Ω

(u(x) − v(x))2dx

+
∫

Ω

f(x)v(x)dx , (17)

where f(x) = λ1

∫ L

0
|F1(y) − Fx,r(x)(y)| − |F2(y) −

Fx,r(x)(y)|dy + λ2[(r1 − r(x))2 − (r2 − r(x))2], and θ
is a scalar parameter that is sufficiently small.
The convex minimization problem (17) can be solved the
following coupled problems, alternately:

min
u

∫
Ω

|∇u(x)| + 1
2θ

(u(x) − v(x))2dx (18)

and

min
0≤v≤1

1
2θ

∫
Ω

(u(x) − v(x))2dx +
∫

Ω

f(x)v(x)dx.(19)

Equation (18) can be solved efficiently by the Chambolle’s
method [4], based on the dual formulation of the total vari-

ation norm,
∫
Ω
|∇u(x)|dx = sup

{∫
Ω

u div p dx
∣∣∣ p ∈

C1
c (Ω; R2) : |p(x)| ≤ 1,∀x ∈ Ω

}
. The solution is

u(x) = v(x) − θ divp(x) , (20)

where p solves the equation ∇(θ divp − v) − |∇(θ divp −
v)|p = 0, which is solved by a fixed point method,

pn+1 =
pn + δt∇(divpn − v/θ)
1 + δt|(divpn − v/θ)| . (21)

The solution of (19) is [2]:

v(x) = max{min{u(x) − θ f(x), 1}, 0} . (22)

The minimization scheme iterates (13), (14), (15), (16),
(21), (20), and (22) alternately, until convergence. The dis-
cretization of div and ∇ are the same as described in [4, 2].

4. Experiments
We first show experimental results of the proposed scale

model on several Brodatz textures. Fig.5(a) shows three
arbitrarily chosen pixels on a Brodatz texture. In (b), the
curve of entropy versus patch size at each indicated pixel
is increasing and does not have a global maximum as patch
size continues to increase. The histograms gain complex-
ity as the patch size increases and there is no clear sign
of the correct scale according to these curves, which em-
phasizes that entropy alone is not enough to find the scale.

On the contrary, in (d), we see that the histogram differ-
ence (using the Wasserstein distance) versus patch size ob-
tains a global minimum and the texton size can be clearly
identified at the first minimum from the left, away from
r = 0. In (c), the scale at each indicated pixel by the pro-
posed model with the Wasserstein distance is accurate. In
(f), the histogram difference versus patch size plot shows
that the Kullback-Leibler divergence captures the charac-
teristics to some extent but not as well as the Wasserstein
distance. The selected scale shown in (e) is roughly correct.
The reason of the Wasserstein distance outperforming the
Kullback-Leibler divergence in this experiment is that the
Wasserstein distance overcomes the deficiency of pointwise
metrics, as addressed in [15].

Fig.6 shows five Brodatz textures in column (a) and their
scale maps by Tikhonov flow [12] in column (b), by TV
flow [1, 3] in column (c), and by the proposed model in col-
umn (d). We use our own implementation of [1, 3, 12] in
this experiment. The scale maps for these textures are ex-
pected to be homogeneous and only our model captures this
characteristic. The parameters are α = 0.001 and β = 0.1
in (9) for all five textures. We show in column (a) the scales
obtained by our model at three arbitrarily selected locations
which are accurate and agree with visual perception. In the
first row, the scale map by Tikhonov flow highlights the
edge of circles because the scale is associated with inten-
sity gradients. The scale map by TV flow (d) highlights the
circle regions since the scale is proportional to the size of
a homogeneous region. Neither of the previous scale de-
scriptors compute the size of the texture. We also apply
the proposed scale model to several natural images from the
Berkeley Segmentation Dataset as shown in the following.

Fig.7 shows the scale maps of the given images and com-
pares the histogram based segmentation model [15] and the
proposed model. Column (a) shows the given natural im-
ages. Columns (b), (c), and (d) are the segmentation results
by [15] with global scale r = 4, 16, and 32, respectively.
In the top row, in (b) with r = 4, the segmentation selects
within the cheetah patterns at some locations because the
global scale is too small for those locations. In (c) (with
r = 16) and in (d) (with r = 32), segmentation does not
partition within the cheetah patterns but does not fall on the
boundary accurately. This is because the global scale is too
large, resulting in many patches crossing over both regions.
The scale maps in (e) describe correctly each object region
by a homogeneous scale and each background region by
another homogeneous scale. The results in (f) by the pro-
posed model with scale improve the segmentation results
significantly. Computational time for measuring scale and
performing segmentation is less than five minutes in total
for 1024 × 1024 images.
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(a) Brodatz textures (b) Tikhonov scale map (c) TV scale map (d) Proposed scale map
Figure 6. Comparison of scale maps with other methods on Brodatz texture images. (a) Brodatz texture images with patches with texton

scales obtained by our model at arbitrarily selected pixels. (b) Scale map by Tikhonov flow. (c) Scale map by TV flow. (d) Scale map by

the proposed model with α = 0.001 and β = 0.1.

5. Discussion and Conclusion

In this work, we define a scale descriptor associated with
texture. We propose a nonparametric model that seeks the
scale by matching histograms in a self-repeating manner.
The proposed energy functional consists of three terms. The
first finds a size that satisfies a histogram matching criterion
that compares the local patch with the neighboring patch.
The second maximizes the complexity of a patch to avoid
choosing the wrong size when there are homogeneous re-
gions within a texton. The third penalizes the size because
the texton is the smallest element that generates a texture.
We show that these three terms are not redundant. We also
propose a modified model suited for finding the scale near
texture edges. Furthermore, we use scale as an image fea-

ture and also use it for characterizing local histograms in
the proposed segmentation model. Our segmentation re-
sults on several natural images show an improvement over
approaches that rely on a fixed scale.
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