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Abstract

Intravascular ultrasound (IVUS) is a catheter-based
medical imaging technique that produces cross-sectional
images of blood vessels and is particularly useful for study-
ing atherosclerosis. In this paper, we present a probabilistic
approach for the semi-automatic identification of the lumi-
nal border on IVUS images. Specifically, we parameterize
the lumen contour using a mixture of Gaussian that is de-
formed by the minimization of a cost function formulated
using a probabilistic approach. For the optimization of the
cost function, we introduce a novel method that linearly
combines the descent directions of the steepest descent and
BFGS optimization methods within a trust region that im-
proves convergence. Results of our proposed method on 20
MHz IVUS images are presented and discussed in order to
demonstrate the effectiveness of our approach.

1. Introduction

Complications attributed to cardiovascular disease
(CVD) are currently the main cause of death worldwide.
It is known that the majority of adverse CVD-related events
are due to coronary artery disease: a condition in which
fatty lesions called plaques are formed on the walls of the
vessels.

Intravascular ultrasound (IVUS) is an invasive imag-
ing technique capable of providing high-resolution, cross-
sectional images of the interior of blood vessels in real
time; this allows the collection of morphological informa-
tion of the vessel and the plaque. Segmentation of IVUS
images refers to the delineation of the lumen/intima and me-
dia/adventita borders. This process is necessary for assess-
ing the vessel and plaque characteristics [13].

Given that IVUS sequences may be hundreds to thou-
sands of frames long, the manual segmentation of a com-
plete sequence is prohibitively time-consuming. Thus, an
automatic segmentation method for IVUS images is needed.

In this paper, we present a method for semi-automatic

segmentation of the lumen contour on IVUS images and
video sequences. Our contributions are: 1) a probabilis-
tic approach to the segmentation problem that introduces a
new parameterization of the lumen contour using a mixture
of Gaussians, this contour is deformed by the minimization
of a cost function formulated using Markov-random field
models with a Bayesian approach inspired by the segmen-
tation method proposed by Rivera et al. [14] and Kim et al.
[8]; 2) a novel minimization method that linearly combines
the descent directions of the steepest descent and BFGS op-
timization methods within a trust region that stabilizes the
convergence; and 3) a multi-scale approach that increases
considerably the speed of convergence.

The rest of the paper is organized as follow: Section 2
presents previous work in IVUS segmentation while sec-
tion 3 presents the methods for our segmentation method.
Section 4 presents the results obtained with our method and
section 5 presents our conclusions.

2. Previous work

A number of segmentation techniques have been devel-
oped for IVUS image analysis. The majority of these meth-
ods are based on local properties of image pixels, (e.g. gra-
dient based active surfaces [9] and pixel intensity combined
with gradient active contours [10]). Graph search was also
investigated using local pixel features and gradient associ-
ated to line patterns correlation [18, 19].

Another set of methods was based on global region infor-
mation (e.g. texture-based morphological processing [11]).
Grey-level variances were then used for the optimization of
a maximum a posteriori (MAP) estimator modeling ultra-
sound speckle and contour geometry [7].

In other methods, contour detection is accomplished by
minimization of a cost function. Sonka et al. [15] imple-
mented a knowledge-based graph searching method that in-
corporates a priori knowledge of the artery anatomy and a
selected region of interest prior to the automatic border de-
tection. Brusseau et al. [2] presented an automatic method
for detecting the luminal border based on an active contour
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that evolves until it optimally separates regions with differ-
ent statistical properties.

Gil et al. [5] introduced a probabilistic segmentation
method that deforms a user-provided ellipse model that is
initialized close to the artery wall. Later, the same authors
[4] proposed a statistical method that involves preprocess-
ing, supervised classification techniques and snakes for seg-
mentation of the media/adventitia contour.

Recently, Unal et al. [17] introduced a shape-driven ap-
proach to segmentation of the arterial wall from IVUS im-
ages. A shape space is obtained by principal component
analysis on a training set and then any contour is described
as a weighted linear combination of the first k eigenshapes
for which the weights are found by the minimization of a
energy function.

Previous IVUS image segmentation methods are almost
always hampered by noise and artifacts presented on the
IVUS images. Although active shape models have been
shown to be robust to this problem, a training phase is re-
quired to provide the statistical knowledge of the images.
Having a training set that is sufficiently representative of all
possible IVUS images is a difficult task due to the differ-
ent shapes that the vessels can take and the variability of
the IVUS catheters. In these cases an IVUS image that is
dissimilar in shape to those on the training set will be very
difficult to segment.

In summary, previous techniques have been hampered
by IVUS artifacts, and those that have shown better perfor-
mance require a prior training phase. Next, we present a
probabilistic approach for segmentation of the luminal bor-
der of IVUS images that does not require training and that
is robust to artifacts.

3. Methods
Similarly to [17], we employ a B-mode polar IVUS im-

age representation. This choice makes the computations
much simpler due to the 1D appearance of the interfaces
to be detected (Fig. 1). Thus, in the IVUS image domain
Ω ∈ <2, we define the grey-level pixel intensity as I(x) for
a pixel with coordinates x = (θ, r) where (θ, r) ∈ Ω are the
angle and radius of the IVUS image respectively (Fig. 2). In
this domain, we parameterize the lumen contour as a func-
tion f(θ, C) that depends on the angle and the parameters
C.

For the lumen contour to be a smooth periodic curve, we
propose modeling it as a periodic mixture of Gaussians. Al-
though our method admits other parametric curves, we have
chosen a radial basis function formulation due to the sim-
plicity of the computations. Then, the smoothness of the
lumen contour can be controlled by the number of Gaus-
sians and their standard deviations. To reduce the computa-
tional cost, we have decided to fix the number of Gaussians
N and use the same standard deviation σ for all the Gaus-

Figure 1. Lumen contour in Cartesian (left) and polar (right) B-
mode representations.

Figure 2. Contour function on rectangular image domain.

sians. Therefore, the lumen contour f(θ, C) with parame-
ters C = {C0, C1, ..., CN} for an IVUS image with width
w is given by:

f(θ, C) = C2
0 +

N∑
i=1

C2
i exp(− 1

2σ2
(θ − µi)2)+

N∑
i=1

C2
i exp(− 1

2σ2
(θ + (w − 1)− µi)2)+

N∑
i=1

C2
i exp(− 1

2σ2
(θ − (w − 1)− µi)2) ,

where C0 is an offset value to move the curve without
changing its shape and Ci(∀i 6= 0) controls the contribu-
tion of the Gaussian i with mean µi to the curve.

Since the contour delineates the luminal border and due
to the concentric layers morphology of the vessel we can
assume that all the pixels inside this contour would corre-
spond to lumen while the pixels outside this contour would
correspond to non-lumen. The class for each pixel in the
image can be determined using the signed distance func-
tion: g(x,C) = f(θ, C)−r , where the pixels with positive
values will correspond to lumen, and those with negative
values to non-lumen. Since our approach is iterative, while
deforming the curve to find the luminal border, we are un-
certain about the class of those pixels in the proximity of
the contour. Thus, we use a sigmoid function to define the
probability P (x) of each pixel x to belong to the class lu-
men depending on its distance to the curve as follows:

P (x) =
1

1 + e−λ(f(θ,C)−r)
.



Using this formulation the pixels far above the contour will
have a probability close to one for belonging to lumen,
while the pixels far below the contour will have probabil-
ity close to zero. For the pixels near the contour, depending
on the value of λ and their distance to the contour, the prob-
ability of these pixels belonging to lumen will be around 1

2
For our binary segmentation case, the probability of a pixel
belonging to the class non-lumen is given by (1− P (x)).

Inspired by the Bayesian formulation for image segmen-
tation proposed by Rivera et al. [14], we propose the cost
function:

U(C) =
∑

x

P (x,C)d1(x) + (1− P (x,C))d2(x) .

The functions d1 and d2 are defined as dk(x) =
−log(vk(x, φk)), where vk(x, φk) is the normalized like-
lihood of the pixel x to be generated by a model k with
parameters φk.

We use the grey-level information (i.e., normalized his-
tograms) to estimate the likelihood of each pixel to belong
to the class lumen or the class non-lumen. To estimate
these distributions, the user provides samples in the form
of a binary map over the IVUS image (Fig. 3(a)). Then, the
histograms of regions corresponding to lumen h1 and non-
lumen h2 are computed using 50 bins and then normalized
(Fig. 3(b)). We obtain the likelihoods vin and vout by us-
ing the value of the pixel grey-level I(x) on the normalized
histogram:

vin(x) =
hin(I(x)) + ε

h1(I(x)) + h2(I(x)) + 2ε
, vout(x) = 1−vin(x) ,

(1)
where ε is a small constant. The likelihood for lumen
(Fig. 4(a)) and non-lumen (Fig. 4(b)) are then used for com-
puting the distances d1 and d2.

3.1. Optimization method

A number of numerical methods exist for finding the
minimum of a cost function; one of the simplest ways is
to use a steepest descent method. However, this approach
could take a large number of iterations to converge to the
solution. Another possibility is to use the Quasi-Newton
BFGS method [12]. This method uses second order infor-
mation to find the optimal descent direction. However, since
it is possible to find regions beyond the luminal border that
have grey-level distribution similar to lumen, a large step in
the optimization could lead to a different local minimal and
hence an incorrect segmentation.

Thus, we propose an optimization method that uses a
linear combination of the descent directions from steepest
descent (pG) and BFGS (pBFGS) methods within a trust-
region (similar to the dogleg method [12]). We will refer to
this method as G+BFGS optimization.

(a)

(b)

Figure 3. (a) Binary map created by the user with samples of the
lumen and non-lumen. (b) Normalized histogram of the intensities
in the two classes.

(a) (b)

Figure 4. Depiction of (a) the lumen likelihood and (b) the non-
lumen likelihood.

In the BFGS method, the descent direction for each step
is computed using pBFGS

k = −Hk∇fk, where Hk is an ap-
proximation to the Hessian that is updated on each iteration
k by: Hk+1 = (I − ρksky

T
k )Hk(I − ρkyks

T
k ) + ρksks

T
k ,

with ρk = 1
yT

k sk
, sk = xk+1−xk, and yk = ∇fk+1−∇fk.

However, this method establishes a curvature condition that
is given by: sT

k yk > 0. When st
kyk is greater than zero,

the curvature of the function becomes more positive as the
descent approaches a minimal. If st

kyk < 0, the curvature
condition is not satisfied and a better descent direction is
the negative gradient (i.e., steepest descent direction). Ad-
ditionally, we note that for small values of st

kyk, the compu-
tation of the update formula for the Hessian (or its inverse)
is undefined.

By design, the more positive the value of ρ, the better
the step direction will be. Thus, the contribution of the
BFGS descent direction pBFGS

k will be small when ρ is
small (preferring steepest descent direction pG

k ). On the
other hand, if the value of ρ is more positive, we want to
take the BFGS descent direction pBFGS

k . Based on this



analysis, we propose to compute the descent direction as a
linear combination of both descent directions: pG+BFGS

k+1 =
−[ψ(ρk)Hk∇fk+(1−ψ(ρk))∇fk],where the function that
controls the contribution of each descent direction ψ(ρ) is
defined as:

ψ(ρ) =

{
0 if ρ < 0

ρ2

K+ρ2 otherwise
(2)

for a constant value of K.
Although the problem with the curvature condition is

solved using this linear combination, when using BFGS, if
in some step the value of the inner product of yT

k sk is very
small (but positive) then the value of ρ becomes big and
thereforeHk+1 becomes very big (even when the computed
step size α satisfies the Wolfe conditions [12]), making the
step too big. This is undesirable because a big step could
lead to an incorrect segmentation moving the lumen con-
tour to a region with grey-level profile similar to that of the
lumen. To solve this problem, we propose to restrict our
proposed descent direction magnitude within a trust region
controlled by a fixed parameter T . Thus, after obtaining
pG+BFGS

k , the descent direction is normalized:

p̂G+BFGS
k =

pG+BFGS
k

‖pG+BFGS
k ‖

,

and the final descent direction is the normalized descent di-
rection p̂G+BFGS

k scaled by a constant trust region parame-
ter T : PG+BFGS

k = T p̂G+BFGS
k .

Algorithm 1 G+BFGS optimization
Require: Initial point x0, trust region value T , and a toler-

ance ε.
1: Initialize H0 = I
2: pG+BFGS

k = −∇f(x0)
3: k = 0
4: while ‖∇f(xk)‖ > ε do
5: p̂G+BFGS

k = pG+BF GS
k

‖pG+BF GS
k ‖

6: PG+BFGS
k = T p̂G+BFGS

k

7: Compute the step size αk to satisfy the Wolfe condi-
tions

8: xk+1 = xk + αPG+BFGS
k

9: sk = xk+1 − xk

10: yk = ∇f(xk + 1)−∇f(xk)
11: ρk = 1

yT
k sk

12: Hk+1 = (I − ρksky
T
k )Hk(I − ρkyks

T
k ) + ρksks

T
k

13: pG+BFGS
k+1 = −[ψ(ρk)Hk∇fk + (1− ψ(ρk))∇fk]

14: k = k + 1
15: end while

3.2. Multi-Scale segmentation

Since the computation time in our method will depend
on the number of Gaussians used to parameterize the lumen
contour, in order to accelerate the convergence, we propose
a multi-scale approach on which the number of Gaussians
Ni is incremented on each of the multi-scale steps i. At the
first step of the multi-scale segmentation a small number
of Gaussians (e.g., N0 = 3) is used. Once the optimiza-
tion converges more Gaussians are added and the optimiza-
tion is repeated again using as initial point for the next step
i+ 1 the curve resulting from the previous step i. This pro-
cess is repeated until a maximum number of Gaussians M
is reached. In addition, the value of σ is reduced as the
number of Gaussians is incremented.

To get the initial point for the next step Ci+1
0 (Fig. 5(a)),

we adjust the curve resulting from the previous step yi(θ)
to the lumen contour function with the new number of
Gaussians Ni+1 (Fig. 5(b)) using the least squares method:
Ci+1 = minC

1
2 [f(θ, C)− y(θ)]2.

(a) (b)

Figure 5. (a) Lumen contour modeled using 5 Gaussians. (b) Ad-
justment of the contour in (a) using 10 Gaussians. The + symbol
indicates the Gaussian means and the dashed line the lumen con-
tour.

3.3. Single-frame segmentation

For a typical 20MHz IVUS image (Fig. 6(a)), once the
histograms and likelihoods are computed from the user-
provided map, the segmentation begins with the contour
corresponding to the initial point C0

0 . In Fig. 7, we observe
that in the first iterations of the first multi-scale step, the
lumen contour quickly deforms until it reaches a rough ap-
proximation of the luminal border shape. When this step
converges, additional Gaussians with a different standard
deviation are added to the lumen-contour. In Fig. 8(a) we
can observe that at the end of the second step the lumen-
contour is starting to look similar to the lumen boundary.
On the third step, additional Gaussians are added and at the
end of this step the lumen contour is very close to solu-
tion (Fig. 8(b)). On the last step, the maximum number of
Gaussians is used and the resulting lumen contour is more
detailed when compared to the one obtained at the previous
step (Fig. 8(c)). Figure 6(b) depicts the segmentation result.



Algorithm 2 Multi-scale segmentation of IVUS images
Require: IVUS image I using polar representation, the

number of Gaussians to be used on each multi-scale
step {N0, N1, ..., NM}, the corresponding standard de-
viations {σ0, σ1, ..., σM} for each multi-scale step, the
initial point for the fist stepC0

0 and h1 and h2 computed
from the map of the luminal area.

1: Compute the normalized histograms h1 and h2 from the
map.

2: Compute the likelihoods vin and vout using (1).
3: Compute the distances d1 and d2.
4: i = 0
5: while i ≤M do
6: Find the lumen contour yi by solving (3) using the

G+BFGS method of algorithm 1.
7: Compute Ci+1

0 adjusting the curve yi to the lumen
contour function with the number of Gaussians given
by Ni+1

8: i = i+ 1
9: end while

(a) (b)

Figure 6. (a) Depiction of a typical 20 MHz IVUS image to seg-
ment and (b) segmentation result.

3.4. Video sequence segmentation

For segmenting an IVUS video sequence, based on the
fact that two consecutive IVUS frames have similar lumi-
nal grey-level distribution, we use the histogram from the
previously segmented frame to compute the likelihoods for
the current frame. Similarly, the lumen-contour of the pre-
viously segmented frame is used as initial contour for the
current frame. For reasons of computational efficiency, only
the first frame is segmented starting with a small number of
Gaussians; for the segmentation of the consecutive frames
we start with the maximum number of Gaussians indicated.
Furthermore, it is well known that as the number of sam-
ples is increased, the grey-level values class distribution is
better estimated by the histogram technique and provides
more accurate a priori information. We take advantage of
this fact by accumulating the histograms of the previously
segmented frames from the video sequence and using them
on the following frames. This procedure can be seen as a

(a) (b)

(c) (d)

Figure 7. Depiction of the deformation of the lumen contour dur-
ing the first step of the multi-scale method. (a) Initial contour, and
after (b-d) 5, 15, and 40 iterations, respectively.

(a)

(b)

(c)

Figure 8. Depiction of the initial (left column) and final (right col-
umn) contours for steps 2-4 (a-c, respectively) of the multi-scale
segmentation method.

reinforcement learning process. Algorithm 3 presents our
approach for semi-automatic segmentation of IVUS video
sequences based on our proposed probabilistic segmenta-
tion method. Figure 9 depicts the segmentation of four con-
secutive frames.



Algorithm 3 IVUS video sequences segmentation
Require: The number of Gaussians to be used on each

multi-scale step {N0, N1, ..., NM}, the correspond-
ing standard deviations for each multi-scale step
{σ0, σ1, ..., σM}, initial point C0

0 , h0
1 and h0

2 computed
from the map of the first frame F0 and the number of
frames in the sequence L

1: H1 = h0
1, H2 = h0

2.
2: j = 0
3: while j < L do
4: Segment frame Fj with algorithm 2 usingH1 andH2

as the histograms and initial point Cj
0 .

5: Compute hj
1 and hj

2 from the segmented frame Fj

6: H1 = H1 + hj
1, H2 = H2 + hj

2

7: Obtain Cj+1
0 using the least squares method with the

segmentation result.
8: j = j + 1
9: end while

Figure 9. Segmentation of four consecutive frames.

4. Results

The parameters for the generation of the results and
how these were selected is discussed next. The uncertainty
around the lumen contour is controlled by the sigmoid. We
have experimentally selected λ = 0.8. The initial point C0

0

for the first step of the multi-scale segmentation should be
different from 0 to avoid the trivial solution, we set the off-
set to be the square root of one quarter of the image height
and the rest of the coefficients to be half of the offset. The
number of Gaussians and the standard deviation for each of
the multi-scale steps will depend on the width of the image
and the smoothness we want on the curve. In the fist steps,

we are not interested in capturing the details of the lumi-
nal border, so a small number of Gaussians with large stan-
dard deviation is appropriate. However, on the last steps we
are more interested to capture the details of the lumen bor-
der. Then, a large number of Gaussians with small standard
deviation is required. For our results we have experimen-
tally selected the number of Gaussians to be {3, 7, 9, 12}
with standard deviations of {50, 25, 20, 15} for images with
width of 256 pixels. The mean of each Gaussian is selected
such that the Gaussians are uniformly distributed into the
image width.

We evaluated our method by computing the measures of
accuracy recommended by Udupa et al. [16]. We compare
the automatic segmentation results with manual segmenta-
tions on the same image set. For a set of 100 20MHz IVUS
images, the mean accuracy was 98.28%± 0.49%, the mean
true negative rate was 99.43% ± 0.29%, and the mean true
positive rate was 95.57%± 1.69%.

The agreement between the areas of the lumen was ana-
lyzed using the linear regression analysis and Bland-Altman
plots [1]. The inter-observer and automatic (A) mean biases
and variabilities for two manual segmentations (MS1 and
MS2) for lumen are: the bias of the differences between
A and MS1 (A,MS1) was 369.70 ± 336.56; for (A,MS2)
the bias was 453.57 ± 304.89 and for (MS1,MS2) was
83.87± 343.61. Figure 10 depicts the results of this analy-
sis.
Results on IVUS images with artifacts: Figure 11 depicts
the segmentation result on an image with a shadow arti-
fact due to calcified plaque. Although this shadow could
be mistakenly interpreted as lumen since it has grey-level
intensities similar to the lumen region, we can observe that
our segmentation method was able to find the luminal bor-
der correctly. Usually the ringdown artifacts are removed
by cropping the region that presents this artifact or simply
replacing it with some uniform grey-level; however some-
times this artifact is not removed. Since guidewire artifacts
are more difficult to remove, they are commonly found on
IVUS images. Because this artifact exhibits a bright pro-
file, it can easily be confounded with plaque or other tissue
and lead to an incorrect segmentation. Figure 12 depicts
the segmentation result on an IVUS image with three arti-
facts: a ringdown artifact, a small guidewire artifact, and a
shadow artifact. Note that none of these artifacts affected
the performance of the segmentation.

Figure 13 depicts the segmentation result on an IVUS
image with two artifacts: shadow in all the areas beyond the
plaque due to calcified plaque, and a larger guidewire than
the one on the IVUS image in Fig. 12. Our method was
capable of segmenting the image despite the shadow and
the guidewire artifact.

Side branches are identified as the opening formed when
the vessel being imaged bifurcates. This is visualized as an



(a)

(b)

(c)

Figure 10. Bland-Altman plots for lumen segmentation: (a) Au-
tomatic vs. Manual segmentation 1, (b) Automatic vs. Manual
segmentation 2, (c) Manual segmentation 1 vs. Manual segmenta-
tion 2.

Figure 11. Segmentation example of IVUS image with shadow
artifact (the arrow indicates the shadow artifact due to calcified
plaque).

.

area of low intensity values extending from the lumen in the
near field towards the far field; this represents a challenge
for any active-contour based segmentation method because
the segmenting contour could advance through this shadow
and lead to an incorrect segmentation of the luminal border.
Figure 14 depicts the segmentation result on an IVUS im-

Figure 12. Segmentation example of IVUS image with 1), rign-
down artifact, 2) guidewire artifact and 3) shadow artifact.

Figure 13. Segmentation example of IVUS image with guidewire
artifact: segmentation result.

age of a relative healthy vessel (i.e., only a small plaque is
present) with a side branch. In our method, the smoothness
of our lumen contour resolves the problem with branches.
However, if we change the smoothness to achieve a better
detail, the contour will tend to attempt to segment the side
branch as lumen, resulting in an incorrect segmentation.

Figure 14. Segmentation example of IVUS image with side branch
(indicated by arrow 2) and a small plaque (indicated by arrow 1).

5. Conclusion
We have presented a probabilistic semi-automatic seg-

mentation method for lumen segmentation of IVUS images
that is robust to artifacts and that does not require prior
training. Our proposed G+BFGS optimization has shown
to be an ideal method for this kind of problem because it is
faster than the steepest descent optimization and at the same
time it can be controlled to avoid big steps that lead to an
incorrect segmentation. In addition, our contour parameter-
ization enables multi-scale segmentation that considerably



increases accuracy and segmentation speed.
We have applied our method to 20MHz IVUS images.

However, on higher-frequency IVUS images (i.e., 30-40
MHz) the speckle noise will be higher making it difficult to
segment using our method since we employ only grey-level
histograms to compute the likelihoods. We could model
the speckle intensities using the Rayleigh distribution [6]
or estimate the grey-levels distributions using a mixture of
Gaussians. However, we believe that by incorporating tex-
ture features in our a priori information [3], we will obtain
more accurate likelihoods that would lead to a successful
segmentation on high-frequency IVUS images.

We have not applied our method for the identification of
the media/adventita border. However, since the media is
observed as a thin black line and the adventitia tissue ap-
pears very bright because of its echogenic characteristics
[17], we believe that the same formulation will work to
segment the media/adventita contour. This can be accom-
plished by combining pixel intensities with image-gradient
information [10] on the a priori information (i.e., likeli-
hoods) with some minor modifications to our segmentation
method. Variable width Gaussians, prior detection of side
branches and preprocessing of the image (i.e., modified in-
tensity [17]) will be examined in future work.
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